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ABSTRACT
Electronic control systems used for quantum computing have become increasingly complex as multiple
qubit technologies employ larger numbers of qubits with higher fidelity targets. Whereas the control systems
for different technologies share some similarities, parameters like pulse duration, throughput, real-time
feedback, and latency requirements vary widely depending on the qubit type. In this paper, we evaluate
the performance of modern System-on-Chip (SoC) architectures in meeting the control demands associated
with performing quantum gates on trapped-ion qubits, particularly focusing on communication within the
SoC. A principal focus of this paper is the data transfer latency and throughput of several high-speed
on-chip mechanisms on Xilinx multi-processor SoCs, including those that utilize direct memory access
(DMA). They are measured and evaluated to determine an upper bound on the time required to reconfigure
a gate parameter. Worst-case and average-case bandwidth requirements for a custom gate sequencer core are
compared with the experimental results. The lowest-variability, highest-throughput data-transfer mechanism
is DMA between the real-time processing unit (RPU) and the PL, where bandwidths up to 19.2 GB/s
are possible. For context, this enables reconfiguration of qubit gates in less than 2µs, comparable to the
fastest gate time. Though this paper focuses on trapped-ion control systems, the gate abstraction scheme
and measured communication rates are applicable to a broad range of quantum computing technologies.

INDEX TERMS trapped-ion, qubits, quantum computing, SoC-based FPGA control system

I. INTRODUCTION

The most common way of performing quantum gates [1] in a
trapped-ion quantum computer (TIQC) uses modulated laser
pulses that interact with the atomic energy levels of the ions.
These pulses are normally generated with radiofrequency
(RF) signals that modulate the frequency, phase, and ampli-
tude of light using acousto-optic modulators (AOMs) [2], [3].
Typical hardware components for generating these RF sig-
nals include arbitrary waveform generators (AWGs), direct-
digital synthesizer (DDS) modules, and field programmable
gate arrays (FPGA) that directly drive digital-to-analog con-

verters (DACs) using an AWG-type architecture, soft-core
DDSs, or some combination of the two. Other interaction
mechanisms that involve RF or microwave signals delivered
to ions via antennae or electrodes incorporated directly into
the ion traps can also be used to perform gates, and use
similar control electronics as those needed for AOMs.

In this paper we describe the digital side of a control
system for generating RF signals that drive quantum gates
in a TIQC [2], focusing on data bandwidth requirements for
supporting RF operating frequencies, synchronization, phase
coherence, and feedback-based calibration. This latter need
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for near real-time feedback provides a context to calculate
communication requirements within the control system. Our
goal is to arbitrarily reconfigure gate parameters based on
preceding measurements within a time period that is on the
order of the fastest gate time (assumed here to be a 1µs single
qubit gate). Given a particular parameterization scheme, this
establishes a target communication rate and latency for dif-
ferent parts within the SoC, i.e. the integrated multi-core
microprocessors with high-speed on-chip data buses and
memory mechanisms shared with the programmable fabric.
We categorize control operations into those requiring fixed-
cycle-count time intervals, those that are deadline-based, and
those that have soft real-time constraints for mapping into
the programmable logic (PL) and processing system (PS)
components of the SoC. This requirement may seem overly
stringent, but it has the advantage that it could prevent cor-
related errors that are correctable by control hardware from
jeopardizing error correcting circuits. An example would be
tuning the amplitudes of RF signals that are driving AOMs
to correct for power changes in a laser that supports multiple
qubits.

Our co-design approach expresses complex hardware-
centric features using software-based constructs, for example
the data and control signals are constructed by an application
running on a processor(s) and are transferred to the con-
trol system in the PL using direct memory access (DMA)
by a real-time processor. Beyond the benefit of abstracting
away low-level operational details, this approach also reduces
bandwidth requirements across the software-hardware inter-
face [4], [5]. The objective of our hardware performance
evaluation is to explore a variety of specialized hardware
acceleration features that can be leveraged to further improve
performance across the TIQC hardware-software interface.
This paper does not analyze analog errors associated with
the control system, which have an important effect on gate
fidelity and must be addressed when considering the entire
control system [6], [7].

A block diagram illustrating high level experimental op-
erations with multiple control loops is shown in Fig. 1. The
loops are required to enable sufficient statistics to be gathered
as well as tune gate sequences in subsequent iterations by
feeding back on results obtained from past iterations. All of
these loops operate on a deadline-based schedule with an
upper-bound on time constraints, and the effectiveness of the
feedback-driven tuning operations is ultimately limited by
the bandwidth of the hardware-software interface.

Our design is meant to accommodate a wide array of tasks
needed for typical day-to-day operation of a TIQC, includ-
ing the most challenging scenario of running an algorithm
that requires many consecutive operations. In contrast to
classical high performance computing in which checkpoints
can be used to store intermediate calculations to recover
from unexpected failures [8], quantum computers cannot
classically store intermediate states. In addition, simply to
preserve those quantum states requires continuous quantum
error correction (QEC) [9] and calibration. Control errors that

State prep
(<5 µs)

State detect
(50...500 µs)

Control pulses
{Pi(Xj)}

(1...500 µs each)

Repetition loop (m)

Parameter loop (update Xj)

Results stored for
post-processing

Shuttling & 
cooling
(~1 ms)

Conditional feedback
(communication + processing <1 ms)

Periodic calibration
(fast & slow drifts)

FIGURE 1: A typical experimental cycle for a trapped-ion
quantum computer. A gate sequence consisting of prepara-
tion, a series of n control pulses (where i ∈ {1, n}), and
measurement/state detection, which is repeated m times for
statistics. There are o different parameters that define these
individual pulses (where j ∈ {1, o}), which are updated in
the parameter loop. Periodic calibration occurs on fast and
slow time scales to correct for drift and other hardware errors.
The electronics described here are also capable of conditional
feedback such that pulse parameters can be modified based
on individual or groups of measurements. More commonly
the results are stored for post-processing.

occur outside of the electronic control system, like fluctu-
ations in laser intensity or external magnetic fields can be
corrected by the control system as long as they are detected,
the correction is calculated, and the control parameters for
the many affected qubits are updated, all in less time than
it takes for the next gate to be applied within a round of
syndrome extraction. Therefore, in this research we have
focused considerable effort on measuring the communication
limitations that would bound the reconfiguration time of
the control system. There are other approaches to dealing
with this scenario, like restarting the algorithm, dynamical
decoupling, or distributing control lines in such a way as to
not risk highly-correlated errors within a logical qubit, but
these may come at considerable cost and would ideally be
made unnecessary by a sufficiently fast control system.

With typical gate times ranging from 1µs to 1 ms, the tim-
ing requirements for a TIQC control system are significantly
different than other technologies that have gates that can
be 100 times faster. This relaxes some performance require-
ments; for instance the rotation angle applied during a single
qubit gate is proportional to the interaction time of the pulse,
so a 1% angular rotation error for a 1µs gate can be achieved
if there is less than 10 ns error in the gate duration, posing
less stringent absolute timing demands than technologies
with faster gates. The conditional feedback described above
is another example in which the slower trapped-ion system
relaxes control system requirements.

The Xilinx Zynq UltraScale+ radiofrequency SoC (RF-
SoC) device, embedded within a Xilinx ZCU111 evaluation
board [10], is used as the experimental platform in our eval-
uation. The digital components integrated onto this device
include multiple CPUs, shared memory, and a PL fabric. The
PS and PL each connect to a dedicated 4 GB bank of DDR4
(DRAM) memory. The PS side includes an Arm Cortex-A53
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64-bit quad-core application processing unit (APU) and a
Cortex-R5 32-bit dual-core RPU, local caches and on-chip
scratch memory, all interconnected with a complex Arm Ad-
vanced eXtensible Interface (AXI) switch network to enable
interprocessor communication and high-speed communica-
tion channels between the PS and PL sides. The ZCU111
is a mixed-signal device, integrating dedicated, high-speed
analog RF components, in particular, eight 4 GSPS 12-bit
RF analog-to-digital converters (ADCs) and eight 6.5 GSPS
14-bit RF digital-to-analog converters (DACs). The appli-
cations that have driven the marketing and development of
the ZCU111 include 5G Wireless, Next-Generation ADAS,
and Industrial Internet-of-Things, but many features of the
architecture are well-suited for quantum computing as well.

We also compare the performance in some cases with a
less expensive ZCU102 MPSoC evaluation board that pos-
sesses a nearly identical digital processing architecture to the
ZCU111. In particular, the latency and throughput charac-
teristics of both devices are presented for the DMA transfer
mechanisms investigated in this paper, as an illustration of
the performance benefit that is attainable when using a faster
DDR, which is a feature of the ZCU111. We envision a
larger, multi-SoC qubit system that can utilize the ZCU102
for system-level coordination and synchronization among a
set of ZCU111s. Therefore, the performance characteristics
of the ZCU102 are also relevant for quantum computing
systems.

Hardware design and analysis covered in this paper in-
cludes:

• The hardware and software control elements of a custom
DDS for a TIQC system are described, along with an
analysis of the worst case and average case throughput
that are required between the PS and PL sides of the
ZCU111.

• An analysis of the throughput and latency associated
with a set of four distinct communication mechanisms
within the ZCU boards is presented, as well as an anal-
ysis of the variability associated with these channels.

• A feasible mapping of TIQC communication channel
requirements and those available within the digital ar-
chitecture of the ZCU boards is presented and the trade-
offs and limitations discussed.

The remainder of this paper presents related work (Section
II), an overview of the overall TIQC system architecture
and task partitioning (Section III), a detailed description of
the characteristics, functionality and requirements of gate
sequence generation implemented by custom PL compo-
nents of the control system (Section IV), a description of
the experimental setup and an analysis of throughput and
latency associated with four high-speed, on-chip communi-
cation mechanisms within the ZCU111 (Section V), and a
presentation of a feasible mapping strategy between ZCU111
communication mechanisms and the required communica-
tion channels within the TIQC system (Section VI).

II. RELATED WORK
Quantum computing experiments that use both custom [11],
[12] and commercial [13], [14] FPGA-based control systems
have been demonstrated over the last decade. FPGA-based
architectures for quantum communication have also been
proposed [15]. Whereas earlier experiments emphasized the
flexibility of generating control pulses, more recent hardware
has focused on scaling and its concomitant challenges. For
example, [16] describes a modular system that uses PXIe
modules for arbitrary waveform generation and ADC sam-
pling that can support extending the number of controllable
qubits while maintaining nanosecond level synchronization.
Another example is the Virtex-7 FPGA custom platform
proposed in [17] for control of spin-based qubits that includes
a 1 GS/s AWG, an 8-channel pulse/sequence generator, a
2-channel ADC and a 2-channel time-to-digital converter
(TDC).

