
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XXXX, NO. XXXX, XXXX XXXX 1

Scatter-Gather DMA Performance Analysis within
an SoC-based Control System for Trapped-Ion

Quantum Computing
Tiamike Dudley1,2, Member, IEEE, Jim Plusquellic1, Member, IEEE, Eirini Eleni Tsiropoulou1, Senior Member,

IEEE, Joshua Goldberg2, Daniel Stick2, and Daniel Lobser2

1Dept. of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM, USA
2Sandia National Laboratories, Albuquerque, NM, USA

Abstract—Scatter-gather dynamic-memory-access (SG-DMA)
is utilized in applications that require high bandwidth and low
latency data transfers between memory and peripherals, where
data blocks, described using buffer descriptors (BDs), are dis-
tributed throughout the memory system. The data transfer orga-
nization and requirements of a Trapped-Ion Quantum Computer
(TIQC) possess characteristics similar to those targeted by SG-
DMA. In particular, the ion qubits in a TIQC are manipulated
by applying control sequences consisting primarily of modulated
laser pulses. These optical pulses are defined by parameters that
are (re)configured by the electrical control system. Variations in
the operating environment and equipment make it necessary to
create and run a wide range of control sequence permutations,
which can be well represented as BD regions distributed across
the main memory. In this paper, we experimentally evaluate the
latency and throughput of SG-DMA on Xilinx radiofrequency
SoC (RFSoC) devices under a variety of BD and payload sizes
as a means of determining the benefits and limitations of an
RFSoC system architecture for TIQC applications.

Index Terms—trapped-ion, qubits, quantum computing, SoC-
based FPGA control system

I. INTRODUCTION

A trapped-ion quantum computer (TIQC) uses modulated
optical [1] or RF/microwave [2] pulses to precisely control
the quantum state of its trapped-ion qubits1. The sequence of
pulses applied to an ion is referred to as a gate sequence,

This work is supported by a collaboration between the US DOE and
other Agencies. This material is based upon work supported by Quantum
Systems through Entangled Science and Engineering through National Science
Foundation Quantum Leap Challenge Institutes under Grant OMA-2016244.
This material is also based upon work supported by the U.S. Department of
Energy, Office of Science, National Quantum Information Science Research
Centers, Quantum Systems Accelerator, and by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research
Quantum Testbed Program.

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525. This paper describes objective technical results and
analysis. Any subjective views or opinions that might be expressed in the paper
do not necessarily represent the views of the U.S. Department of Energy or
the United States Government.

1Though both optical and RF/microwave pulses have been used to perform
high fidelity gates, throughout this paper we will usually refer to them as laser
pulses, which are used in the QSCOUT sytem [1]. However the same control
system applies to both pulse types.

where gates represent the logic operations that together form
a quantum algorithm. The magnitude, phase, and frequency
of the laser pulses are commonly controlled using optical
modulators with radiofrequency (RF) signal inputs, which can
be generated using benchtop instruments like arbitrary wave-
form generators (AWGs) or direct-digital synthesizers (DDS),
or using high-speed digital-to-analog converters (DACs) em-
bedded within a device like a radiofrequency System-on-Chip
(RFSoC). The programmable logic (PL) component of the
RFSoC is capable of emulating AWG and DDS functionality,
while providing a highly diverse mechanism to configure gate
sequence pre-processing pipelines.

An important constraint to fully leveraging the flexibility
of the PL for TIQC applications is ensuring the sufficient
speed of data transfers between components of the memory
hierarchy within the RFSoC system architecture. This was
measured at a general level between the real-time processor
(RPU) and PL on the Xilinx ZCU111 board in [3], but here
we expand on previous work by analyzing communication
in the context of scatter-gather dynamic-memory-access (SG-
DMA). As described in this paper, SG-DMA provides a path to
making practical TIQC control systems that have the flexibility
to define pulses on-the-fly with latencies that do not cause
significant delays in quantum algorithms, most importantly
quantum error correction [4]. While errors must be decoded
in real time, corrections may be applied as virtual Pauli-frame
updates or as physical gates [5], the latter of which requires
low-latency feedback to limit runtime impact. In addition
to quantum error correction and related implementations of
conditional operations based on mid-circuit measurements [6],
repetitive recalibration and drift control [7] also motivate a
control system capable of low-latency pulse reconfiguration.

The RF signals used to define quantum gates in a TIQC are
derived directly from the gate sequence data. Therefore, SG-
DMA performance is the limiting factor in meeting the timing
requirements associated with synchronization and phase coher-
ence, and in implementing feedback-based calibration within
the TIQC system. An important overall goal of our system is to
arbitrarily reconfigure gate parameters based on measurements
made on feedback channels with a baseline latency that is
on the order of the shortest gate time, ≈1µs for a single-
qubit gate [8]. This way the reconfiguration time would not



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XXXX, NO. XXXX, XXXX XXXX 2

add substantially to the overall runtime. Although adjustments
to the pulse parameters occur at longer time scales within a
calibration loop [3], a high-speed data streaming interface is
required to meet data delivery requirements associated with
the inside loop.

The latency and throughput requirements for the memory-
mapped DRAM to PL streaming interface implemented by the
SG-DMA engine depends on several factors, including the size
of the gate sequence data packets, the duration and complexity
of the laser pulses and the periodic stalls needed to update
pulse parameters based on calibration measurements. Although
it is necessary for the SG-DMA engine to accommodate
continuously changing gate sequences, it is common that
a particular sequence is repeated multiple times before an
update to the pulse parameters is necessary. The proposed
control system incorporates several optimizations that reduce
bandwidth in these cases.

The relationship between measured performance character-
istics and TIQC system requirements is interleaved with the
presentation of the main results of this work, which are:

• A performance analysis of a multi-processor system that
utilizes APU, RPU, and PL. Performance trade-offs asso-
ciated with using different architectural components for
SG-DMA setup and operation are discussed, along with
their respective strengths and weaknesses.

• A latency and throughput analysis (including statistical
characterization) is carried out over a wide range of
SG-DMA parameters, including BD ring size and BD
block size. Architectural features impacting performance
as they relate to SG-DMA parameters are discussed.

II. RELATED WORK

Previous work investigated the use of SG-DMA for systems
with similar requirements, characterized as high bandwidth
transfers of data with different payload sizes and locations
to and from main memory. The system described in [9] uses a
customized DMA engine to transfer three-dimensional blocks
of data for hyperspectral imaging applications. The CubeDMA
system operates on a contiguous cube-shaped memory region
and is capable of computing data addresses in real time. SG-
DMA, in contrast, manages data transfers using a separate data
structure, allowing transfers of discontiguous regions of mem-
ory at the cost of additional memory accesses corresponding
to the reading and writing of the SG-DMA data structure.

The systems proposed in [10] and [11] measure and mitigate
memory interference by running PS and PL benchmarks in
parallel to reduce slowdowns caused by memory contention
and inefficiencies related to DDR access. The former uses
Controlled Memory Request Injection (CMRI) to increase the
utilization of the DDR. The latter system uses scheduling
policies within the PL to reduce memory stall times.

The work in [12] presents an analysis of the throughput and
latency of AXI port configurations for the ZCU102 and Ultra-
96 boards. Their analysis considers AXI bus width, burst size,
memory chip configuration, access patterns, and transaction
frequency. An analysis of DMA engine performance using
the ZCU102 is presented in [13]. Their work investigated the

performance impact of DMA parameters including burst and
memory stride sizes.

