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Abstract

Process variations within Field Programmable Gate Arrays (FPGAs)
provide a rich source of entropy and are therefore well-suited for the
implementation of Physical Unclonable Functions (PUFs). However,
careful considerations must be given to the design of the PUF archi-
tecture as a means of avoiding undesirable localized bias effects that
adversely impact randomness, an important statistical quality character-
istic of a PUF. In this paper, we investigate a ring-oscillator (RO) PUF
that leverages localized entropy from individual look-up table (LUT)
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Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA-0003525.

1



Springer Nature 2021 LATEX template

2 Article Title

primitives. A novel RO construction is presented that enables the indi-
vidual paths through the LUT primitive to be measured and isolated
at high precision and an analysis is presented that demonstrates sig-
nificant levels of localized design bias. The analysis demonstrates that
delay-based PUFs that utilize LUTs as a source of entropy should
avoid using FPGA primitives that are localized to specific regions of
the FPGA, and instead a more robust PUF architecture can be con-
structed by distributing path delay components over a wider region of
the FPGA fabric. Compact RO PUF architectures that utilize multiple
configurations within a small group of LUTs are particularly suscepti-
ble to these types of design-level bias effects. The analysis is carried
out on data collected from a set of identically-designed, hard macro
instantiations of the RO implemented on 30 copies of a Zynq 7010 SoC.

Keywords: PUF, Entropy, FPGA, Physical Layer

1 Introduction

A physical unclonable function (PUF) is hardware security primitive that is
able to generate one or more unique digital bitstrings for security functions
such as encryption and authentication within a device. Key storage utilizing
secure non-volatile memory (NVM) can be replaced by a PUF, which reduces
overall system cost. PUFs accept a challenge and produce a response, e.g., an
encryption key, that can be reproduced at any point during system operation
and under adverse environmental conditions. The random properties in PUF-
generated bitstrings derive from entropy that is created from variations in
manufacturing process parameters.

The physical layer entropy exploited by a PUF is defined by its circuit
structure and the extent of the region required for its implementation. PUF
architectures that build arrays of identically designed test structures, e.g., ring-
oscillators (ROs), possess small implementation regions and extract entropy
from localized variations in process parameters. In contrast, PUF architectures
that define constituent elements over larger regions have access to a larger pool
of entropy. More importantly, small circuit structures have greater sensitivity
to the adverse effect of bias and require additional post-processing steps to
achieve high statistical quality in the generated bitstrings.

In this paper, we propose a small, localized, PUF architecture, called the
SR-PUF, that utilizes 6-input look-up tables (LUTs) within FPGAs as a
source of entropy. The LUTs are configured as shift-registers, enabling, for the
first time, an analysis of path delay variation along individual paths within
the LUT. The paths are measured in a RO configuration, which is designed
to enable all common path components in the RO structure to be removed
through a differencing operation. Therefore, the source of entropy for the SR-
PUF is only the component of the RO path that passes through the LUT itself.
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This configuration also enables an analysis of LUT path-length bias. Calibra-
tion methods are proposed that reduce undesirable sources of bias, including
LUT path-length bias, and a statistical analysis is carried out on the bitstrings
generated from 30 copies of a Xilinx FPGA.

The main contributions of this paper are given as follows:

1. A novel, highly compact ring-oscillator-based PUF architecture is proposed.
2. An analysis of path-length bias that exists within Xilinx LUTs is presented.
3. A calibration method is proposed that significantly reduces LUT path-

length bias, as well as other sources of bias.

2 Background

RO-based PUF architectures were first introduced by [1] and later improved in
[2]. An RO PUF is characterized as a localized PUF architecture constructed
as an array of identically-designed circuit structures, where each structure
consists of an odd number of inverters connected in a loop configuration. RO
PUFs have been studied extensively over the last two decades. We summarize
the current state-of-the-art in the following.

Reprogrammable RO PUF architectures are proposed in [3], [4] and [5] as
a means of reducing area overhead while increasing access to a wider extent
of localized random variations within FPGA constituent elements, e.g., LUTs,
wires and switch boxes. In [3], the authors eliminate routing delay variation,
and utilize only within-LUT delay variation, by creating multiple distinct ROs
within the same ring structure using free LUT inputs as a means of changing
SRAM cells that implement the inverters. The PUF architecture proposed in
[4] utilizes dynamic partial reconfiguration to reduce area overhead of imple-
menting a single inverter RO architecture. A set of eight partial bitstreams are
used to configure each of the LUTs in a CLB, one-at-a-time, in an RO con-
figuration. The scheme is expanded further by using each of the 6 input ports
of the LUT in different configurations. In [5], the authors make use of unused
LUT inputs to select different within-LUT paths to implement each inverter
of the RO, again dramatically increasing access to a wider extent of localized
random variations.