The need for fast feedback has also driven recent hardware
development. A modular FPGA-based system called QubiC
is proposed in [18] for the measurement and control of
superconducting qubit systems that support the execution
of gate-based quantum algorithms. The prototype system is
designed to generate RF pulses to control and measure qubits,
and to provide fast feedback control for QEC. It consists of
a Xilinx VC707 FPGA and Abaco Systems FMC120 boards
with ADC and DAC modules for the generation and detection
of intermediate frequency (IF) signals, an RF mixing module
for signal conversion and a local oscillator (LO) implemented
with a master oscillator driving the inputs of multiple phase-
locked loops (PLLs).

The system described in [19], [20] is also designed to
meet the instrumentation requirements of superconducting
qubit systems but shares similar platform characteristics to
the one that we propose. A modular approach is taken in
which the PL side is partitioned into regions called digital
unit cells, each of which is responsible for managing one
qubit. The APU and RPU components of a ZCU111 are
used to implement user interface functions and to provide
low-latency run-time configuration and data processing with
PL components, respectively. However, the proposed system
uses AXI4-Lite memory-mapped register interface to the PL
and a 2-to-N Wishbone bus system for retrieving data, which
can limit its data processing and feedback.

A recently proposed quantum instrumentation control sys-
tem (QICK) is described in [21]. The system utilizes the
ZCU111 RFSoC and is capable of controlling multiple qubits
with direct synthesis of control pulses with carrier frequen-
cies up to 6 GHz. The programmable logic is configured
with a customized module that can synthesize and digitally
upconvert arbitrary pulses, measure and downconvert incom-
ing signals, as well as react in real-time to feedback. The
system utilizes the APU (which runs python applications
under Linux), a timed-processor implemented in the PL,
and DMA transfers between the APU and PL, but does
not incorporate the RPU. The authors describe the analog
performance and digital latency of the system but do not
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characterize the performance characteristics of the various
communication channels within the ZCU111.

Multiple FPGA-based commercial systems have recently
become available and include integration with other key
hardware. For instance, Sinara is a hardware control system
that uses the open-source ARTIQ software for supporting
quantum applications [14]. The ecosystem offers modules
that include AWGs, DDSs, RF generators, and feedback ele-
ments such as proportional–integral–derivative (PID) servos,
in addition to carrier cards that use FPGAs to coordinate an
experiment. Liquid Instruments, Quantum Machines, Zurich
Instruments, Keysight, and National Instruments also provide
electronic control hardware that is tailored for quantum com-
puting.

Several recent research efforts describe throughput char-
acteristics of MPSoCs outside of the context of quantum
computing. An analysis of the throughput and latency of
AXI port configurations for data transfers between memory
subsystems is presented for the ZCU102 and Ultra96 boards
in [22]. AXI bus widths, burst size, memory chip configu-
ration, access patterns and transaction frequency are taken
into consideration in their analysis. The analysis however
is presented for DMA transfers using the APU between PS
DDR and PL Block RAM (BRAM), and does not address
RPU, PL DDR, inter-processor communication and general-
purpose input/output (GPIO) performance characteristics. A
second investigation of memory performance parameterized
by burst and memory stride sizes within the ZCU102 is
presented in [23]. The focus of the analysis is again on DMA
transfers from PS DDR to PL BRAM.

III. ARCHITECTURE
The goal of our work is to define an RFSoC platform config-
uration that meets the requisite electronic performance (e.g.
timing, phase accuracy, amplitude stability) for performing
high-fidelity quantum gates while supporting flexible gate
sequences and the ability to extend the hardware to control
more qubits. To achieve this we start with these high-level
design principles:

1) RPU vs. APU task division: assign operations that
require strict deadline-based timing to the RPU and
PL state machines, whereas overall coordination and
tasks with soft real-time-based timing constraints are
assigned to the APU.

2) Multiple processors and DMA for increased paral-
lelism: control and synchronize RPU operations using
the APU, and leverage an RPU core for meeting hard
real-time deadlines. Maximize hardware parallelism by
fully utilizing AXI interconnect between processing
cores, and for carrying out high-speed gate-sequence-
based data transfers using DMA between the PS/PL
DDRs and PL AXI streaming interfaces.

3) Leverage modern classical computing paradigms:
use optimized commercially-developed hard-wired
processing blocks where possible to minimize latency
and maximize bandwidth.

Applications running on the APU provide for a high-level
language abstraction for carrying out soft real-time-based
complex computing tasks, with access to comprehensive
library functions, and internet-based access and data transfer
mechanisms. Light-weight, real-time bare-metal and FreeR-
TOS applications running on the RPU connect to both the
APU and PL-side components using fast on-chip intercon-
nects for interprocess communication, via Open Asymmetric
Multiprocessor (OpenAMP) and RPMsg, GPIO, and block-
oriented DMA transfer mechanisms.

IV. GATE SEQUENCE GENERATION AND FLOW
The fundamental job of the coherent control system is to
compose RF waveforms that implement sequences of high-
fidelity quantum gates. In their simplest form, these pulses
consist of RF oscillations with a square envelope and de-
fined frequency, phase, and amplitude. Fluctuations in the
calibrated values for these control parameters are a com-
mon source of gate error. These fluctuations can be cate-
gorized into two general regimes: fast shot-to-shot fluctua-
tions with typically ≪1% relative amplitude, and slow drifts
on timescales ranging from seconds to hours that can lead
to larger relative errors after long run times. Shot-to-shot
fluctuations can be mitigated using dynamical-decoupling
gates [24], such as BB1 or SK1 gates for pulse length errors
(PLE), and CORPSE or Q1 gates for off-resonant errors
(ORE), or combinations of the two (CCCP or B2CORPSE).
These gates often require discrete phase jumps, and in some
cases continuous amplitude modulation (AM) (e.g. Q1, Q2,
S1, and S2). Dynamical decoupling schemes for two-qubit
entangling gates can also require techniques such as con-
tinuous frequency modulation (FM) or combinations of FM
and AM. Other state-of-the-art quantum gate designs and
pulse engineering techniques, such as GRadient Ascent Pulse
Engineering (GRAPE) rely on simultaneous modulation of
all parameters.

Supporting continuous modulation across all parameters
requires large amounts of data, and such techniques are often
implemented using arbitrary waveform generators (AWGs).
AWGs suffer from long load times and limited circuit depth,
due to the sheer number of points that must be encoded
to describe the full waveform. However, even the more
advanced dynamical decoupling gates require modulation
envelopes with spectral components which have relatively
low frequencies in comparison to the baseband RF frequency,
at least for trapped ions, and therefore more memory-efficient
encodings are possible outside of AWGs.

We exploit this disparity by implementing a custom arbi-
trary waveform modulator (AWM), which supports advanced
modulation of waveform control parameters and requires
only a fraction of the data required by an AWG. Our AWM
consists of two main elements, a custom DDS module and a
gate sequencer. The DDS module implements global phase
synchronization for automatic phase bookkeeping and sup-
ports specialized features such as frequency feedforward cor-
rections and dynamic cross-talk cancellation for shimming
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FIGURE 2: LUT architecture utilized for representing compressed gate sequences. A more detailed description of how gate
sequences are generated is provided in the appendix (VIII-B).

out external hardware errors. The gate sequencer module is
responsible for scheduling waveform parameters that are fed
to the DDS. These parameters are fed using a hierarchical set
of look-up tables (LUTs) shown in Fig. 2. The gate LUTs and
memory map LUTs provide memory-efficient reference to
specific sequences of pulse information that comprise quan-
tum gates, and are described in the appendix (VIII-A). This
pulse information is stored at the lowest level in a pulse LUT
with 216-bit spline data that parameterizes the frequency,
amplitude, phase, and timing of the gate. These are the values
that must be collectively updated and communicated when
gates are reconfigured. Based on the amount of information
needed for specifying a gate, we find the communication
speeds measured in the next section to be sufficient for
supporting reconfiguration times that are less than 2µs, on
the order of the fastest gate time.

V. COMMUNICATION
Having described the gate sequencer LUT architecture and
general division of labor between the APU and RPU, in
this section we describe the RFSoC (ZCU111) hardware
and experimental results related to communication within
the system. As discussed earlier, the hardware architecture
of the ZCU102 and ZCU111 are very similar with respect
to the interprocessor communication mechanisms and AXI
interconnect architecture, and therefore, only the ZCU111
performance metrics are shown. The latency and throughput
measurements for DMA transfers, on the other hand, exhibit
significant differences as we show in the following section.

A block diagram of the processing and interconnect com-
ponents within the Zynq UltraScale+ SoC on the ZCU111
(and ZCU102) is shown in Fig. 3. The processing system
includes a set of AXI switches that interconnect the five
main components of the SoC system architecture, namely, the
dual-core Cortex R5 RPU, quad-core Arm Cortex A53 APU,
Programmable Logic, DDR and IO unit. Xilinx uses the
terms full-power-domain (FPD), low-power-domain (LPD)
and programmable-logic-power-domain (PLPD) to refer to
regions on the SoC that have separate power control mecha-
nisms, with each referring to the power domains for the APU,
RPU and Programmable Logic, respectively. The RPU and
APU have access to a DDR4 4 GB 64-bit PS SDRAM and the
4 GB 64-bit PL DDR4 (the ZCU102 possesses a 512 MB 16-

bit PL DDR4 and provides lower performance as we discuss
in the following).

The corresponding communication channels within the
system architecture that we evaluate in this paper are shown
in Fig. 4. The blue arrows illustrate the data transfer paths
between the APU, RPU and Programmable Logic, while the
black arrows represent the control signals. Each of the com-
munication mechanisms support parallel transfer capability
of at least 32 bits. While GPIO and EMIO are limited to
32 bits in our experiments, RPMsg supports 64-bit transfers
while DMA and CDMA are variable and can be expanded up
to 1024 bits. The thickness of the blue arrows and the legend
identify characteristics of the data transfer paths.

Communication performance is characterized by two pri-
mary parameters, latency and throughput (the term band-
width is used in reference to the maximum achievable
throughput). Both latency and throughput are subject to vari-
ation because of interfering events, e.g. interrupt processing
by an APU, blocking events within the switches of the inter-
connect, refresh cycle requirements of the DDRs, and others.
It is particularly important to determine both the average
value and variability in these parameters, since a quantum
computer cannot store quantum states at checkpoints while it
pauses for communication, but instead must perform continu-
ous cycles of quantum error correction. The standard method
of computing average values and variability is to compute
the mean and standard deviation, and (1,2,3)σ is used to
get a sense of confidence intervals given σ. However, this
assumes the variability in the communication mechanisms
can be characterized as Gaussian. In our experiments, we
rarely found instances of Gaussian behavior1 and instead
report results using non-parametric statistical metrics, which
include the median, minimum, and maximum values. Char-
acterizing the range of variability is especially important for
quantum computing where processing of feedback is often
time-critical.