The FPGA-based qubit control systems proposed in [14],
[15], [16] and [17] utilize low latency, high-bandwidth PL-
side on-chip memory and simplified memory addressing. The
authors of [18], [19] use off-chip DDR to store waveform data
and/or parameters to greatly increase the amount of gate data
the system can create and access on-the-fly.

The performance penalty associated with off-chip storage
of gate sequence data is investigated in this work. We utilize
the ZCU111 for performance characterization of SG-DMA
operating in memory-mapped-to-streaming (MM2S) mode,
and a multi-processor system architecture consisting of an
APU, RPU, and the PL to investigate the performance impact
of various SG-DMA parameters to represent different gate
sequence structures.

III. COMMUNICATION

In this section, the communication architecture as well as
the relevant performance measurements of the RFSoC system
architecture are described in the context of a TIQC system.

A. System Architecture

The memory hierarchy associated with the processor side
of the Xilinx ZCU111 RFSoC used in this work is layered in
a configuration commonly used in high-end microprocessors,
with two 4 GB DDR4 (DRAM) defining the largest and slow-
est layer of the hierarchy, and processor caches representing
the smaller and fastest layers. The RFSoC architecture ad-
ditionally includes PL-side block RAM (BRAM/UltraRAM),
lookup-table (LUT) RAM, and distributed RAM.

The large size of the DRAM components can be leveraged
to accommodate a wide range of gate sequence definitions,
which are configured in the proposed architecture by appli-
cation processing units (APUs). A real-time processing unit
(RPU) is charged with transferring APU-pre-configured gate
sequences to the PL-side processing components by issuing
commands to a dynamic memory access (DMA) engine,
configured in SG mode. SG mode utilizes a set of buffer
descriptors (BDs), arranged in a BD ring, with each pointing to
an arbitrary memory region within the DRAM. The primary
focus of this paper is on evaluating SG-DMA performance
characteristics, i.e., latency and throughput, as a function of
several BD ring parameters, including the number of BDs,
their buffer size, and their location in DDR.

A block diagram showing the processing and interconnect
components within the Zynq UltraScale+ RFSoC on the
ZCU111 board is shown in Fig. 1. The SoC consists of
a dual-core Cortex R5 RPU, a quad-core Arm Cortex A53
APU, a PL region, and two external DDR4 DRAM memories,
interconnected through a complex point-to-point network of
Arm Advanced eXtensible Interface (AXI) switches. The DDR
memories are accessible to both RPU and APU for system
instantiations in which the memory map for both DRAMs are
configured with overlapping address spaces. Otherwise, the
PL DRAM is not accessible by the 32-bit RPU when address-
mapped above the 4 GB PS DRAM. Each core in the RPU



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XXXX, NO. XXXX, XXXX XXXX 3

Fig. 1. Zynq MPSoC system architecture showing the microprocessors,
programmable logic, DDR, and AXI channels that are used.

possesses a 32 kB L1 instruction and data cache, while each
core in the APU possesses a 32 kB L1 instruction and data
cache and a shared 1 MB L2 cache.

The inclusion of the processors and DDR enable the control
system to network, compile gate sequences, and share a
memory space with the PL without consuming PL resources.
The gate sequence compilation activities are complex and are
best handled within the context of software execution on the
processor, which provides a higher level of abstraction. The
PL, on the other hand, is capable of providing clock-cycle-
specific delivery of gate sequence data to the modulators,
which is required to maintain a coherent TIQC system. On-
going work is focused on adding a quantum compiler with
feedback [20], [21], [22] within the software framework run-
ning on the APU. Therefore, the tasks and requirements of a
TIQC system are an ideal fit to the co-design-based approach
proposed in this work.

The Vivado block diagram tool is used to create a system
level diagram which utilizes the APU, RPU, block RAM
(BRAM), DMA, GPIO, and PL DDR. The DDR is created
using the memory interface generator (MIG), and is inter-
connected through AXI to other components of the system
architecture. In the following experiments, a portion of the
PL DRAM is mapped into the address space of the APU and
RPU at an aperture given by 0x80000000 to 0x9FFFFFFF.
This makes the PS and PL DDR accessible by both the APU
and RPU. An AXI Smart-connect block is used to access the
PL DDR, which is capable of arbitrating between multiple
master IP interfaces.

The DMA engine possesses several input-output interfaces.
The configuration and control channel of the DMA engine is
connected to an AXI-lite interconnect and is controlled by the
RPU in our experimental setup. The memory-mapped inter-
faces of the DMA engine connect to the PL DDR while the
streaming interfaces are connected to a custom state machine
(CSM) (described below in III-C). The CSM stores incoming
data from the MM2S slave interface to a BRAM, and writes
BRAM out-going data to the streaming-to-memory-mapped
(S2MM) master interface. Two GPIO IP blocks are instantiated

and are accessible by the APU, RPU, and SM. Although not
shown in Fig. 1, a Linux kernel is created that enables the RPU
and APU to communicate using an API defined by the libmetal
and OpenAMP (asymmetric multiprocessing) standards called
RPMsg. RPMsg utilizes on-chip tightly-coupled memory for
code, stack, heap, etc., and the PL DDR for inter-processor
communication.

B. Scatter Gather DMA (SG-DMA)

The DMA IP block provided by Xilinx [23] is implemented
entirely in the PL, and can be configured to operate in either
simple mode or scatter gather (SG) mode. In previous work,
we investigated the latency and throughput of simple mode
across a range of data transfer widths and PL clock frequencies
[3]. This work presents a statistical characterization of latency
and throughput with DMA configured in SG mode.

Unlike simple mode, SG mode allows data blocks to be
distributed across the DDR at non-sequential addresses. Data
blocks are described using BDs, which are stored in a ring as
a linked-list data structure. Each BD is 64 bytes in size and
contains a 64-bit base address, a 26-bit size field (for up to
64 MB payload sizes), a pointer to the next BD and several
control and status fields. An example of a BD ring is shown
in Fig. 2.

The proposed TIQC system uses the APU to construct
gate sequences in PS and/or PL DDR. The linked list data
structure associated with the BD ring provides a fast and
flexible mechanism for creating heterogeneous gate sequence
orderings in real time during system operation, that can be
tuned based on feedback from instrument sensors. After the
creation of each custom sequence by the APU, the base
address of the BD ring is transferred to the RPU, using either
RPMsg or GPIO. The RPU is tasked with configuring the
SG-DMA engine with the base address and then starting the
SG-DMA engine, which occurs when the tail descriptor is
transferred to the SG-DMA engine. SG-DMA configuration
registers are controlled using a 32-bit AXI4-lite [23] data
bus between RPU and the SG-DMA engine. Given the tight
timing requirements of TIQC systems, this type of dual APU-
RPU architecture enhances performance characteristics over
single-CPU or soft-core alternatives by providing parallelism
and lower latency through the use of a dedicated processor
optimized to respond to real-time events.

The RFSoC resources used to implement several SG-DMA
configurations are given in Table 1, which were obtained
by synthesizing a Vivado block diagram containing only
the MPSoC, dual-channel SG-DMA, AXI Interconnect, AXI
SmartConnect, and Processor System Reset IP blocks. This set
of IP blocks represents the minimum set required to implement
the SG-DMA engine. Although bus-width is configurable up
to 1024 bits, at the expense of additional PL resources, the
256-bit version is the best match to the spline-based data path
specification defined within our TIQC system. The SG-DMA
engine instantiated in our experiments is configured with a
256-bit data bus, which enables one complete spline segment
to be encoded and transmitted as one word (spline encoding
and other artifacts are described in Section IV).