The analysis provided in [6] for the bistable ring PUF show that placement
and routing have a dramatic impact on the randomness of the PUF. They
found that only 15.6% of multiple PUF instances on the same FPGA show 0-
1 frequency characteristics that are in the acceptable range for a good quality
PUF. A variation-aware strategy for RO placement to improve reliability is
proposed in [7].

A pairing strategy that selects neighboring ROs as a means of dealing with
systematic process variation, i.e., undesirable bias that reduces uniqueness, is
proposed in [8]. They also propose to add 2-to-1 multiplexers (MUXs) at each
stage of the RO to increase the number of distinct RO paths to 8. A variant
of this reconfigurable PUF is proposed in [9] that expands the number of con-
figurations per RO to 256. The authors of [10] propose a third reconfigurable
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RO that allows for the insertion and removal of inverters in the RO circuit
path. The entropy of the PUF can then be confined to single inverters instead
of the entire RO structure. An XOR-based, configurable RO PUF is proposed
in [11] which replaces the inverter gates with XOR gates, and allows multiple
different circuit paths through the RO circuit structure.

The authors of [12] and [13] analyze bias in RO PUFs on Altera FPGAs
and show that bias is introduced based on the location of the RO on the die,
as well as which LUT inputs are used and whether non-PUF-related (pay-
load) activities are occurring. A chip-to-chip performance removal technique
is proposed in which the mean frequency of each RO (computed from a sam-
ple population of devices) is used to offset the RO frequencies in each device,
as a means of improving uniqueness.

The authors of [14] carried out a large scale RO experiment on 217 Xilinx
Artix-7 boards, which uses a three stage RO implemented within each slice.
Their analysis considers within-die systematic variation and design bias, and
its impact on random within-die variations, the latter representing the true
source of entropy for RO PUFs. They conclude that comparisons between
ROs that have exactly the same routing is the only way to generate bitstrings
without bias.

A technique to reduce hardware overhead by modulating the frequency of
one RO in relation to another is proposed in [15]. The authors elaborate on a
technique known as Frequency Offset Architecture that manages the trade-off
between hardware utilization and performance in RO PUF design.

The authors of [16] introduce advancements to RO-based PUFs and RS
latch-based PUFs by incorporating a Temporal Majority Voting scheme, fine
and coarse programmable delay line configurations, and hard macro tech-
niques. These enhancements result in improved performance in terms of
reliability, uniqueness and uniformity, an increased number of independent
response bits and the creation of area-efficient PUF designs.

A phase calibration process that shifts the phase of the RO output signal
is proposed in [17]. This method eliminates asynchronous timing measurement
error by conducting repeated measurement cycles, adjusting the delay with
each cycle before comparing counter values to generate an output bit. This
leads to improvement in the stability and accuracy of the RO PUF.

A comparison of the proposed SR-PUF is carried out with an additional
set of closely related compact PUF architectures in the following sections.

3 SR-PUF design

The SR-PUF design is presented in this section. The source of randomness
(entropy) for the SR-PUF is delay variations that occur within the MUX’ing
structure of look-up tables (LUTs). The delay variations are measured by inte-
grating LUTs, configured as shift-registers, in a ring-oscillator circuit design,
as shown in Fig. 1. Individual paths through the LUTs are selected for mea-
surement using the LUT inputs in[x]. One path is highlighted in magenta that
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starts at the Clk input of the configuration memory bit (CMB) storage ele-
ment and passes through the internal MUX’ing structure to the LUT output
labeled out. Transitions on the CMB outputs are created by shifting a pattern
of ”0101...” through the CMB array. The pulse generator receives a rising or
falling edge on out and generates a clock pulse that causes another shift of the
CMB bitstring, enabling the design to behave as a RO.

Fig. 1 SR-PUF design utilizing the Xilinx Shift-register LUT. One of the 32 paths that
represent the source of entropy for the SR-PUF is highlighted in magenta. The Pulse gen-
erator shown on the right is shared among 15 other copies of the SR-PUF.

A block diagram of the SR-PUF architecture and supporting circuitry is
shown in Fig. 2. The top portion shows a row of 16 LUTs configured as shift-
registers (labeled SR0 through SR15), with the shift output Q connected back
to its D input through a 2-to-1 MUX. The shift registers are implemented
using the Xilinx library primitive, SRLC32E [18]. The Ctrl select signal of the
two 2-to-1 MUXs (labeled Data and Clk in Fig. 1) is used to enable the CMB
arrays of the 16 LUTs to be configured with an alternating ’0’ and ’1’ bit
pattern. The configuration of the CMB arrays takes place after the bitstream is
loaded and before any RO measurements are made. A set of states in the state
machine implementation of the SR-PUF introduces an alternating sequence of
’0’ and ’1’ on CMB data, which is scanned into the CMB arrays by toggling
the CMB clk signal.