1The most likely reason for the lack of Gaussian behavior is the discrete
event-driven characteristic of SoC-based microprocessor systems. Gaussian
variations are typically associated with continuous random variables. The
time intervals of events such as cache misses, AXI-interconnect blocking
events, DDR refresh operations and interrupt service handling are discrete,
i.e., are associated with fixed, non-zero time intervals, making the distribu-
tions even over large numbers of samples asymmetric and non-uniform. This
type of timing behavior justified our use of non-parametric statistics.
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FIGURE 4: Zynq MPSOC communication channels.

The communication mechanisms shown in Fig. 4 are sum-
marized as follows, and described in detail in the following.

• RPMsg between the APU and RPU, labeled with 1⃝ in
the figure.

• DMA between a bare metal application running on one
of the RPU cores and a streaming AXI interface and
state machine in the PL using PL DDR4, labeled 2⃝
through 3⃝ in the figure.

• CDMA between the PS and PL DDR4, controlled by the
APU, labeled 4⃝ through 5⃝ in the figure.

• Memory-mapped AXI-Lite GPIO registers and ex-
tended multiplexed input-output interface (EMIO) be-
tween the RPU and PL, labeled 6⃝ in the figure.

The communication channels between the APU, RPU,
and PL require the configuration and compilation of the
custom Linux kernel. Linux is run on top of a symmetric
multiprocessing configuration that defines the APU hardware
architecture with four cores. The APU and RPU subsystems,
on the other hand, define an asymmetric multiprocessing

(AMP) system, in which the RPU cores operate as indepen-
dent processor components with respect to the APU. The
multi-user, time-sharing system model, which characterizes
the Linux OS, is not capable of meeting the deadline-based,
real-time system requirements of a quantum computing sys-
tem. Instead, the RPU is utilized for this purpose, and is
configured to run bare metal applications and/or a real-time
operating system (RTOS) such as FreeRTOS.

The PL represents a third component that is used for
defining highly customized peripherals, that can be utilized
for specialized coprocessing tasks. Whereas register-transfer-
level or RTL-based design typically involves low-level con-
structs that lack the expressiveness of high-level software
abstractions, it provides an ideal platform for generating cus-
tom peripherals where one has absolute control over timing
characteristics. Therefore, PL can supplement the PS with
features that meet hard, real-time system constraints.

Each of the illustrated communication channels shown
in blue in Fig. 4 utilize a unique interface mechanism. For
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example, the communication channel between the APU and
RPU, labeled as 1⃝ in the figure, makes use of an API
defined by the libmetal and OpenAMP standards [25], and
utilizes on-chip tightly-coupled memory (TCM) for code,
stack, heap, etc., and the PS DDR for inter-processor com-
munication (IPC) for data exchange and synchronization.
Similarly, the blue arrows labeled 2⃝ and 5⃝ capture the se-
quence of operations that occur during direct memory access
(DMA) transfers, whereas the blue arrows labeled 6⃝ shows
the transfer paths between the RPU and PL when memory-
mapped interfaces, including AXI-Lite GPIO registers and
EMIO, are used. The architectural details and measurement
results for each of these transfer mechanisms are presented in
the following subsections.

A. EXPERIMENTAL SETUP FOR GPIO AND RPMSG
DATA COLLECTION AND MEASUREMENTS
The Libmetal API provides applications with access to in-
terprocessor interrupts (IPI) and shared memory for instru-
menting communications between two or more processing
units. The OpenAMP framework builds on top of Libmetal to
provide a higher level of abstraction to these communication
services, which are referred to as Life Cycle Management
(LCM) and Interprocessor Communication (IPC). The Lib-
metal/OpenAMP API defines a communication mechanism
based on remoteproc and RPMsg driver primitives, which
are implemented within the Linux kernel and RPU bare-
metal application. The remoteproc API allows applications
that run on the APU to initialize, start and terminate binary
executables on the RPU, whereas the RPMsg API defines a

protocol for interprocessor communications.
Xilinx hardware development tools, including Vivado and

Vitis [26], are used to create the architecture shown in Fig.
5 for the AXI-Lite GPIO and EMIO latency and through-
put measurements. The timing process starts with the APU
loading a bare-metal application on the RPU. The APU C
program then initializes the RPMsg communication facility
between the APU and RPU and transfers run-time parameters
to the RPU (not shown). The RPU program receives the
configuration parameters and then enters a loop that reads and
writes two 32-bit memory-mapped registers as a means of
exchanging information with a state machine (SM) running
in the PL. The SM instantiates a latency and throughput
counter that are used to record the number of PL clock cycles
required to execute a handshake communication protocol
between the RPU and PL.

We investigate two AXI-Lite GPIO configurations which
map to different physical addresses as shown in Fig. 6.
Surprisingly, the physical address assigned impacts the per-
formance characteristics. The first configuration, labeled
‘Through FPD’, memory maps the GPIO just above the
upper limit of the LPD aperture at 0xA000_0000 and requires
communication traffic to route through both the LPD and
FPD switches. The LPD aperture is defined as a 512 MB re-
gion between 0x8000_0000 and 0x9FFF_FFFF in the RFSoC
and MPSoC architectures. The second configuration, labeled
’Through LPD’, maps the GPIO into a small region of the
LPD physical address aperture at 0x9000_0000. The RPU
communication traffic in this case routes to and from the PL
using only the LPD switch. The additional routing in the first
configuration increases latency and decreases throughput.

The primary consideration here for quantum systems is
the limited size of the memory region directly accessible by
the RPU in the RFSoC and MPSoC system architectures,
namely the 512 MB LPD region. The primary data transfer
mechanism between the RPU and the PL is DMA, which
also needs to utilize this memory region. Moreover, a custom
Linux kernel is built to map a portion of the PL DDR address
space into this region as a means of fully utilizing the capa-
bilities and capacities of the two DDR memories. Therefore,
a tradeoff exists between maximizing DMA transfer buffer
size and achieving the best AXI-Lite GPIO performance.
EMIO represents a nearly equivalent alternative to AXI-Lite
GPIO with regard to performance, but avoids the limited LPD
address space problem, as we discuss in the next section.

B. GPIO EXPERIMENTAL RESULTS
The RPU AXI-Lite GPIO interface is tested at three different
PL frequencies, including 100 MHz, 200 MHz and 333 MHz
(the maximum allowed). Latency is measured as the average
transfer delay of handshake operations between the RPU and
PL SM. Handshaking is implemented by toggling two control
bits in the RPU-to-PL and PL-to-RPU GPIO registers. The
latency counter in the PL measures the round trip delay, and
then divides by 2 to obtain the one-way transfer latency. The
expression for latency is Nc/(2fclk), with Nc representing
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FIGURE 7: Histogram showing ZCU111 AXI-Lite GPIO
latency results for transfers between the RPU and PL using
data collected from 1000 individual trials under the ‘Through
FPD’ configuration shown in Fig. 6. Latency results are
plotted for test cases with the PL clock frequency set to 100
MHz, 200 MHz and 333 MHz.

the value of the counter in the PL and fclk the PL clock
frequency. The SM starts the counter in the same clock as the
PL-to-RPU assertion and stops it once it receives the RPU-
to-PL acknowledgement. Note that this assumes the latency
of the interconnect is symmetrical between the RPU and PL.

The counter value is then transferred to the RPU, which
sends the value via RPMsg to the APU. The APU converts
the count to nanoseconds and gathers statistics from multiple
trials. The throughput measurement begins the same way but
continues through multiple handshake exchanges, as speci-
fied by the run-time parameters. Moreover, a complete two-
way handshake includes two additional busy waits for the
GPIO control bits to return to zero. The count values after
multiple exchanges are (NBNINHfclk)/Nc B/s. Here, NB

represents the number of bytes per handshake (4 for the 32-
bit GPIO registers), NI is the number of iterations (90 in
our experiments) and NH is the number of handshakes per
iteration (4).

Histograms showing the latency and throughput results
from 1000 trials under the ‘Through FPD’ configuration
shown in Fig. 6 are plotted in Figs. 7 and 8, respectively,
for three PL fclk frequencies, 100 MHz, 200 MHz and 333
MHz. The y data is plotted on a log10-based scale to enable
better visibility of the smaller bin sizes, which portray the
variability in the measurements. The median latencies are
given as 350, 253 and 210 ns and for throughput as 11.8, 16.6
and 20.2 MB/s, respectively. A second set of histograms are
shown for the second AXI-Lite GPIO configuration in Figs.
9 and 10, with median latencies given by 250, 163 and 126 ns
and median throughputs given by 20.7, 32.6 and 41.9 MB/s,
respectively. The variation around the median value is less
than 15 ns for latency and less than 0.05 MHz for throughput,
indicating that GPIO communication is relatively invariant.
Note that the GPIO timing measurements are made in a no-
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FIGURE 8: Throughput histogram for AXI-Lite GPIO for the
‘Through FPD’ configuration (companion graph to Fig. 7).
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FIGURE 9: Histogram showing ZCU111 AXI-Lite GPIO
latency between the RPU and PL using data collected from
1000 individual trials under the ’Through LPD’ configuration
shown in Fig. 6.

load test environment, i.e. the APU is not generating traffic
on the AXI interconnect and therefore, these results reflect a
best case scenario.

The time spent by the RPU to execute the instructions
involving the handshake, and the time spent to transmit data
across the AXI-Lite interconnect plus the time required for
the PL to consume it, can be calculated from the throughput
results. The following simultaneous equations are derived
using the median throughput results of the ’Through LPD’
experiments. In Eq. 1, the throughput with the PL configured
to run at 333 MHz is converted into the amount of time
required to carry out one transfer of 4 bytes. The transaction
times in Eqs. 2 and 3 are computed in a similar fashion.
Assuming the RPU execution time component tRPU remains
constant in all three experiments, and the AXI-Lite intercon-
nect and PL time components scale linearly with frequency,
e.g. tPL200 = 1.665 tPL333, two of the following three
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FIGURE 10: Throughput histogram for AXI-Lite GPIO for
the ’Through LPD’ configuration (companion graph to Fig.
9).

equations can be solved for the two unknowns and the third
equation can be used to validate the results.

tRPU + tPL333 = 95.6 ns (1)

tRPU + 1.665 tPL333 = 122.7 ns (2)

tRPU + 3.33 tPL333 = 193.2 ns (3)

The values obtained for tRPU and tPL333 are 54.7 ns
and 40.9 ns, respectively. An estimate of the error can be
computed by subtracting the left-hand-side from the right-
hand-side of Eq. 3, which yields a value of 2.3 ns. Therefore,
the RPU runs for 27 clock cycles while the AXI-Lite/PL runs
for 14 clock cycles during each transfer operation, with the
uncertainty in the estimates equal to only one RPU clock
cycle.

EMIO does not utilize the AXI-Lite protocol and is in-
stead structured as a direct multiplexer-based connection
network between the RPU and the PL. The RFSoC and
MPSoC provide up to 95 configurable single-bit channels
that can be used for data transmission in either direction.
In our experiments, we configure two 32-bit channels in a
fashion identical to the AXI-Lite GPIO, and make latency
and throughput measurements using the handshake protocol
described earlier. EMIO is limited to a maximum clock
frequency of 100 MHz but the PL frequency can be increased
to 500 MHz, which represents the configuration used in our
experiments.