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XXXX, NO. XXXX, XXXX XXXX 4

Data Width (b) LUTs Utilized % of total LUTRAM Utilized % of total FFs Utilized % of total BRAM Pages Utilized % of total
32 10489 2.47 1970 0.92 15523 1.83 3 (90kb) 0.28
64 10639 2.50 1967 0.92 15792 1.86 5 (162kb) 0.46

256 13598 3.20 2695 1.26 20033 2.36 9 (306kb) 0.83
512 16120 3.79 4158 1.95 25420 2.99 9 (306kb) 0.83
1024 22864 5.38 7109 3.33 35543 4.18 9 (306kb) 0.83

TABLE I
UTILIZATION OF A DUAL-CHANNEL SG DMA ON THE ZCU111 RFSOC AS A FUNCTION OF DATA BUS WIDTH. A MINIMAL FUNCTIONAL

IMPLEMENTATION REQUIRES AN INSTANCE OF THE MPSOC, AXI INTERCONNECT, AXI SMARTCONNECT AND THE PROCESSOR SYSTEM RESET IP
BLOCK.

Fig. 2. Structure of BD ring in DDR.

Fig. 3. Latency components of the MM2S channel of SG-DMA associated
with the first iteration. The PL side clock frequency is 333 MHz, and the
DMA engine configured with a bus width of 256-bits.

C. Customized State Machine (CSM)

The latency and throughput characteristics of the TIQC
system architecture is measured using a customized state
machine (CSM). An illustrative example showing the types
of timing information that can be measured using the CSM
is shown in Fig. 3. This example shows the interaction of the
RPU with the SG-DMA and CSM components in the PL, and
the corresponding counter values recorded within the CSM.
The counter values reflect the latency of two components of the
data transfer operation, namely 1) execution time of the RPU

and interactions across the GPIO interface associated with
starting the CSM and 2) latency of the SG-DMA measured
between the start event and the arrival of the first word on
the streaming interface in the PL. The sequence of operations
are shown from top-to-bottom, while time (measured in clock
cycles) is shown along the horizontal axis. The PL clock
frequency in this example is 333 MHz.

The data transfer operation begins when the RPU issues
a reset to the CSM through the GPIO and the first of two
counters begins to increment after the release of the reset. The
RPU blocks and waits for the PL to assert a GPIO ready signal.
Once received, the RPU asserts a GPIO start signal. The PL
blocks (and increments the first counter) until the start signal
is received. Once received, the first counter is stopped and
the second counter is started. The reported 265 clock cycles
accounts for the delays of the GPIO signal transmissions and
RPU execution time. The PL then blocks and waits for the
first word to be delivered through the streaming interface. This
second time interval is broken down further by routing several
AXI signals, namely sg ar valid, mm2s ar valid, and s axis,
from the MM2S SG-DMA bus to the CSM. These signals
reflect the instant in time when the SG-DMA issues the BD
address to DDR, the time instance when the SG-DMA engine
issues the buffer address to DDR and when PL is notified that
the first word from the BD buffer is available on the streaming
interface, respectively.

The reported values are the mean counter values associated
with this RPU-bus-PL transaction. We report the mean, min-
imum, and maximum values converted to nanoseconds in the
reminder of this paper. For example, the second counter value
of 262 is equivalent to 787 ns of latency using a PL frequency
of 333 MHz.

D. Experiment Overview

The objective of this analysis is to determine the perfor-
mance characteristics, i.e., the average, best, and worst case
data transfer characteristics, of a multi-processor architecture
consisting of APU, RPU, and PL components. The partitioning
of the tasks, namely, gate sequence management, BD ring cre-
ation, control, and execution, across these three components,
enables the system to leverage the inherent parallelism that
exists in the RFSoC platform. The following analysis reports
on the performance characteristics and elaborates on the speed-
limiting components as they relate to the timing constraints of
a TIQC system.

The interaction between the RPU and PL components, i.e.,
the SG-DMA engine and CSM, defines the inner loop of



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XXXX, NO. XXXX, XXXX XXXX 5

Fig. 4. Multiprocessor SG-DMA setup and state machine processes. The green and pink regions represent the timing regions in Fig 3. The pink timing region
can be wrapped around any code running on APU or RPU to measure PS side execution time. Note that the RPU may build the BD ring in experiments
measuring RPU execution time.

the TIQC system, and therefore possesses the tightest timing
constraints. The analysis of this subsystem in section IV
explores parameters including the size of the BD ring, i.e.,
number of BDs and the size of the buffer regions associated
with each BD (payload size). We also examine the impact of
sequential versus random address locations of the BD payloads
in PL DDR as a means of determining whether the DDR
memory controller provides any look-ahead optimizations.

Section IV also contains an analysis of the performance
of the BD ring configuration process. The mean setup time
and variability, i.e., minimum and maximum, are reported for
different ring configurations. The performance of the BD ring
creation process when executed on the APU is compared with
the time taken when the same task is executed on the RPU,
while accounting for the synchronization and communication
latencies that are present when the APU creates the rings and
hands-off to the RPU to schedule execution with the SG-DMA
and CSM engines.

A block diagram illustrating the tasks and communication
channels utilized in the experiments performed is shown in
Fig. 4. The PL side remains the same across all experiments
and consists of a CSM and SG-DMA engine. The timing
events shown on the right side of Fig. 3 are associated with
the IDLE, WAIT START ACK, and MM2S states in the
CSM. The three counters in the CSM, namely, setup counter,
latency counter, and throughput counter are used to measure
the corresponding performance characteristics of the data
transfer operations. All components in the PL run at the
maximum allowable frequency of 333 MHz. The PL DDR
memory interface controller is also implemented in the PL

and runs at 300 MHz.
The CSM is connected to the SG-DMA engine compo-

nent through a 256-bit wide streaming AXIS interface. The
bandwidth of this interface determines the shortest average
gate time that can be continuously streamed. RPMsg utilizes
shared memory in the PL DDR to enable data to be transferred
between the APU and RPU. Alternatively, the APU and RPU
can use the GPIO registers to exchange data, and given the
GPIO are implemented in the PL, they are also accessible by
the CSM, providing a three-way communication and synchro-
nization channel between APU, RPU, and the CSM. The GPIO
register can also be used within the CSM to obtain clock-
cycle accurate timing measurements of communication latency
between APU and RPU. However, the bandwidth of the APU-
RPU-CSM communication and synchronization channel does
not have a significant impact on overall system performance.
This is true because control information related to the BD ring
base addresses is represented using a small number of words
and updates occur at relatively slow rates, in comparison to
gate sequence transfer operations occurring between DDR and
the SG-DMA engine. Therefore, the choice of using RPMsg
or GPIO is driven by other factors, including the extent of the
address space accessible by the RPU, resource utilization, ease
of update by the APU, etc. Given these constraints, RPMsg is
better suited as a communication mechanism, and is used in
our system architecture for this purpose, while GPIO is used
only for control and access to timing measurements.