This particular clock frequency combination also enables
latency and throughput to be measured using a one-way
transfer mechanism. In the one-way experiments, the C code
for the RPU simply toggles a control bit in a tight loop and
does not wait for an acknowledgement from the PL. The PL,
running at five times the EMIO frequency, over-samples the
EMIO control bit to determine the rate at which the bit is

toggled by the RPU. Surprisingly, the results from this one-
way experiment show that throughput is not symmetric, with
RPU-to-PL exhibiting higher throughput than the throughput
computed using the two-way handshake configuration where
the RPU waits for a PL-to-RPU acknowledgement before
executing the next toggle operation.

Although histograms for the EMIO results are not shown,
the median latency and throughput measured for the one-way
experiments are 90 ns and 44.4 MB/s, whereas, for the two-
way transfer experiments, the round trip latency degrades to
370 ns with an average throughput of 20.6 MB/s. This implies
that PL-to-RPU latency and throughput are 280 ns and 14.29
MB/s, respectively. The minimum and maximum latencies
for RPU-to-PL transfers are 90 and 105 ns, respectively,
while the minimum and maximum throughputs are 38.1 and
44.4 MB/s. For PL-to-RPU transfers, the values are 280
and 290 ns, and 13.8 and 14.29 MB/s, respectively. Given
the proprietary nature of the EMIO communication channel,
it is difficult to speculate on the reason for the observed
asymmetric behavior.

Overall, the AXI-lite GPIO and EMIO communication
mechanisms exhibit low levels of variability, in comparison
with several of the other communication mechanisms de-
scribed in the following sections. This characteristic makes
these GPIO-based communication mechanisms attractive for
implementing control functions in TIQC systems that have
low latency, real-time constraints.

C. RPMSG EXPERIMENTAL RESULTS
The latency and throughput of messages sent between the
APU and the RPU via RPMsg are reported on in this section.
A flow diagram that illustrates the process used to make
timing measurements is shown in Fig. 11. The APU and RPU
both execute a custom timing application under Linux and
on bare metal, respectively. Note that the Linux device tree
must be configured with elements that support the RPMsg
protocol, e.g. shared memory and IPI. Xilinx-provided Vitis
software examples are used to create the APU and RPU
applications, with a linker script that places the RPU code
and data segments into tighly-coupled-memories (TCMs),
and shared APU-RPU memory in PS DDR.

The RPU application, once started by the APU, allocates
a block of shared memory and sets up the IPI (not shown). It
then loops carrying out the following sequence of operations.
A synchronization (semaphore-protected) variable sync is
initialized to 1 and then the RPU enters a sleep state and waits
on an interrupt from the APU. The APU application is then
run which also initializes its own sync variable and starts the
APU-to-RPU (AToR) timer. The APU then writes a payload
to the shared memory block in the PS DDR and sends an IPI
to the RPU. The RPU’s interrupt service routine awakens the
RPU application, sets the sync variable to 0 and then reads
the payload from shared memory. Once the read operation
completes, it stops the AToR timer. Although not shown in
Fig. 11, the exact same sequence occurs in reverse using a
second RPU-to-APU timer with the RPU writing a payload
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FIGURE 11: Flow diagram of RPMsg experiment for timing
data transfers from APU to RPU. The sequence of operations
for measuring throughput from the RPU to APU are identical
but reversed.
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FIGURE 12: Histogram depicting RPMsg transfer times in
microseconds for transfers from the APU to the RPU on the
ZCU111. The y data is plotted on a log10-based scale to better
emphasize variability in the measurements.

to shared memory and the APU performing a read-out. The
APU’s timing application reads the values of the two timers
and stores the values in an array and later to a file for post-
processing.

The timing application algorithm is repeated using
100,000 iterations for each payload size from 8 bytes to 4096
bytes, with each payload size in the sequence larger than
the previous payload by a power of two. The values stored
in the arrays are the count values read from the two TTCs,
which run at 100 MHz in the PL. Therefore, each count
increment represents a time interval of 10 ns. Note that unlike
the GPIO measurement scheme, where it was possible to
measure latency independent of throughput, it is not possible
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FIGURE 13: Histogram depicting RPMsg transfer times in
microseconds for transfers from the RPU to the APU on the
ZCU111.
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FIGURE 14: RPMsg throughput on the ZCU111 showing the
median, min, and max throughput characteristics using mea-
surements from 100,000 trials for transfers in both directions,
i.e. from APU to RPU (blue) and from RPU to APU (brown).

to determine when the first word of the payload is written
to DDR for RPMsg. Given the data bus width of the PS
DDR is 8 bytes, we use the 8-byte payload for the latency
measurement.

Histograms showing the transfer times associated with
the first 1000 trials for a subset of the payload sizes are
plotted in Figs. 12 and 13 for APU-to-RPU and RPU-to-
APU transfer operations, respectively. A key objective here
is to portray the asymmetry that exists in the variability of
the throughputs for equal-sized payloads in both directions,
which is captured well using only subsets of the data. The
conversion from TTC counts to transfer time (TT) is given
by TTRPMsg = TTCcnt/fclk. Median transfer times vary
between 2.2µs and 126µs for APU-to-RPU transfers, and
29µs to 160µs for RPU-to-APU transfers.

RPMsg throughput is plotted in Fig. 14, with a maximum
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rate of 32 MB/s. The RPU-to-APU requires larger payload
sizes (not shown) to achieve this throughput rate. Given the
high levels of variability in latency and throughput of the
RPMsg data transfer mechanism, the qubit control system
will utilize RPMsg only for non-real-time operations, e.g.
periodic status messages reporting data transfer statistics,
debug and error information. In contrast, the much smaller
levels of variability associated with the GPIO, EMIO and
DMA transfer mechanisms are better suited for qubit data
transfer operations that have hard, real-time constraints.

D. DMA: PL DDR TO PL STREAMING
The ZCU102 and ZCU111 support several types of DMA
transfer mechanisms. The primary datapath within the qubit
system that requires high-speed, block-level transfers is be-
tween the PL-side DDR and a streaming interface in the
PL (labeled 2⃝ through 3⃝ in Fig. 4). A high-bandwidth
mechanism to provide updates to gate sequences is critical to
tuning and optimizing gate execution as discussed in previous
sections. The hard real-time capabilities of the RPU are
needed for meeting gate-sequence data transfer requirements
and for providing low variability in the response times across
multiple, sequential DMA transfers.

A flow diagram of the test procedure is shown in Fig.
15. Similar to the GPIO experimental setup, the architecture
includes an APU, RPU, and a PL SM component, with the
APU providing data fetching, analysis, and storage func-
tions only. The RPU performs a sequence of initialization
operations related to RPMsg, DMA, and GPIO, including
enabling interrupts for the memory-map-to-stream (MM2S)
and stream-to-memory-map (S2MM) DMA engine compo-
nents, and PL interrupts. The RPU transfers parameters to the
PL SM, including payload size and parameters for controlling
auto-generated interrupts. The auto-generated interrupts are
utilized by the measurement system to enable multiple trials
to be run back-to-back.

The RPU carries out multiple, repeated trials for the APU-
specified payload size, annotated as Loop in Fig. 15. In each
iteration, the RPU starts the PL SM and blocks waiting for
a PL interrupt. The PL SM sends an interrupt to the RPU to
start the DMA MM2S transfer operation and simultaneously
starts incrementing counters used to determine latency and
throughput. The PL SM implements the AXI slave streaming
protocol (AXIS) to receive the DMA burst transfers from
the RPU. The latency counter runs until the first AXI tvalid
assertion occurs while the throughput counter runs until the
DMA engine generates a MM2S interrupt done signal. The
DMA data block received by the PL SM through the AXIS
interface is stored in PL BRAM. The data block is transferred
back to the RPU and validated against the original data during
the reverse S2MM DMA operation.

The S2MM data transfer operation commences imme-
diately following the MM2S. A third counter is used to
determine the S2MM throughput, which measures the time
interval between the completion of the MM2S transfer op-
eration and the assertion of the S2MM interrupt done signal.
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enable intr.
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Data collection App

Compute Stats
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FIGURE 15: Flow diagram for DMA transfers between the
RPU and an AXIS interface implemented in a PL state
machine. The RPU is configured to use PL DDR for the data
transfers.

The S2MM DMA channel is notified that the data transfer has
completed with the PL SM asserting the tlast signal concur-
rent with the transfer of the last data word in the payload. The
RPU busy waits for the DMA MM2S and S2MM channels
to return to an idle state before acknowledging the DMA
interrupts. The PL SM transfers the three counter values to
the RPU, which forwards them to the APU via RPMsg. This
sequence of operations is repeated for each of the trials as
specified by the APU.

The APU collects the MM2S latency and throughput and
S2MM throughput counter values, and computes the median-
min-max statistics using the counts from 10,000 separate
trials. The results are stored to a file and later transferred to
a host computer. The entire experiment is repeated using PL
bitstreams configured with a clock frequency of 333 MHz for
the ZCU111 and 300 MHz for the ZCU102, and for payload
sizes between 4 B and 1 MB, increasing by powers of two.

The ZCU102 and ZCU111 integrate different PL DDR
memories and therefore, we repeat the experiment above
for both and compare the results. The ZCU102 utilizes a
512 MB DDR with a data width of 16-bits whereas the
ZCU111 utilizes a 4 GB, 64-bit wide DDR. Therefore, the
performance is expected to be higher for the ZCU111, as we

VOLUME 4, 2016 11



Nafis Irtija et al.: Design and analysis of digital communication within an MPSoC-based control system for TIQC

101

103

Co
un

ts

ZCU102
32 bytes 64 bytes 128 bytes

20 40 60 80 100
Throughput (MB/s)

101

103

Co
un

ts

ZCU111

FIGURE 16: DMA MM2S throughput for the ZCU111 PL
running at 333 MHz and the ZCU102 PL running at 300 MHz
for payload sizes of 32, 64 and 128 B, and with the DMA
data-bus bit-width set to 256.

show in the following.
Latency is explicitly measured for only the MM2S transfer

operation because the PL SM is able to measure the time
interval between the start of the transfer and the occurrence
of the first assertion of the tvalid signal from the MM2S AXI
interface. On the other hand, only the start event is known
during the S2MM transfer operation, i.e. the PL is not able
to determine when the DMA engine successfully transfers
the first word into the PL DDR. The PL AXIS interface
continuously streams data into the S2MM channel of the
DMA engine, which buffers the data internally. For large
transfers, it eventually introduces pauses in the PL S2MM
AXIS interface because the internal buffer fills up, but the
transfer duration for the first word is always measured by our
SM as just one clock cycle.

Instead, latency for the S2MM is measured using the
throughput counter value with a payload size set to one
word, e.g. a 32-byte payload with the DMA configured with
a width of 256 bits. The latency measurement for MM2S
includes some additional RPU overhead whereas the S2MM
does not. This occurs because the PL SM starts the latency
counter one cycle after the interrupt is generated, whereas the
RPU is blocked waiting for this interrupt. The overhead for
the MM2S includes the additional time taken to process the
interrupt and to write the length register of the MM2S DMA
engine, which effectively starts the MM2S DMA engine.
On the other hand, the S2MM is started in advance of the
interrupt but blocks until the PL SM reaches the S2MM
state. As a consequence, the S2MM latency is much smaller
because the RPU overhead does not exist. We report both the
MM2S and S2MM latencies recognizing that the true latency
is better estimated using the MM2S measurement because the
actions required to start the DMA engine are needed in any
realistic application scenario.
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FIGURE 17: DMA S2MM throughput for the ZCU111 and
ZCU102 for payload sizes of 32, 64 and 128 B.

The median-min-max statistics for latency and throughput
are computed using equations similar to those given for
GPIO. As an illustration, histograms portraying the MM2S
and S2MM throughput behavior using data from the first
1000 trials are shown in Figs. 16 and 17. The PL logic is
configured to run at 300 MHz on the ZCU102 and 333 MHz
on the ZCU111, which matches the frequency of the PL-
side DDR memories for these devices. The DMA engine is
configured with a data bus width of 256 bits and is tasked
with transferring payloads of size 32, 64 and 128 B. The
individual trials are run back-to-back with approximately 0.5
seconds between trials.

Although the RPU provides un-interrupted execution of
the binary program stored in the tightly-coupled memory
(TCM), the throughput rates are not constant as one might
expect. A periodic decrease occurs in both the MM2S and
S2MM throughputs, that is likely due to stalls within the
memory interface generator (MIG) to carry out periodic
refresh operations.

Figs. 18, 19 and 21 plot the median-min-max results
for MM2S latency, and for MM2S and S2MM throughput,
respectively, using data from 10,000 trials. Experimental
results for payloads of size 4 B through 1 MB are super-
imposed. The median values are plotted as curves through
shaded regions delineated by the measured minimum and
maximum values. Note that the median and maximum curves
are often coincident (and are indistinguishable), which indi-
cates that the occurrence of minimum throughput is a rare
event. Figs. 20 and 22 blow-up the region for payloads
between 4 and 128 B to better portray throughput for smaller
payload sizes.

The MM2S latency results shown in Fig. 18 for the
ZCU102 and ZCU111 are very similar, with the median and
minimum latencies for the ZCU111 only slightly smaller
than the ZCU102. As indicated earlier, the MM2S latencies
include overhead associated with the execution of RPU C
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FIGURE 18: DMA MM2S latency results for the ZCU111
PL running at 333 MHz and ZCU102 PL running at 300 MHz
for payload sizes from 4 B to 1 MB, and for DMA data-bus
bit-widths of 32, 64, 256 and 1024. The curves defining the
medians are color-coded and delineated by the minimum and
maximum latency curves shown in red.
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FIGURE 19: DMA MM2S throughput results for the
ZCU111 PL running at 333 MHz and ZCU102 PL running
at 300 MHz for payload sizes of 4 B to 1 MB, and for DMA
data-bus bit-widths of 32, 64, 256 and 1024. The curves
defining the medians pass through shaded regions delineated
by the minimum and maximum latency measurements.

code, whereas the S2MM latencies do not. Although the
S2MM latencies are not shown, they can be computed from
the throughputs given in Fig. 22 using the smallest payloads
of 4, 8 and 32 B, corresponding to the DMA data-bus bit-
widths, respectively. The RPU C code execution overhead is
significant with MM2S latencies measured at 1.3µs, whereas
the S2MM latencies are smaller by nearly a factor of 10 at
136 ns.

The MM2S throughput results shown in Figs. 19 and 21
show similar one-sided performance metrics, with nearly
coincident median and maximum throughput values and dis-
tinct minimum throughput values. The benefits of the larger
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FIGURE 20: Blow-up of the DMA MM2S throughput results
from the left-hand side of Fig. 19 emphasizing behavior for
smaller payload sizes.
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FIGURE 21: DMA S2MM throughput results for ZCU102
and ZCU111, in the same format as Fig. 18.
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FIGURE 22: Blow-up of the DMA MM2S throughput results
from the left-hand side of Fig. 21 emphasizing behavior for
smaller payload sizes.
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FIGURE 23: Flow diagram for CDMA between the PS and
PL DDRs.

and faster DDR within the ZCU111 are most apparent for the
largest DMA data-bus bit-widths and payload sizes. For ex-
ample, the maximum ZCU102 MM2S throughput is 4.5 GB/s
for bit-widths of 256 and 1024, whereas the maximum for the
ZCU111 increases to 10.5 GB/s and 19.2 GB/s, respectively.
The S2MM results are similar except the throughput for the
ZCU111 is maximum at 17.1 MB/s with the DMA engine
configured with a bit-width of 1024, and it exhibits larger
variability. Interestingly, the variation in the throughput rates
approaches 0 for the largest payload sizes for any DMA bit-
width, which can be leveraged when TIQC systems require
continuous raw gate sequence reconfigurations.

E. CDMA: PS-DDR TO PL-DDR
A second type of DMA operation investigated in this paper
is referred to as central DMA (CDMA), and is annotated
with 4⃝ and 5⃝ in Fig. 4). CDMA handles block-level data
transfers between PS and PL DDR memories. The flow
diagram of the test procedure is shown in Fig. 23. The APU
first configures the Triple Timer Counter (TTC) and CDMA
engine with the PS DDR source and PL DDR destination
addresses. The Loop component carries out multiple repeated
trials of the DMA transfer operation. The first component
of the loop writes random values into the PS DDR memory
region (assigned a physical address of 0x7000_0000 within
the memory map shown on the left). The timing interval
is annotated by the ’Start timer’ and ’Stop timer’ labels
in the figure. The CDMA transfer operation is sandwiched
between these statements which is initiated by writing the
length register within the CDMA controller. The CDMA
engine generates an interrupt to indicate that the transfer has
completed.

Note that the Linux kernel requires a specialized device-
tree configuration with reserved memory sections for both the
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FIGURE 24: Histogram showing results for CDMA running
on the ZCU111 with the PL clock frequency set to 333 MHz,
DMA bit-width set to 256, and for payload sizes of 32, 64
and 128 B.

PS and PL DDR memories to prevent Linux from utilizing
these DMA source and destination regions as part of its vir-
tual memory system. The CDMA engine itself is configured
as an IP block in the PL of the ZCUs, and possesses the same
set of configuration parameters as the DMA engine discussed
earlier, i.e. input system clock frequency and DMA data-bus
bit-width. Similar to the DMA experiments described in the
previous section, we created a set of bitstreams with different
configurations. In particular, 32, 64 and 256 bit-width ver-
sions are created, each with the system clock frequency set
to 300 MHz and 333 MHz for the ZCU102 and ZCU111,
respectively.

The multi-user, multi-tasking nature of the Linux OS adds
variability to the measurements, when compared with the
RPU, as expected, and the maximum overall throughput is
lower. A histogram showing the throughput results derived
from data collected from 1000 trials, and for small payload
sizes of 32, 64 and 128 B, is shown in Fig. 24. Although
most of the minimum throughputs occur as a fraction of
25% or less of the median and maximum values, several
trials show significant deviations. The minimum throughputs
over an extended run of 100,000 trials, and for payload sizes
from 32 B to 1 MB are shown in Fig. 25. Although the root
cause of the slowdowns is attributable to interrupt service
routine calls within the Linux kernel, which occur between
the sequence of operations carried out during the timing
operation, such behavior is unavoidable within Linux OS
environment, unless all interrupts are disabled during this call
sequence or Linux is replaced with a bare-metal application.
The latter solution will reduce the variability to values similar
to those shown for the RPU (see Fig. 16), but it will also
eliminate convenient access to system services provided by
Linux to user applications.

14 VOLUME 4, 2016



Nafis Irtija et al.: Design and analysis of digital communication within an MPSoC-based control system for TIQC

0
1
2
3
4
5

ZC
U1

02
Th

ro
ug

hp
ut

 (G
B/

s)

32 bits 64 bits 256 bits

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Payload Size (2n) (bytes)

0
1
2
3
4
5

ZC
U1

11
Th

ro
ug

hp
ut

 (G
B/

s)

FIGURE 25: CDMA throughput results for the ZCU111 PL
running at 333 MHz and the ZCU102 PL running at 300 MHz
for payload sizes from 4 B to 1 MB and for DMA bit-widths
of 32, 64 and 256.

VI. ANALYSIS OF PERFORMANCE LIMITATIONS
TIQC control system requirements for communication rates
in the DMA core depend on multiple factors, including the
number of bits used to define parameters, the duration and
complexity of pulses, the frequency at which they are updated
to reflect calibration measurements, and how often intra-
algorithm measurements affect future gates. Moreover, the
gate sequences themselves can be represented in raw form
and in a compressed format. Here we show that communica-
tion rates measured in section V are sufficient for correcting
worst case scenarios where all qubits must be modified
simultaneously.

We start by evaluating a normal operating scenario where
gate parameters are preset. The compressed gate represen-
tation leverages a principle in computer architecture called
temporal locality, where a series of LUTs are pre-loaded
with data from gate sequences that are likely to be reused
in the near future. The concept is also described in the
appendix (VIII-B) in reference to Fig. 2. In the compressed
representation, a gate is represented by an 11-bit identifier
(ID), and up to 20 gate IDs can be packed into a 256-bit word
(with the remaining 36-bits used for metadata).

The bandwidth requirement for streaming predetermined
gate sequences is therefore reduced by a factor of 160, from
θDMA ≡ 10.656 GB/s (see below) to ≈ 66.6 MB/s. Though
the throughput reduction is significant, it still exceeds the
maximum throughput available for AXI-Lite GPIO, which
was specified earlier to be 41.9 MB/s in reference to Fig.
10. DMA, however, is sufficient to meet the bandwidth
requirements for both the raw and compressed gate sequence
representations.

A more demanding scenario occurs where a gate parameter
must be changed simultaneously for all channels prior to the
next gate, for instance when a laser that is used for multiple
ions suddenly drops in power and the modulation signal

sent to all affected AOMs must compensate by changing
the amplitude spline parameters. Another example is when
a prior measurement (like error correction or drift control)
requires updating subsequent gate parameters. There are
other approaches to dealing with such rare events, but for
simplicity we place the burden on the pulse generation part of
the control system because it can apply tailored corrections
on a per-qubit basis. Although some pauses are acceptable,
we seek to achieve a response that is on the order of the fastest
gate time, assumed here to be 1µs. While this time is much
shorter than currently achieved in typical experiments, we use
it to analyze the suitability of this control system for larger
scale TIQCs, where reducing latency will be critical. Based
on the direct streaming mode described in section IV, gates
use a minimum of 8 parameters per channel, yielding a total
of 64 parameters that need to be executed in parallel at any
given time. Each parameter is represented as a 256-bit word
that encodes spline coefficient data, regardless of whether the
parameter is modulated or constant. Assuming the streaming
input side of the FIFO is clocked at 333 MHz (see Fig.
26), this requires a throughput of θDMA ≡ WbusfDMA =
10.656 GB/s. Alternatively, we can instead cast this into a
gate throughput, θG, where the effective data size is WG =
64Wbus and θG = θDMA/WG = 5.203 × 106 gates/s. The
shortest gate time which can be continuously streamed is thus
1/θG = 192.2 ns, neglecting the time required to compute an
update to the parameters (which could be longer than 1µs).