The left side of Fig. 4 shows the tasks carried out by the
RPU and APU under the scenario where the APU creates
the rings and defines the contents of the buffers, while the



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XXXX, NO. XXXX, XXXX XXXX 6

RPU only handles the BD ring scheduling operations for
execution by the SG-DMA engine. As shown, once the BD
ring is created, the APU passes the base address of the ring to
the RPU. The process of creating the BD ring data structure
involves the following steps:

• APU: Allocate memory space for BD ring and buffer data
• APU: Write sequence data into the buffer data region
• APU: Create BD ring linked list with buffer address and

status information, e.g., first BD and last BD, etc.
• APU: Perform sanity checks on ring, flush cache, transfer

base address to RPU
• RPU: Configure SG-DMA control registers
• RPU: Write to SG-DMA tail descriptor register
The last step, which starts the DMA transfer operation, is

always performed by the RPU in our experiments. The RPU
is also tasked with controlling the timing measurements which
are carried out within the CSM. Once the transfer operation is
complete, the CSM notifies the RPU and transfers the counter
values through the GPIO register interface. The RPU forwards
the counter values to the APU using RPMsg and then to a host
for off-line analysis.

Note that carrying out DMA in SG mode requires the DMA
engine to access DDR three times, once to fetch the BD, a sec-
ond time to fetch the buffer data, and a third time to update the
BD status fields. Therefore, SG-DMA has a larger overhead
than simple mode, and corresponding performance penalty.
However, SG mode offers several advantages, including the
ability to quickly construct customized gate sequences that
leverage pre-computed gate sequences distributed across the
DDR memory space.

Moreover, the utilization of DDR itself, in contrast to
smaller embedded memory resources, e.g., PL BRAM, en-
ables additional scalability and flexibility in the TIQC control
system. The proposed system can easily leverage technology
improvements to DDR transfer speed and capacity as a means
of improving the throughput of the control system as well
as the number and variety of gate sequences that the control
system can access.

E. Memory Map of the Experimental System

The PS and PL DDRs are utilized by the APU, RPU, and
SG-DMA engine, with the APU running Linux on top of
a virtual, paged memory system, while RPU and SG-DMA
access physical memory directly, with the former running a
bare metal application. As indicated, RPMsg also uses a shared
DDR memory region for data exchange and synchronization.

The organization of the DDR memories utilized in the
experiments performed is shown on the right side of Fig.
4. The physical memory accessed by RPU and SG-DMA is
excluded from the paged, virtual memory system of the APU
by adding a reserved memory region to the Linux device tree
in the 4 GB aperture at the address range between 0x80000000
and 0x9FFFFFFF. The APU constructs BD rings and defines
BD buffers in this 512 MB region. Given the aperture is
located within the 32-bit address space of the RPU, this
strategy enables performance comparisons related to BD ring
creation to be made between the APU and RPU. A more

attractive arrangement in which the PL DDR is memory-
mapped above the PS DDR would allow a TIQC system to
fully utilize the 8 GB of DDR, but would only allow updates
to the PL DDR by the APU.

IV. EXPERIMENTAL RESULTS

SG mode provides a great deal of flexibility in creating
a complex sequence of data transfer operations. The user
controls several BD ring parameters including the number,
size, and location of distinct buffer spaces. In our experiments,
we investigate a range of values related to the number of BDs
transferred, from 20 to 213 BDs and the size in bytes of each
BD, from 25 to 213. Given the maximum clock frequency
of the PL fabric is 333 MHz, it follows that the maximum
achievable bandwidth is 10.6 GB/s.

In order to fully explore the transfer characteristics, several
additional experiments were carried out. An SG-DMA mode
referred to as cyclic mode is configured to evaluate the impact
of repeatedly transferring the same BD buffer data, in contrast
to the above experiments where distinct data is referenced in
each BD. In all evaluations, no difference in the latency and
throughput were observed between transfers using n-cycles in
cyclic mode and an equivalent size BD ring in non-cyclic
mode, so the performance statistics associated with cyclic
mode are omitted. In a last set of experiments, the performance
of the BD ring creation process is evaluated when carried out
by the RPU, and compared with the performance of the APU.

A. Application to TIQC

Control pulses in our TIQC system are variable in size.
Pulses can incorporate spline-based parameter modulation
which supports either continuous or discrete updates for wave-
form parameters. Specialized gate definitions may incorporate
various degrees of modulation on one or more waveform
parameters for a variety of compensated gate schemes or
for bandwidth limiting (such as with Gaussian amplitude
profiles). Each waveform parameter takes 32B words, which
represents a spline segment (even for square pulses, to keep
the architecture consistent). Each channel supports 8 waveform
parameters, amplitude, frequency, phase, and virtual phase, for
two independent tones.

A simple square pulse requires at least one 32B word for
all 64 endpoints, giving a minimum of 2kB per control pulse.
However, duplicate parameter data, which typically arises for
parameters that are unused and equal to zero, can be sent to
multiple endpoints with a single word. For a simple (timed)
NOP sent to all 64 endpoints (8 channels, with 8 parameters
each), the only non-zero value is duration, and data is identical
across all endpoints and can be represented with a single word.
The 4GB DDR4 used in this work has the capacity for on-
the-order of 107 unique simple gates. For a square pulse sent
to a single channel, unique values will usually be used for all
parameters except one phase and one virtual phase, and this
can be represented as 8 32B words in total, or 256B. Some



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XXXX, NO. XXXX, XXXX XXXX 7

gates require multiple concatenated control pulses, for example
those used for dynamical decoupling (e.g. BB1 or SK1 gates).

The mapping of BDs to control pulses and gates depends
on the software implementation. There are varying degrees of
granularity that can be imposed, in which a BD could be used
to represent a circuit, a subset of a circuit, a single gate, a pulse
within a gate, or a subset of a pulse. Pulses comprise multiple
independent data words for individual waveform parameters,
e.g. frequency, phase, amplitude, and a virtual phase. For a
gate which shares multiple parameter values, such as X and Y
gates which only differ by phase, shared data can be packed
into a single buffer and the different phases into a second
buffer. This way, updates to the shared data for a gate can be
made in a single buffer and any BD that references that buffer
is instantly updated. For simplicity, we are assuming that a
single step in a circuit is captured by a BD. This single BD
scenario represents individual gates and multiple gates run in
parallel, and also captures NOP data that is sent to unused
channels. It can also be used to pad out extra time if gates run
in parallel have different total durations.

Here we consider a realistic scenario where raw data is
directly streamed via SG-DMA and each BD is assigned to
a particular gate. Fig. 5 portrays the throughput of a BD
ring as a function of buffer length, plotted with transfer time
in microseconds against the number of spline words. For
example, a BD ring composed of 256 spline words (8192B),
i.e. 32B per spline word, requires a payload transfer time of
0.77µs .

The system architecture is set up to allow broadcasts of
identical data to multiple endpoints, and constrains the smallest
usable payload size to 32B, or 1 word. Common quantum gate
usage scenarios include:

• Timed wait with all parameters set to 0: 1 word transfers.
• Implementation of an Rz gate on a single channel: 3

unique words (non-zero virtual phase, zero values for
remaining parameters on target channel, zero values for
all parameters on all other channels).

• Implementation of a square pulse gate on a single channel
(assuming a co-propagating Raman pulse): typically takes
8 words (2 amplitudes, 2 frequencies, 1 non-zero phase,
and 1 virtual phase for AC Stark shift, 1 zero-valued word
that is broadcast for the other phase and virtual phase, and
1 zero-valued NOP to pad the other channels).

• Implementation of multiple square pulse gates on all
channels in parallel with unique parameters for each
channel: Typically takes 56 words (64 if both phases and
virtual phases are used).

• Implementation of a square pulse with a single sinusoidal
period of amplitude modulation where deviations from a
perfect sinusoid are below the resolution of the DACs:
Requires 28 words (22 amplitude words, a fixed ampli-
tude word, 2 frequencies, 1 non-zero phase, 1 non-zero
virtual phase (neglecting time-dependent Stark shifts), 1
NOP word for unused phase and virtual phase, and 1
NOP for all other channels).