For the compressed gate mode (using the GLUT described
in the appendix VIII-A), an individual gate can be pro-
grammed and sequenced on a single channel with a minimum
of 11 words, 8 words for the pulse LUT, 1 word for the mem-
ory map LUT, 1 word for the gate LUT, and an additional
word for reading out the gate. In this case, the number of
words, Nw = 11, needed for all channels, Nch = 8, leads
to WG = NchNwWbus = 88Wbus, and 1/θG = 264.3 ns.
This is particularly relevant for cases where all parameters
are updated but then remain constant for many subsequent
gates, e.g. when there is a slow drift in laser power.

Once the initial programming data are sent, the gate can
be read out with a single word per channel. Supposing all
parameters of the gate need to be updated on each execution
of the gate, the subsequent gate calls can be made with 9
words per channel by modifying the data in the pulse LUT
prior to reading out the gate. In most cases, the modified
gate data will be restricted to a single, or perhaps a small
subset of channels. Instead, it is useful to think of the number
of sequencing words needed per channel, S, and the total
number of parameters that need to be updated across all
channels, Pupd. The total number of words that needs to be
transferred on each iteration is then Nw = SNch+Pupd. For
back-to-back execution, with a full update of an 8-parameter
gate, we have Nw = 16 and a minimum gate time of
θ−1
G = 48 ns. If only a single parameter is updated for a

single channel, this yields Nw = 9 and a minimum gate time
of θ−1

G = 27 ns.
However, taking advantage of the ability to pack multiple
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gate identifiers in a single transfer can reduce the minimum
gate time to θ−1

G = 28.1 ns when updating 8 parameters,
and θ−1

G = 7.1 ns when updating a single parameter. The
direct streaming rate (meaning all parameters are preset and
not updated) is 1.2 ns, however this is not achievable because
the minimum gate time for continuous operation is limited
by the gate sequencer to 19.5 ns. As an example this limit
applies to the situation where pre-determined Trottererized
segments of a gate are reduced to 19.5 ns and locally stored
in the LUTs.

An alternative limit can be imposed by calculating the
number of parameters which can be updated when running
1µs gates. For updates interleaved between each gate, the
maximum number of parameters that can be modified is
fDMA(1µs) − 8 = 325. Similarly, if one wants to update
all 32,768 values in the pulse LUTs, this can be achieved if
the programming data is run after 99 sequential 1µs gates.
An example where this is relevant is when many parameters
have to be updated but not necessarily right away.

These limits assume a sufficiently large payload size
such that the programming and sequencing data are densely
packed, as well as pre-determined albeit potentially chang-
ing parameters. However, if there are a small number of
parameters which are not known in advance and need to be
updated before the next sequence, then this may require a
small DMA transfer. For a single parameter, encoded in 32
bytes, latency dominates the overall throughput, where the
minimum transfer rate for a 32-byte payload size is 17.6
MB/s, as shown in Fig. 20. This corresponds to 1.82 µs for
the fastest time to update a single parameter, again neglecting
calculation times. More parameters could be transferred in
roughly the same time by using a larger payload size.

This FIFO clock speed is a maximum rate, so measuring
outlier slow communication rates is important for deter-
mining the realistic limitations of the system. The curves
from Fig. 19 show that the median (and minimum) DMA
transfer throughput of the ZCU111 with the DMA IP block
configured with a 256-bit width and run at 333 MHz is
≈ 10.5 GB/s, which is slightly less than θDMA. However,
with the DMA IP block configured with a larger bit width of
1024, the median (and minimum) throughput is ≥ 19.0 GB/s,
which supports the maximum throughput with additional
headroom. Given that the typical fastest gate time for a TIQC
is about 1µs (neglecting the short times used for virtual Z
gates), even the 256-bit DMA width would be sufficient.

For the extreme case, where gate sequences reference
pulse information that is completely unique and gate infor-
mation cannot be reused, one may consider using a direct
streaming mode in which the gate sequencer LUTs, discussed
earlier in reference to Fig. 2, are bypassed. In the limit of
the shortest possible gates that can be continuously streamed,
this approach may be preferable to constant reprogramming
of the LUTs. Although the LUTs can be programmed in a
way that effectively treats the gate sequencer as a deep FIFO,
increased FIFO depth is immaterial in situations where the
feed rate matches the consumption rate of the spline engines,

and the additional programming and sequencing data cut
down on the maximum effective throughput. This scheme is
less flexible at correcting gate parameters, for instance the
amplitude, and would instead require a full recalculation of
all points.

Recalculation is typically expensive, owing to the fact
that spline coefficients need to be refitted for continuous
modulations (especially when accounting for unavoidable
non-linearities in AOM and amplifier response). Operating
in a regime where large amounts of unique gate data need
to be regularly regenerated will likely lead to bottlenecks at
the APU, assuming gate data can be recalculated on chip,
or possibly limited by network transfer if the calculations
demand the computing power of an external server. In these
cases, throughput is dominated by classical algorithmic ef-
ficiency, and potentially network throughput, both of which
suffer from larger variability in timing.

However, this problem is offset by performing gate cal-
culations while quantum circuits are running, and maintain-
ing efficient compressed representations of gates, in which
changes to one parameter will affect multiple gates. Partial
reprogramming of LUTs allows the RPU and PL to coor-
dinate quantum circuits with classical control flow while
the APU is free to generate the next set of gate data, thus
maximizing the benefits of AMP. Because the APU can
in most cases fully recalculate compressed gate data faster
than the duration of a two-qubit gate (≈ 200 µs) [27], the
remaining transfer overhead is less of a dominating factor in
this mode of operation.

The measured transfer latencies are several orders of
magnitude smaller than coherence times in TIQC systems,
particularly for 171Yb where coherence times typically range
anywhere from 1-1000 s, giving a lot of headroom for clas-
sical control flow from the RPU that depends on mid-circuit
measurements. For systems that are relatively stable and cir-
cuits that can leverage redundancy in gate data, the measured
timing characteristics are well within typical requirements
for gate throughput for most applications.

VII. CONCLUSION
We draw the following conclusions regarding the applicable
usage scenarios and limits of the communication mecha-
nisms of a Xilinx Zynq MPSoC and RFSoC within the
context of a TIQC system architecture:

• RPU-driven DMA requires a PL clock frequency of 333
MHz and a width greater than 256 bits, e.g. 512 or 1024
bits, to meet the 10.656 GB/s requirement for streaming
raw, uncompressed, gate sequences.

• RPU-driven DMA must be used for raw or compressed
gate sequences but can be relaxed for the latter case, e.g.
by using a DMA width of 256-bits and/or lower PL-side
clock frequencies.

• RPU-driven GPIO can be used to meet soft real-time,
lower-bandwidth system requirements for qubit compo-
nents running in the PL. For example, shuttling, Doppler
cooling, state detection, or ion reloading.
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• APU-to-RPU RPMsg throughput is higher and exhibits
lower variability than the corresponding metrics com-
puted for RPU-to-APU transfers, but nonetheless can
only be used to meet low bandwidth soft deadline-based
requirements. For example, we intend to use RPMsg for
the transfer of control and status information between
the APU and RPU, and for computing shift deltas for
control parameters via a feedback algorithm.

• APU-driven CDMA transfers between PS and PL DDRs
exhibit high variability under the Linux OS. However,
minimum throughputs approach 5.0 GB/s for large pay-
load sizes (> 1 MB), which enables APU updates to
compressed gate sequences to be transferred to PL DDR
with plenty of headroom to meet data consumption rates
for RPU DMA transfers to PL. Note that the APU
will host the pulse compiler for generating compressed
sequence data that needs to be transferred to PL DDR
for access by the RPU.

• A hopefully rare worst-case scenario that nonetheless
should be accommodated by the control system occurs
when one or more gate parameters need to be updated on
the fastest timescale of the quantum computer. Limited
by latency, we find that this architecture can update
gates in less than 2µs.

Even with relatively long gate times, the electronic control
system for a TIQC must be designed with communication
throughput in mind in order to achieve near real-time updates
on gate parameters. The design and measurements described
in this paper are specific to the MPSoC and RFSoC used here
but can be translated to similar hardware to identify limits
on full channel updates and other performance scenarios for
other qubit technologies. Although the architecture we de-
scribe is most applicable for large scale quantum computing,
understanding the hardware limitations of electronic control
systems and testing them on current NISQ systems [28] will
motivate theoretical, experimental, and engineering research
to overcome them.

VIII. APPENDIX
A. DDS DESIGN

The custom DDS core can generate two RF tones in or-
der to drive Raman transitions and bichromatic two-qubit
Mølmer-Sørensen gates that are commonly used in TIQC.
These tones are added in the digital domain to sidestep
frequency-dependent phase shifts and amplitude distortion
effects inherent to external RF components (i.e. combiners
and mixers). Inputs include frequency, phase, and amplitude
words for each tone, as well as a number auxiliary inputs,
such as single-bit inputs for triggering phase synchronization
or enabling feedforward corrections. Both DDS tones are
set up in an interleaved configuration to double the effective
sampling rate while maintaining an input frequency of 409.6
MHz, which is below the maximum AXIS clock speed of 500
MHz and makes use of the RF data converter (RFDC) core’s
8× interpolation filter for using the maximum sampling rate

of 6.5536 GSPS for the ZCU111 DAC outputs2.
The main distinction between the custom DDS design

and a conventional DDS design is the inclusion of three
specialized features: global phase synchronization, frequency
feedforward corrections, and elements used to compensate
for cross-talk errors at the experiment level.

1) Global phase synchronization
Global phase synchronization is a feature that allows reuse of
DDS cores for driving different frequencies, and the ability to
return to a previous frequency and phase as if the DDS had
been in a free-running state. Although this can be performed
by calculating the expected phase and either overwriting the
accumulator or adding a phase offset, the distinction here is
that the global phase synchronization is handled automati-
cally. This removes the need for manual bookkeeping and
also avoids any potential issues that may arise in the event of
a missed clock edge or non-deterministic latency. Eliminat-
ing manual bookkeeping requirements also leads to a smaller
data footprint, since gates can be represented as simple
primitives that can be reused without having to account for
context-dependency. The process involves a global counter
that is shared among all DDS cores, and the counter data
is multiplied against the DDS input frequency to calculate
the phase accumulated from some arbitrary point in the past
when the global counter is zero. The resulting phase is passed
to the DDS accumulator, with latencies matched in the data
path such that a trigger can update the accumulator with the
global phase corresponding to the current input frequency.
This allows one to synchronize to the global phase across all
channels, at any point in time, and the resulting phase will be
consistent with a previously synchronized frequency of the
same value. Reproducing the phase simply boils down to an
initial synchronization step with the first application of some
given frequency in a gate sequence. This is possible without
ever flushing out the accumulator, so that a frequency can be
synchronized to its previous phase for as long as the device
is powered and the global counter is not reset3.