All of these gates can have durations under ∼250 ns, despite
the variation in the data size and throughput, which is still
well below the target limit for 1µs gates, and in most cases

Fig. 5. Throughput measurements of the SG-DMA engine.

the minimum gate time (for a constant feed) is independent
of the number of data words unless a significant amount of
modulation is required during a short pulse. For the sinusoidal
amplitude modulation, a bandwidth of roughly 4 MHz can be
achieved. These sequences can be run back-to-back for a long
continuous sine wave without impacting per-sequence transfer
time. Moreover, packing more data into a single gate will only
improve throughput, meaning back to back pulses with the
same duration can be used to further improve throughtput.

If multiple non-identical sinusoidal amplitude modulation
gates are needed in parallel on all channels, then 27*8=216
words are required, approaching 750 ns and a bandwidth
of 1.3 MHz for constantly fed data. However, amplitude
modulation bandwidth requirements are typically <100 kHz
for simultaneously addressing multiple modes, and is not
typically applied to all channels. If higher-order harmonics
of motional modes are required, it may be desirable to drive
amplitude sidebands on 4 tones, which requires a 2.5 MHz
bandwidth. This is slightly above the typical radial secular
mode frequencies for ytterbium ions, and 2nd harmonics can
be driven by further detuning of the frequency inputs. Depend-
ing on the amount of data that needs to be fed where higher
bandwidth is needed, these limits can be locally exceeded if
the circuit is punctuated with slower gates or gates without the
same data requirements since the FIFOs can be packed while a
slower gate is being executed. Individual spline engine FIFO
depths are 256, with another 256 depth FIFO that feeds a
broadcaster for each channel (so the FIFO depth is effectively
512 in cases where one parameter is heavily modulated and
the others are fixed).

The resources provided by a large DRAM are leveraged
in our system architecture to satisfy this wide range of gate
sequence configurations, and SG mode of DMA enables gate
sequence definitions of various lengths and complexity to be
dynamically configured and updated on-the-fly by the APU
in parallel with gate sequence execution. In particular, the
PL DRAM is mapped to an address space above the lowest
32-bit aperture used by the PS DRAM. The reasons for this
are twofold: it allows full utilization of the entire PS DRAM
(which is 4 GB on the ZCU111/ZCU102) and PL DRAM
address space, where PL DRAM is strictly dedicated to hosting
gate data and associated BDs. Second, the 64-bit address
space of the APU can read and write the PL DRAM directly.
Note, however, that the RPU is restricted to a 32-bit address



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XXXX, NO. XXXX, XXXX XXXX 8

space, and therefore transfers between PL and PS DRAM (via
CDMA) are required to enable the RPU with full access. As an
alternative, the RPU could be charged with only configuring
the SG-DMA engine with 64-bit base addresses of BD rings,
which enables the SG-DMA engine to access any portion of
PS or PL DRAMs.

The computational complexity associated with implement-
ing gate sequences on-the-fly using feedback channel infor-
mation, and the high throughput, low latency requirements of
the modulated laser pulse control system is best implemented
as a co-design-based system architecture, as discussed earlier.
Architectures that attempt to implement the entire system as
state machine logic would result in over-utilization of the PL-
side resources and would make the tasks of configurability and
maintainability much more difficult, and would significantly
limit scalability.

As proposed, nearly all of the complexity of creating BD
rings is performed by the APU, which hosts a compiler to
convert quantum assembly down to raw pulse instructions,
mainly to avoid network overhead for feeding back on gate
definitions that often include non-linear parametrization of cal-
ibration parameters and may employ spline-based modulation.
While the details of the compiler are provided in [22], two
key capabilities of the compiler are:

• The ability to express high-level functional definitions of
gates that employ more complicated mathematical rep-
resentations, as well as methods to efficiently fit splines
with parameters that exceed 32 bits.

• The creation and management of persistent metadata
associated with gates and circuits for updating gates in-
situ during the state preparation stage.

Fitting splines requires matrix methods, in which the number
of spline knots affects matrix size, and this (to our knowledge)
cannot be implemented efficiently in PL without limiting the
number of spline knots supported in a pulse or requiring
significant resource utilization in the PL fabric. Moreover,
spline fitting requires some non-trivial elements for mapping
into efficient PL side interpolators. While we do support
fast register-based updates to control pulse parameters if they
do not incorporate spline-based modulation, the methodology
does not encapsulate the full complexity that might arise. For
instance, changes in pulse amplitude will likely yield different
AC Stark shifts, which are typically corrected using a spline-
modulated virtual phase. However, the relationship between
pulse amplitude and virtual phase is not trivial because of non-
linearities in the AOMs and amplifiers. Moreover, the actual
light shift can change day to day because of carbon buildup
on the AOMs, which is a common issue when using high-
power UV lasers. A key take-away here is that these kinds of
problems cannot be easily addressed by a PL-based system.

B. SG-DMA Performance Analysis

Latency is defined in our experiments as the interval of
time associated with the writing of the tail descriptor and
the arrival of the first word on the AXI MM2S streaming
interface in the CSM. An example is shown in Fig. 3, where
the second interval labeled 262 (787 ns) between events start

Fig. 6. SG-DMA throughput as a function of the number of bytes per BD
and BD ring size. The shaded regions highlight the variability and median
throughput of the SG-DMA engine decreasing for larger BD rings.

received and s axis valid represents latency. Multiple repeated
experiments are performed to obtain the median, minimum,
and maximum values of latency in our experiments. Similarly,
the median, minimum, and maximum values of throughput
are reported in MB/sec, where throughput is computed by
excluding the latency of the first transfer. Non-parametric
statistical metrics, i.e., median, minimum and maximum, are
used instead of the mean and standard deviation because
the statistical characteristics of the measurements are not
Gaussian.

Our measurements reveal that the latencies associated with
the set of RPU-to-SG-DMA experiments are independent of
the BD-ring parameters. In particular, the statistical charac-
teristics of the latency measurements are well characterized
using a minimum latency of 850 ns, a median latency of
988 ns, and a maximum latency of 1516 ns. Variations in
latency are largely due to stalls in the fetch-decode-execute-
writeback sequence carried out by the RPU, which includes
delays introduced by access contention and refresh cycles in
the DDR, cache misses, and AXI bus contention. For example,
the DDR4 device used on the ZCU111 (MT40A512M16JY-
075E) specifies that a refresh row stall is required every 7.8µs.
We observed DDR4 row refresh stalls using Xilinx ChipScope,
which showed stalls occurring for approximately 210 ns in
duration, and asynchronously with program execution.

The corresponding results for throughput are shown in
Fig. 6, with bytes per BD plotted along the x-axis against
throughput in MB/s on the y-axis. Unlike latency, throughput
is impacted by the BD ring size. The graph superimposes
the throughput results for BD rings of size 4, 16 and 1024.
The variability in throughput is largest for the BD ring of
size 4, and decreases linearly as the total amount of data
transferred increases. Given the DDR stalls occur at regular
time intervals, the impact that they have on the throughput
associated with larger rings is amortized over the longer data
transfer time interval, reducing their impact on variability.
Moreover, the negative performance impact of thrashing be-
tween DDR memory locations corresponding to the BD ring
and buffer addresses also becomes a smaller fraction of the



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XXXX, NO. XXXX, XXXX XXXX 9

Fig. 7. Throughput of the SG-DMA engine suffers a diminishing penalty as
the number of BDs in the ring increases. Throughput increases linearly until
saturating at the AXI data bus’s maximum bandwidth of 10.6 GB/s.

overall transfer time for larger transfer sizes. The median
throughput results for all tested BD ring sizes and buffer sizes
is shown in Fig. 7. The number of cycles has the same effect
on throughput as the number of BDs, indicating buffer data
can be stored discontiguously in memory without degrading
throughput.

C. BD Ring Creation Performance Analysis

The BD ring creation process described earlier can be
executed by either the APU or RPU, and consists largely
of instantiating an SG-DMA data structure for managing BD
rings and maintaining status. The SG-DMA IP block defines a
suite of registers that Linux or bare metal API functions utilize
for control and status operations. Both the APU and RPU
access the physical memory address space of these registers
directly. The C code running on the APU accomplishes the
task of bypassing the virtual memory system by opening,
reading and writing to the device in /dev/mem under Linux.
The C code associated with the BD ring creation process is
otherwise identical on both the APU and RPU.

In order to provide an apples-to-apples performance com-
parison, the CSM is used to measure the ∆t associated with the
creation of the BD ring in both cases. From the timing diagram
shown in Fig. 3, the counter which is sandwiched between
GPIO signals Reset PL and start asserted can be used to
measure execution time between any two points encapsulated
by the C code which writes these two GPIO signals. The entire
sequence of steps outlined in Section III-D is the target of our
timing operation. Note that the C code which writes to the
buffer spaces, e.g., with gate sequences, is not included in the
BD ring creation process, and instead, is handled by separate
routines before this sequence is executed.

The results of the performance comparison are shown in
Figs. 8 and 9. The execution time plotted on the y-axis is
divided by the size of the BD ring, so the y-axis shows the
average time to create a single BD in the ring. Although the
APU has a 5-9x speedup over RPU in the best-case scenarios,
APU suffers significantly longer stalls of up to 30µs during
execution of the user-space program when running a Linux

Fig. 8. Time taken for RPU to create a single BD.

Fig. 9. Time taken for APU to create a single BD.

5.4.0 kernel created with PetaLinux 2020.2. These longer stalls
in APU must be considered when attempting to meet timing
requirements in a TIQC system. Fig. 10 shows the ranges of
APU execution time to create a single BD and their observed
probabilities of occurrence.

V. APPLICATION TO QUANTUM COMPUTING

The objective of this research was to develop and test SG-
DMA for its ability to satisfy communication requirements for
the control system of a trapped-ion quantum computer. While
SG-DMA is slower than simple-mode DMA, it has advantages
for higher level sequencing of data streams where segments

Fig. 10. Probabilities for single BD creation time after a total of 100,000 data
points. The observed best-case performance is a single BD taking an average
of 0.1 to 0.25µs to be created, while the absolute worse case could take over
30µs. BD creation time was not observed to smoothly transition between the
range of all reported values.



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XXXX, NO. XXXX, XXXX XXXX 10

of the underlying data are reused. This applies to both the
case where the segments addressed by BDs are small but
frequently reused or large and only occasionally reused. These
conditions are particularly applicable to quantum computing
where electronic waveforms for quantum gates or shuttling
ions may require large amounts of data but are frequently
repeated, with only small changes needed to recalibrate them.
Recalibrating gates using SG-DMA can be acheived efficiently
by updating the data in the buffer which carries through to any
gates that reference that BD.

This type of scheduling offers more flexibility when large
amounts of data are required, and overall cuts down on
data communication requirements in the control system. In
this work the dependence of throughput on BD size was
measured and it was found that SG-DMA can match the
performance of simple-mode DMA when buffer sizes exceed
212 bytes, showing that SG-DMA is a useful way to coordinate
complicated but recycled buffer sequences (e.g. gate sequences
or ion shuttling waveforms). This framework is not just useful
for trapped-ion quantum computing control systems, but can
be applied to other quantum technologies like reconfiguring
neutral atom arrays or performing composite pulse sequences
in a superconducting quantum computer. Much faster gate
times (down to 10’s of nanoseconds) in these technologies,
however, may require additional techniques to achieve real-
time reconfigurability.

VI. CONCLUSION

This paper describes the experimental evaluation of la-
tency and throughput of SG-DMA, implemented on a Xilinx
ZCU111 RFSoC, as well as the benefits and limitations as they
relate to TIQC control systems. The analysis of overall system
performance considers communication between elements of
a multi-processing system, including the APU, RPU, and
PL, using different workloads for the SG-DMA engine. The
conclusions are summarized as follows:

• The latency of the RPU to initiate SG-DMA engine
operations can be characterized as having low variability
and does not depend on the parameters of the transfer.

• The SG-DMA engine is most efficient when transferring
large buffer regions, and has diminishing levels of vari-
ability in performance when processing large BD rings.
The SG-DMA engine, though implemented in PL, does
not have a fixed level of performance due to AXI bus and
DDR contention.

• Repeatedly cycling through a single BD ring has the same
effect on performance as increasing the number of BDs.

• The nature of SG-DMA to store both BD rings and
data buffers in DDR provides high levels of flexibility
at the cost of reduced performance due to the additional
memory accesses required to fetch BDs.

• With respect to application of the proposed architecture to
TIQC systems, the SG-DMA engine’s measured through-
put is sufficient to meet gate sequence transfer require-
ments, and is in fact much better than the ≈1µs lower-
bound target speed.

• The APU provides a 5-9x median execution time speedup
over RPU when creating BD rings. However, APU has

significantly slower worst-case performance for small
numbers of BDs than RPU primarily due to Linux in-
terrupt handling. The trade-off of high performance or
low variability motivates the usage of APU and RPU for
tasks that best suit their respective strengths.

• APU is better equipped for complex calculations by virtue
of its L2 cache, 64-bit architecture and larger number of
cores, while RPU is more appropriate for timing-critical
portions of the control system such as reading/writing
data to and from the PL.

The proposed multi-processor system architecture leverages
parallelism across the APU, RPU and PL state machine
computational units to effectively improve the performance,
flexibility and scalability of TIQC control systems. Although
the analysis carried out in this work focuses on the application
of the RFSoC to TIQC system architectures, the results are
relevant for other QC control systems and alternative RFSoCs
and MPSoCs.

REFERENCES

[1] S. M. Clark, D. Lobser, M. C. Revelle, C. G. Yale, D. Bossert, A. D.
Burch, M. N. Chow, C. W. Hogle, M. Ivory, J. Pehr, B. Salzbrenner,
D. Stick, W. Sweatt, J. M. Wilson, E. Winrow, and P. Maunz, “En-
gineering the quantum scientific computing open user testbed,” IEEE
Transactions on Quantum Engineering, vol. 2, pp. 1–32, 2021.

[2] M. A. Weber, M. F. Gely, R. K. Hanley, T. P. Harty, A. D. Leu,
C. M. Löschnauer, D. P. Nadlinger, and D. M. Lucas, “Robust and fast
microwave-driven quantum logic for trapped-ion qubits,” Phys. Rev. A,
vol. 110, p. L010601, Jul 2024.

[3] N. Irtija, J. Plusquellic, E. E. Tsiropoulou, J. Goldberg, D. Lobser,
and D. Stick, “Design and analysis of digital communication within
an soc-based control system for trapped-ion quantum computing,” IEEE
Transactions on Quantum Engineering, vol. 4, pp. 1–24, 2023.