2) Frequency feed-forward corrections
Drift in the frequency or repetition rate of the gate laser
is a common error that can be corrected by the electronic
control system. For example, due to drift in the cavity length
of the pulsed laser used for ytterbium qubit operations, the
repetition rate is actively monitored to account for “breath-
ing” in the spectrum from the frequency comb. To track the
resulting frequency shift and accumulated phase in the repe-
tition frequency, we use a scheme similar to [29]. The overall
error between two harmonics in the frequency comb can be
accounted for by adding an offset to the DDS accumulator

2Maximizing the sampling rate allows for digital up-conversion (DUC)
of the input frequencies with the RFDC’s numerically-controlled oscillators
(NCOs) to provide the largest allowable range of baseband frequencies.

3This is possible even if the global counter rolls over because of commen-
surability over a finite set of frequency values limited to 2N −1 for an N -bit
frequency word.
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output, which is read out of the accumulator of a DDS in
a dedicated frequency feedback module, and subsequently
multiplied by the harmonic separation in the comb that is
nearest to the target transition frequency.

3) Crosstalk compensation
Crosstalk-induced errors resulting from optical overlap of
individual addressing beams with nearest- and next-nearest-
neighbor qubits can be accounted for with a cancellation tone
that destructively interferes with the light from a neighboring
beam. Although some schemes (like those that use a chain
of ions in a single well [2]) are more sensitive to this
mechanism of crosstalk, similar effects exist for other trapped
ion schemes and qubit technologies. Additional crosstalk
errors can arise from electrical crosstalk driving the AOM
transducers as well as sympathetic vibrations across crystals
in a multi-channel AOM. Electrical and acoustic crosstalk
require a coarse delay adjustment to approximate the longer
propagation time. Fine-tuning the delay is approximated by
adjusting the phase, which is achieved by using a complex-
valued scaling of the input signals from neighboring channels
to give an overall change in amplitude and phase. To ensure
that optical crosstalk errors are accounted for, the arrival
times of crosstalk signals must be perfectly aligned with the
output of the source DDS. This is accomplished by sharing
each channel’s ideal signal (meaning the codeword descrip-
tion of the intended signal without crosstalk) with each of its
neighbors. Cancellation tones are generated by multiplying
the shared signals by a complex factor that shifts the phase
by the desired amount (typically π plus smaller perturbations
due to alignment imperfections) and attenuates it to account
for the pickup ratio. Because these calculations take time, a
delay is added to the offending channel so as to align the
cancellation tones with its ideal signal. The cancellation tones
are added to their own ideal signals. Since every channel
can be an offending channel, all channels delay their actual
output.

B. GATE SEQUENCERS
To reduce the amount of information needed to express
complex modulations, the data is cast into cubic spline co-
efficients which are interpolated by lightweight spline en-
gines in the gate sequencers [30]. Spline coefficients are
independently specified and interpolated for each waveform
parameter, where each segment is encoded in 216-bit words
with the form

{M, τ, U3, U2, U1, U0} ,

where Un are the spline coefficients, τ is the the duration (or
number of clock cycles) to interpolate, and M is additional
metadata. In order to maintain concurrent operation of all
spline engines, the segments are buffered using FIFOs, which
are fed on timescales of the system clock over the number of
parameters, Tclk/Np, and consumed on timescales given by
Tclk/τ . The values for τ can vary depending on gate dura-
tions and the number of knots used to specify the modulation,

but are often on the order of 10-100, which is larger than the
number of parameters Np = 8. Once the FIFOs have been
populated, spline engines are enabled via a global trigger
to ensure concurrent operation. A block diagram of the gate
sequencer pipelined architecture is shown in Fig. 26.

The 8 parameters are frequency, phase, amplitude, and
a “frame rotation”, specified for two independent tones in
the DDS core. Frame rotations are used to represent a third
degree of freedom which is not directly accessible from an
individual addressing beam. Since x̂ and ŷ dimensions in
the qubit’s Bloch sphere [1] can be accessed via a change
in laser phase, it is possible to virtualize ẑ rotations by
shifting the phase of subsequent gates in a circuit. Although
this can be done by pre-calculating the effective gate se-
quence when Z gates are present, this poses challenges for
circuits that use mid-circuit measurements where Z gates
are conditionally applied. By abstracting these Z operations
with a parameter that tracks the desired frame of the qubit,
we eliminate the need for manual bookkeeping and reduce
the amount of unique gate information needed to encode
a long circuit. Frame rotations are thus implemented as a
cumulative phase, where the inputs are applied normally and
added to an accumulator at the end of a pulse so that it is
treated on the same footing as the conventional phase, e.g.
exp(i(ωt+ ϕ+ ϕframe))

4.
To maintain consistency in the firmware design, the data

path is made as uniform as possible for all gates and pa-
rameters. This means that simple square-pulse gates, or any
parameter that is constant for the duration of the gate, is
represented by data for which the higher order spline coeffi-
cients are set to zero. Gates are often repeated multiple times
throughout a circuit; by abstracting away frame rotations,
as well as automating global phase synchronization, they
can be described with a single representation that is devoid
of any context dependency. Additionally, most gates, espe-
cially single-qubit gates, have nearly identical representa-
tions, where differences in rotation axis only affect an overall
phase offset. This leads to a large amount of data redundancy,
which can be locally stored in lookup tables (LUTs) and read
out using a more compact representation.

The LUTs are set up in three separate stages to minimize
the data needed to stream out a fast gate sequence. The
hierarchy and connectivity relationship among the three LUT
types is shown in Fig. 2. The lowest level “Pulse LUT”
(PLUT) stores the 216-bit spline segment data, which is
distilled down to unique segments shared across all gates
on that output channel. Because the data in the PLUT is

4Appending at the end of the pulsed allows for special cases such as
adjusting the qubit frame associated with AC Stark shifts during an ORE-
correcting pulse such that the qubit frame is only adjusted for subsequent
gates [27]. Additionally, splines can be used in which only the final value
should be accumulated. The use of spline-modulated frame rotations is quite
useful in that they can be calculated from the integral of the amplitude mod-
ulation and scaled (or for non-linear effects, conformally mapped) to track
the AC Stark shift during a pulse. This can greatly simplify global phase
synchronization, accounting for amplitude-dependent frequency shifts, and
calibration since the scale factor can be determined from the overall phase
shift accrued by the qubit.
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FIGURE 26: Gate sequencer block diagram. The DMA-based streaming AXI interface is connected to the upper, left-most
256-bit FIFO input in the diagram. The cubic spline lightweight interpolation engines for the 8 parameters associated with the
two independent tones of the DDS core are shown along the left side, and expanded for the frequency spline within the magenta
rectangle.

unique, the ordering of data is completely arbitrary. This
arbitrary ordering is reconciled using a second “Memory
Map LUT” (MLUT), which represents non-contiguous and
repeated entries of the PLUT by storing PLUT addresses in
a linearly-ordered address space of the MLUT. The MLUT
allows gates to be represented as a pair of start and end
addresses that can be stepped through sequentially.

One more layer of compression is used to store gates
in a “Gate LUT” (GLUT), where gates are given a unique
GLUT address, and the resulting data is a concatenated word
containing the start and end addresses in the MLUT. Gate
identifiers are densely packed into single 256-bit input words,
which contain additional metadata for routing, the number of
gates contained in the word, and data which indicates that the
word contains gates for reading out of the LUTs. The word
are consumed in 11-bit segments, and passed to the GLUT.
The output of the GLUT is passed into an iterator module
that steps through the start and end addresses. Addresses
from each iteration are passed to the MLUT, whose output is
connected directly to the PLUT. Raw segment data coming
out of the PLUT is then routed to the appropriate spline
engine FIFOs using the segments’ metadata.

Because circuits can require large numbers of gates (on the
order of 104 for noisy intermediate-scale quantum (NISQ)
devices and many orders of magnitude more for demanding
simulations [31]), this type of compressed representation
offers significant gains in data throughput. Even the most
simple of gate representations requires 2 kbit of data to feed
all the FIFOs and maintain constant FIFO filling for concur-
rent operation. However, reducing the representation of this
gate to 11 bits only requires two extra programming words
(in which MLUT and GLUT data can be packed into single
256-bit transfers) and a streaming word. The up front cost

for encoding a single gate is immediately accounted for with
the second application of the gate, as well as in cases where
most of the gate data is shared. Moreover, a large portion
of circuits are run repeatedly to accumulate statistics on the
measurement outcomes, particularly for calibration routines
which comprise the majority of experimental runs on NISQ
devices. The compression scheme used by the LUTs has
a clear advantage for reducing bandwidth requirements for
sequencing large numbers of circuits with tens to hundreds
of averages. These gains are twofold when accounting for
memory representations of the sequence data alone, which
is imperative for successful interoperability between the PL,
APU, and RPU when running classically-conditioned se-
quences.

The gate sequencer LUTs are essential for generating a
seamless architecture that supports deterministic timing and
hybrid algorithms. Compiling the compressed gate sequence
data creates a trade-off between data size reduction and
classical algorithmic complexity. Performing the compila-
tion on an external server adds latency to the experimental
cycle. This can have greater impact on high-level feedback
algorithms that execute classically-conditioned sequences, or
algorithms that actively mutate gate definitions to shim out
slow drift in calibration parameters, a feature that becomes
increasingly vital as the number of qubits, and thus the
number of calibrated parameters, grows. Offloading the pulse
compiler used for generating compressed sequence data to
the SoC can offer a tighter feedback loop for these types
of high-level feedback. This approach also comes with the
benefit that the classical resources required for compilation
are predominantly fixed to the number of RF channels on
the board, creating a distributed architecture with scalability
built in. However, it requires a compiler that is fast enough
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that it can either outpace the average duration of a typical
experimental sequence, or offer comparable performance to
an external server when accounting for network latency.

The classical computing power and memory constraints
of the APU and RPU become relevant in the context of
the LUTs used to encode pulses. Because the LUTs them-
selves are implemented using half of the available Ultra
RAM (URAM) primitives on the device—the URAM blocks
are 288 kib, making up 2.8125 MB of the total on-chip
storage when accounting for the 80 available blocks—the
total storage size outweighs the 256 kB space allotted to
the RPU’s tightly-coupled memories (TCMs). This poses
additional challenges since a complete software represen-
tation of the gate data is necessary in certain situations.
For example, gate sequences with large amounts of unique
data can exceed the allotted memory in URAM, requiring
dynamic reprogramming mid-circuit. Another requirement is
an abstracted software representation for gate data that can
be used to correctly mutate definitions at the appropriate
memory locations to minimize reprogramming time.