[4] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press,
2010.

[5] C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh, A. Hankin, J. P.
Gaebler, D. Francois, A. Chernoguzov, D. Lucchetti, N. C. Brown,
T. M. Gatterman, S. K. Halit, K. Gilmore, J. A. Gerber, B. Neyenhuis,
D. Hayes, and R. P. Stutz, “Realization of real-time fault-tolerant
quantum error correction,” Phys. Rev. X, vol. 11, p. 041058, Dec 2021.

[6] T. M. Graham, L. Phuttitarn, R. Chinnarasu, Y. Song, C. Poole, K. Jooya,
J. Scott, A. Scott, P. Eichler, and M. Saffman, “Midcircuit measurements
on a single-species neutral alkali atom quantum processor,” Phys. Rev.
X, vol. 13, p. 041051, Dec 2023.

[7] T. Proctor, M. Revelle, E. Nielsen, K. Rudinger, D. Lobser, P. Maunz,
R. Blume-Kohout, and K. Young, “Detecting and tracking drift in
quantum information processors,” Nature Communications, vol. 11,
no. 1, p. 5396, Oct 2020.

[8] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-
ion quantum computing: Progress and challenges,” Applied Physics
Reviews, vol. 6, no. 2, p. 021314, 05 2019.

[9] J. Fjeldtvedt and M. Orlandić, “Cubedma – optimizing three-dimensional
dma transfers for hyperspectral imaging applications,” Microprocessors
and Microsystems, vol. 65, pp. 23–36, 2019.

[10] G. Brilli, A. Capotondi, P. Burgio, and A. Marongiu, “Understanding and
mitigating memory interference in fpga-based hesocs,” in Automation &
Test in Europe Conference & Exhibition, 2022, pp. 1335–1340.

[11] S. Alismail and D. Koch, “Efficient resource scheduling for runtime
reconfigurable systems on fpgas,” in 2023 33rd International Conference
on Field-Programmable Logic and Applications (FPL), 2023, pp. 123–
129.

[12] K. Manev, A. Vaishnav, and D. Koch, “Unexpected diversity: Quantita-
tive memory analysis for Zynq UltraScale+ systems,” in 2019 Interna-
tional Conference on Field-Programmable Technology (ICFPT), 2019,
pp. 179–187.

[13] M. Argyriou, “Diploma thesis: Main memory performance for realistic
data access in fpga systems: An experimental study,” April 2021.



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XXXX, NO. XXXX, XXXX XXXX 11

[14] Y. Xu, G. Huang, J. Balewski, R. Naik, A. Morvan, B. Mitchell,
K. Nowrouzi, D. I. Santiago, and I. Siddiqi, “Qubic: An open-source
FPGA-based control and measurement system for superconducting
quantum information processors,” IEEE Transactions on Quantum En-
gineering, vol. 2, pp. 1–11, 2021.

[15] M.-D. Zhu, L. Yan, X. Qin, W.-Z. Zhang, Y. Lin, and J. Du, “Fpga based
hardware platform for trapped-ion-based multi-level quantum systems,”
Chinese Physics B, vol. 32, no. 9, p. 090702, Sep 2023.

[16] N. Fruitwala, G. Huang, Y. Xu, A. Rajagopala, A. Hashim, R. K. Naik,
K. Nowrouzi, D. I. Santiago, and I. Siddiqi, “Distributed architecture
for fpga-based superconducting qubit control,” 2024.

[17] R. Gebauer, N. Karcher, and O. Sander, “A modular rfsoc-based ap-
proach to interface superconducting quantum bits,” in 2021 International
Conference on Field-Programmable Technology (ICFPT), 2021, pp. 1–9.

[18] X. Qin, W. Zhang, L. Wang, Y. Zhao, Y. Tong, X. Rong, and J. Du, “An
FPGA-based hardware platform for the control of spin-based quantum
systems,” IEEE Transactions on Instrumentation and Measurement,
vol. 69, no. 4, pp. 1127–1139, 2019.

[19] M. Toubeix, E. Guthmuller, A. Evans, A. Faurie, and T. Meunier,
“Fasquic: Flexible architecture for scalable spin qubit control,” IEEE
Transactions on Quantum Engineering, vol. 5, pp. 1–16, 2024.

[20] N. Messaoudi, C. Crocker, and M. Almendros, “A hardware-accelerated
qubit control system for quantum information processing,” in 2020
XXXV Conference on Design of Circuits and Integrated Systems (DCIS).
IEEE, 2020, pp. 1–5.

[21] G. Li, A. Wu, Y. Shi, A. Javadi-Abhari, Y. Ding, and Y. Xie, “On the
co-design of quantum software and hardware,” in Proceedings of the
Eight Annual ACM International Conference on Nanoscale Computing
and Communication, ser. NANOCOM ’21. New York, NY, USA:
Association for Computing Machinery, 2021.

[22] D. S. Lobser, J. W. Van Der Wall, and J. D. Goldberg, “Performant
coherent control: bridging the gap between high- and low-level opera-
tions on hardware,” in 2022 IEEE International Conference on Quantum
Computing and Engineering (QCE). Los Alamitos, CA, USA: IEEE
Computer Society, sep 2022, pp. 320–330.

[23] Xilinx. (2023) Axi dma logicore ip product guide (pg021).
[24] C. Chamberland, T. Jochym-O’Connor, and R. Laflamme, “Overhead

analysis of universal concatenated quantum codes,” Phys. Rev. A, vol. 95,
p. 022313, Feb 2017.

[25] A. Cross, A. Javadi-Abhari, T. Alexander, N. de Beaudrap, L. S. Bishop,
S. Heidel, C. A. Ryan, P. Sivarajah, J. Smolin, J. M. Gambetta, and
B. R. Johnson, “OpenQASM 3: A broader and deeper quantum assembly
language,” ACM Transactions on Quantum Computing, 2021.

[26] X. Fu, L. Riesebos, M. A. Rol, J. van Straten, J. van Someren,
N. Khammassi, I. Ashraf, R. F. L. Vermeulen, V. Newsum, K. K. L. Loh,
J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever,
L. DiCarlo, and K. Bertels, “eqasm: An executable quantum instruction
set architecture,” in 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2019, pp. 224–237.

[27] R. Gebauer, N. Karcher, J. Hurst, M. Weber, and O. Sander, “Accelerat-
ing complex control schemes on a heterogeneous MPSoC platform for
quantum computing,” 2020.

[28] R. Kasprowicz, N. Karcher, D. Gusenkova, M. Spiecker, L. Grünhaupt,
I. Takmakov, P. Winkel, L. Planat, N. Roch, W. Wernsdorfer et al., “State
preparation of a fluxonium qubit with feedback from a custom FPGA-
based platform,” in AIP Conference Proceedings, vol. 2241, no. 1. AIP
Publishing LLC, 2020, p. 020015.

[29] J. Ireland, S. Protheroe, J. Williams, A. Belcher, R. Dekker, K. Schaap-
man, R. Iuzzolino, R. Melo, B. Valinoti, M. Bierzychudek et al., “Real-
time quantum-accurate voltage waveform synthesis,” in 2020 Conference
on Precision Electromagnetic Measurements (CPEM). IEEE, 2020, pp.
1–2.

[30] N. Karcher, R. Gebauer, R. Bauknecht, R. Illichmann, and O. Sander,
“Versatile configuration and control framework for real-time data acqui-
sition systems,” IEEE Transactions on Nuclear Science, vol. 68, no. 8,
pp. 1899–1906, 2021.

[31] G. Kasprowicz, P. Kulik, M. Gaska, T. Przywozki, K. Pozniak, J. Jarosin-
ski, J. W. Britton, T. Harty, C. Balance, W. Zhang, D. Nadlinger,
D. Slichter, D. Allcock, S. Bourdeauducq, R. Jördens, and K. Pozniak,
“ARTIQ and Sinara: Open software and hardware stacks for quantum
physics,” in OSA Quantum 2.0 Conference. Optica Publishing Group,
2020, p. QTu8B.14.

[32] B. Keitch, V. Negnevitsky, and W. Zhang, “Programmable and scalable
radio-frequency pulse sequence generator for multi-qubit quantum in-
formation experiments,” 2017.

[33] J. Lee, D. W. Berry, C. Gidney, W. J. Huggins, J. R. McClean,
N. Wiebe, and R. Babbush, “Even more efficient quantum computations

of chemistry through tensor hypercontraction,” PRX Quantum, vol. 2, p.
030305, 2021.

[34] Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Paun, and
S. L. Scott, “An optimal checkpoint/restart model for a large scale high
performance computing system,” in 2008 IEEE International Symposium
on Parallel and Distributed Processing, 2008, pp. 1–9.

[35] J. T. Merrill and K. R. Brown, Progress in Compensating Pulse
Sequences for Quantum Computation. John Wiley & Sons, Ltd, 2014,
pp. 241–294.

[36] E. Mount, C. Kabytayev, S. Crain, R. Harper, S.-Y. Baek, G. Vrijsen,
S. T. Flammia, K. R. Brown, P. Maunz, and J. Kim, “Error compensation
of single-qubit gates in a surface-electrode ion trap using composite
pulses,” Phys. Rev. A, vol. 92, p. 060301, 2015.

[37] Xilinx, “Zynq UltraScale+ MPSoC base targeted reference design,”
uG1221 (v2020.1) June 3, 2020.

[38] J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quan-
tum, vol. 2, p. 79, 2018.

[39] I. Pogorelov, T. Feldker, C. D. Marciniak, L. Postler, G. Jacob,
O. Krieglsteiner, V. Podlesnic, M. Meth, V. Negnevitsky, M. Stadler,
B. Höfer, C. Wächter, K. Lakhmanskiy, R. Blatt, P. Schindler, and
T. Monz, “Compact ion-trap quantum computing demonstrator,” PRX
Quantum, vol. 2, p. 020343, 2021.

[40] V. M. Schäfer, C. J. Ballance, K. Thirumalai, L. J. Stephenson, T. G.
Ballance, A. M. Steane, and D. M. Lucas, “Fast quantum logic gates
with trapped-ion qubits,” Nature, vol. 555, no. 7694, pp. 75–78, 2018.

[41] P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X.
Wang, S. Quint, M. F. Brandl, V. Nebendahl, C. F. Roos, M. Chwalla,
M. Hennrich, and R. Blatt, “A quantum information processor with
trapped ions,” New Journal of Physics, vol. 15, no. 12, p. 123012, 2013.

[42] J. van Dijk, E. Kawakami, R. Schouten, M. Veldhorst, L. Vandersypen,
M. Babaie, E. Charbon, and F. Sebastiano, “Impact of classical control
electronics on qubit fidelity,” Phys. Rev. Applied, vol. 12, p. 044054,
2019.

[43] L. Stefanazzi, K. Treptow, N. Wilcer, C. Stoughton, C. Bradford,
S. Uemura, S. Zorzetti, S. Montella, G. Cancelo, S. Sussman, A. Houck,
S. Saxena, H. Arnaldi, A. Agrawal, H. Zhang, C. Ding, and D. I.
Schuster, “The QICK (Quantum Instrumentation Control Kit): Readout
and control for qubits and detectors,” Review of Scientific Instruments,
vol. 93, no. 4, p. 044709, 2022.

[44] A. Stanco, F. B. L. Santagiustina, L. Calderaro, M. Avesani,
T. Bertapelle, D. Dequal, G. Vallone, and P. Villoresi, “Versatile and
concurrent fpga-based architecture for practical quantum communication
systems,” IEEE Transactions on Quantum Engineering, vol. 3, pp. 1–8,
2022.

[45] A. Bean, “Improving memory access performance for irregular algo-
rithms in heterogeneous cpu/fpga systems,” Ph.D. dissertation, Imperial
College London, 2016.

Tiamike Dudley is a Ph.D. student and graduate
assistant in the department of Electrical and Com-
puter Engineering at the University of New Mexico.
He received his bachelor’s in Computer Engineering
from the University of New Mexico. His research in-
terests include Quantum Information Systems, Field
Programmable Gate Arrays, and embedded system
design.

Jim Plusquellic is a Professor in Electrical and
Computer Engineering at the University of New
Mexico. He received both his M.S. and Ph.D. de-
grees in Computer Science from the University of
Pittsburgh. Professor Plusquellic received an ”Out-
standing Contribution Award” from IEEE Computer
Society in 2012 and 2017 for co-founding and for
his contributions to the Symposium on Hardware-
Oriented Security and Trust (HOST).



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XXXX, NO. XXXX, XXXX XXXX 12

Eirini Eleni Tsiropoulou is currently an Associate
Professor at the Department of Electrical and Com-
puter Engineering, University of New Mexico. Her
main research interests lie in the area of cyber-
physical social systems and wireless heterogeneous
networks, with emphasis on network modeling and
optimization, resource orchestration in interdepen-
dent systems, reinforcement learning, game theory,
network economics, and Internet of Things. Four of
her papers received the Best Paper Award at IEEE
WCNC in 2012, ADHOCNETS in 2015, IEEE/IFIP

WMNC 2019, and INFOCOM 2019 by the IEEE ComSoc Technical Commit-
tee on Communications Systems Integration and Modeling. She was selected
by the IEEE Communication Society - N2Women - as one of the top ten
Rising Stars of 2017 in the communications and networking field. She received
the NSF CRII Award in 2019 and the Early Career Award by the IEEE
Communications Society Internet Technical Committee in 2019.

Joshua Goldberg is a Principal Electrical Engineer
in the Photonic Microsystems Technologies Depart-
ment at Sandia National Laboratories, Albuquerque,
NM, USA. He received a B.S. in Electrical Engi-
neering from Texas Tech University and an M.B.A.
from the University of Phoenix. Joshua Goldberg has
been specializing in software development over the
last 22 years. His recent efforts include modernizing
control software paradigms for trapped ion quantum
systems to further full stack development for quan-
tum information platforms.

Daniel Lobser leads the control systems thrust of
QSCOUT. His main research interest is the devel-
opment of custom classical and quantum control
hardware that employs novel paradigms for coherent
operations and dynamic noise mitigation in trapped-
ion qubit platforms. He received his Ph.D. in physics
from the University of Colorado, Boulder in 2015,
where he studied ultracold atomic gases.

Daniel Stick is a Distinguished Member of Techni-
cal Staff at Sandia National Labs. His research fo-
cuses on developing innovative technologies around
atomic and quantum systems, including micro-
fabricated surface ion traps for quantum information
applications. This work includes the design and
fabrication of the traps, as well as experiments with
storing, transporting, and performing quantum gates
on ions. Dr. Stick received his BS from Caltech and
his PhD from the University of Michigan. He was
the recipient of a 2012 Presidential Early Career

Award for Scientists and Engineers (PECASE) for his research in trapped
ion quantum computing.