Our approach employs the APU as a math coprocessor,
with responsibilities that focus on compiling the compressed
pulse representations and programming the gate sequencer
LUTs. The sequence data, and any partial reprogramming
data, is specified by the APU and written to a memory-
mapped regions of DDR RAM. The RPU schedules certain
operations used for qubit state preparation and measurement,
other time-critical classical operations such as shuttling ions,
and initiating DMA transfers to burst the relevant data to the
gate sequencers for particular sub-circuits. Any operations
that require callbacks to the APU are communicated via
RPMsg, and the APU can optionally pass the callback to an
external server if no local definition for the call exists. Be-
cause the APU can in principle break timing determinism, the
APU provides appropriate handshaking signals to indicate
that the new sequences are ready. However, the APU latency
can be offset by the state preparation stage of an experimental
sequence, which typically runs on the order of 1 ms.

Pipelining recompilation results with a fixed delay will add
latency to the feedback loop, but can be used to maintain
experimental duty cycle. This option is fairly natural, since
single-shot calibration measurements can be interleaved with
normal experimental circuits, effectively increasing the time
between experiments and allowing the compiler to update pa-
rameters before the next single-shot calibration. To this end,
the single-shot calibration measurements will typically result
in small but predictable deltas (shifts) in a control parameter
and thus a variation in the resulting gate data. Designing a
feedback algorithm that precomputes the possible deltas will
allow the APU to have the appropriate data on hand as it is
needed and, as a parameter drifts, computing new deltas well
before they are needed.

On the other hand, certain high-level algorithms, such as
variational quantum eigensolvers (VQE) or quantum approx-
imate optimization algorithms (QAOA), often require more
powerful computing resources. These algorithms are in most

cases either impossible or unreasonable to run on chip, but
may be desired despite the increased latency and lack of
timing determinism between shots. However, nearly all of
these high-level feedback routines will guarantee determinis-
tic timing between state preparation and measurement, since
the algorithms mentioned rely on results from a complete
measurement of all qubits, in which case coherence times are
no longer a bottleneck. The potential for high-level feedback
within a given circuit may be possible, but only in cases
where outcomes are precalculated to a reasonable depth or
coherence times are sufficiently long. Regardless, one can
maintain determinism by providing sufficiently long timeouts
in which the RPU may still be able to perform other tasks and
prepare certain register values and verify that a response has
been received before the full timeout elapses, subsequently
resuming the algorithm. This architecture features the bene-
fits of the PL, RPU, APU, and external control computers,
with flexible and optional trade-offs in latency.

C. TOOLCHAIN FOR PERFORMANCE MEASUREMENTS
In this section, we outline the process we follow to create the
experimental designs (the toolchain) from which the latency
and throughput measurements are made. The process for each
design involves a diversified sequence of steps, from creating
and configuring IP blocks in a block diagram and writing
VHDL descriptions of state machines, to Linux kernel build-
ing and device-tree configuration, through application coding
and compilation. Open source APIs including Libmetal and
OpenAMP are utilized across the tool chain.

We use the tool chain applications provided by Xilinx,
including Vivado for synthesizing VHDL designs and for
creating the block diagrams and programming bitstreams,
Petalinux for configuring and building the embedded Linux
kernel and device-tree components for the APU, and Vitis for
creating the application binaries which run on the APU and
RPU. A tool chain flow diagram is presented in 27, where the
steps for each of the Xilinx tool chain components are given
in separate columns. In particular, the leftmost column shows
the steps associated with using Petalinux, the next column
illustrates the process flow used within the Vivado tool suite,
whereas the last two columns show the steps followed within
the Vitis embedded system application environment. Distinct
process flows exist for building Linux application and bare
metal applications.

Interdependencies between the tool chain components ex-
ist and are illustrated as red arrows in the diagram, where
the output of a tool chain component is used as input to
another. As shown in the figure, the hardware description file
produced by the Vivado tool suite is used in the other tool
flow components, and therefore defines a core component of
any experimental design. Also, the Linux application design
flow requires the kernel built by the Petalinux tools. The tool
flow illustrated is not specific to our experimental designs,
but rather represents a generic tool flow for any design and
development board.
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Basic Workflow Using Libmetal/OpenAMP

Install the dependencies

Install Petalinux

Create a Vivado project

Add Zynq  Processing Unit

Run Block Automation

Create VHDL Wrapper

Synthesis, Implementation,
Generate Bitstream

Export The Hardware (.xsa file)

Creater Petalinux Project

Add the Hardware

Edit the device tree: 
Add Shared Memory Device 
Add Interprocessor Interrupt 

Add Triple Time Counter 
Remove one UART

Configure the kernel 
Enable ZynqMP_r5 remoteproc support 

Configure the root filesystem 
Enable OpenAMP Demos 

Enable libsysfs 
Include libmetal and libmetal Demos 

Enable packagegroup-petalinux-openamp 

Configure Settings 
Set rootfs to SD

Build the linux kernel

Generate the Boot files Build the SDK

Create SD card with
Boot files and

persistent memory

Create Vitis Platform Project Create Vitis Application Project

Import the Hardware

Select Linux as OS, 
Cortex A53 as Processor

Add the SDK under rootfs

Build the Project

Create Vitis Application Project 
using the created Platform

New Platform from .xsa file

Select Cortex R5 as Processor

Select Libmetal AMP demo

Edit IPI configuration in common.h

Build .elf file

Put .elf file under /lib/firmware/

Create empty Linux application

Add files from OpenAMP git repo

Add metal library to linker

Edit IPI configuration in common.h

Build the Application

FIGURE 27: Linux kernel and OpenAMP application building process flow.

D. IMPLEMENTATION DETAILS FOR DMA: PL DDR TO
PL STREAMING
An algorithmic state machine diagram (ASMD) for the PL
SM is given in Fig. 28. The AXI master and slave signals
are controlled according to the rules of the AXI4 protocol,
where assertions by the DMA engine of s_axis_valid and
m_axis_ready are acknowledged in the same clock cycle
by assertions of the PL SM AXI signals s_axis_ready and
m_axis_valid (note that s_axis_ready is held permanently
at 1 to facilitate the maximum transfer rate). Data in and
out of the PL BRAM takes place in one clock cycle, again
facilitating the maximum transfer rate. The counters for
throughput are stopped on reception of the DMA MM2S_intr

and S2MM_intr signaling events.
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DMA RPU-DDR-To-PL-BRAM ASMD

IDLE

ready_reg = ‘1’

intr_out == ‘1
Y

BRAM_we = ‘0’
s_axis_ready = ‘1’

BRAM_dout = s_axis_data
m_axis_data = BRAM_din

intr_done_reg = ‘1’

ready_reg = ‘0’
latency_cnter_reg = 0
thrput_MM2S_cnter_reg = 0
thrput_S2MM_cnter_reg = 0

BRAM_addr_reg = 0
MM2S_intr_done_reg = ‘0’
S2MM_intr_done_reg = ‘0’

m_axis_valid = ‘0’
m_axis_tlast = ‘0’

f rst_s_axis_valid_reg = ‘0’

MM2S

f rst_s_axis_valid_reg == ‘0’

latency_cnter_reg++

Y N

thrput_MM2S_cnter_reg++

s_axis_valid == ‘1’Y N

BRAM_we = ‘1’ f rst_s_axis_valid_reg = ‘1’

MM2S_intr == ‘1’
Y

N

BRAM_addr_next = 0 MM2S_intr_done_reg = ‘1’

S2MM

thrput_S2MM_cnter_reg++

m_axis_ready == ‘1’Y N

m_axis_valid = ‘1’

BRAM_addr_reg++

BRAM_addr_reg++

BRAM_addr_reg == transfer_num_words_reg N

m_axis_tlast = ‘1’
Y

S2MM_INTR

thrput_S2MM_cnter_reg++

S2MM_intr == ‘1’

S2MM_intr_done_reg = ‘1’

XFER_CNT
GPIO handshake
with RPU to send
cnt values

N

MM2S_intr (DMA signal)

External inputs:

S2MM_intr (DMA signal)

intr_out (periodically f res)

S2MM_intr_done_reg

GPIO outputs to RPU:

MM2S_intr_done_reg

latency_cnter_reg
thrput_MM2S_cnter_reg
thrput_S2MM_cnter_reg

ready_reg

Y

N

BRAM_addr = BRAM_addr_reg

BRAM_addr = BRAM_addr_next

transfer_num_words_reg
GPIO inputs to RPU:

BRAM_addr = BRAM_addr_next

FIGURE 28: DMA RPU-PL-DDR-to-PL-Stream ASMD.
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E. LIST OF ABBREVIATIONS
• SoC: System on a Chip
• DMA: Direct Memory Access
• CDMA: Central Direct Memory Access
• MPSoC: MultiProcessor System On Chip
• RFSoC: Radiofrequency System On Chip
• PL: Programmable Logic
• PS: Processing System

– APU: Application Processing Unit
– RPU: Real-time Processing Unit

• TIQC: Trapped-ion Quantum Computer
• RF: Radio Frequency
• AOM: Acousto-Optic Modulator
• AWG: Arbitrary Waveform Generators
• DDS: Direct Digital Systhesizer
• FPGA: Field Programmable Gate Array
• DAC: Digital to Analog Converter
• ADC: Analog to Digital Converter
• RFDC: Radiofrequency Data Converter
• DSP: Digital Signal Processing
• QEC: Quantum Error Correction
• AXI: Advanced eXtensible Interface
• ADAS: Advanced Driver Assisted Systems
• BRAM: Block RAM
• OpenAMP: Open Asymmetric Multiprocessing
• RPMsg: Remote Processor Message
• RTOS: Real-time Operating System
• GPIO: General Purpose Input/Output
• PLE: Pulse Length Error
• ORE: Off-resonant Error
• AM: Amplitude Modulation
• FM: Frequency Modulation
• GRAPE: GRadient Ascent Pulse Engineering
• LUT: Look-up Table

– PLUT: Pulse LUT
– MLUT: Memory-map LUT
– GLUT: Gate LUT

• IPC: Inter-processor Communication
• IPI: Inter-processor Interrupt
• TCM: Tightly-Coupled Memory
• EMIO: Extended Multiplexed I/O
• LCM: Life Cycle Management
• SM: State Machine
• FPD: Full-Power Domain
• LPD: Low-Power Domain
• TTC: Triple Timer Counter
• MM2S: Memory-mapped to Streaming
• S2MM: Streaming to Memory-mapped
• FIFO: First-in-First-out
• NISQ: Noisy Intermediate-Scale Quantum computing
• VQE: Variational Quantum Eigensolvers
• QAOA: Quantum Approximate Optimization Algo-

rithm
• VHDL: VHSIC Hardware Description Language
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