The remaining components complete the cyclic circuit structure of the RO.
Inputs SR sel and RO sel, shown on the left side of Fig. 2, select one of the
16 SRy and one of the CMB bit positions, respectively. The outputs of the
SRy drive a 16-to-1 MUX, which is implemented in two levels within Vivado
implementation view using five 4-to-1 MUXs.

The output of the 16-to-1 MUX drives one of the inputs to a NAND gate.
The other input, labeled RO enable0 for Macro0, serves to enable or disable
the RO. The NAND gate output fans out and drives both inputs of a 2-input
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Fig. 2 SRP hard macro containing 16 SR, each with 32 ROs. Pulse generator circuit is
shared across all seven macros in a clock region of the FPGA.

XOR gate. One of the inputs is delayed using a sequence of five buffers as a
means of implementing an edge-to-pulse converter. The pulse generated on the
XOR output drives the clock inputs to the SRy CMB FFs. The rising edge of
this pulse shifts the CMB bit pattern by one position to the right within each
SRy.

The components shown along the bottom of Fig. 2 are used to measure
the oscillation frequency of one of the 4096 ROs implemented across the eight
macros. The pulse signals from the macros route through a MUX to the clock
input of a 16-bit counter, which records the number of oscillations of the ROs.
The timer block is a 23-bit counter that is used to stop the RO oscillations
after a specific, user-configurable, time interval.

A RO measurement is carried out as follows. The Rst signal is pulsed to
clear the state of the measurement system. The macro sel, SR sel and RO sel
signals are set to select one of the 4096 ROs and a user-specified parameter
is placed on the runtime input signal. The measurement process begins by
asserting the Go signal. The go reg signal is asserted on the next rising edge
of the system clock, Clk. The 23-bit timer output value (which is initially 0)
is compared with the runtime signal and the flag signal asserted if the timer
is less than the runtime parameter. The AND gate output is asserted under
these conditions, which enables one of the RO enablex signals to a macro, and
the 23-bit timer. The RO enable is asserted until the timer becomes equal to
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the runtime value. This ensures that all ROs are allowed to ring for the same
delta-t during the measurement process. The system clock is configured to run
at 100 MHz in our experiments.

3.1 Macro Design and Analysis Strategy

The macro component of the SR-PUF is designed as a pblock, or hard macro,
in Xilinx Vivado. The eight macros of the SR-PUF design are shown enclosed
in magenta rectangles in Fig. 3. The macro in the lower left corner is synthe-
sized first, and then the placement and routing information, i.e., coordinates
of the LUTs, switches and wires, are read out using tcl commands and mod-
ified to create the remaining seven vertically offset macros. This ensures that
the macros are identically designed, potentially enabling direct comparisons
between ROs at the same locations in each macro. For example, RO0,0,0 can
be compared with RO1,0,0, where ROx,y,z is defined with x referring to the
macro, y to the SR and z to the RO within the SR, i.e., macrox, SRy, ROz.
An abstraction of the SR-PUF design is shown in Fig. 4 that illustrates the
identically designed versus non-identically designed SR components.

Fig. 3 Vivado implementation view showing layout of the SR-PUF hard macros.

The design of the SR-PUF actually allows ROs other than those at identi-
cal positions across the macros to be compared. From Fig. 1, the path from out
through the pulse generator component to the SR clock input labeled Pulse
is common for all 32 paths within the LUT. Therefore, the delay contribution
introduced by this shared path can be eliminated using a differencing opera-
tion, e.g, RO0,0,0 - RO0,0,1. Unfortunately, the paths through the LUT are not
identically designed, and exhibit bias as we will show. Therefore, additional
post-processing is required to enable comparisons between ROz within each
macrox and SRy.
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Fig. 4 SR-PUF design abstraction for identifying sources of bias.

Table 1 SR-PUF Resource Utilization

BEL One Macro Eight Macros Measure Unit GPIO Total

LUTs 28 224 143 544 911
FFs 0 0 40 883 923
MUXF7 2 16 0 0 16

3.2 SR-PUF Area Overhead Analysis and Comparison

Fig. 5 CLB packing strategy of SR-PUF for minimal resource utilization.

The resource utilization reported by Xilinx Vivado for the macro is given
in Table 1. The resources used for each macro are given in the second col-
umn, while the third column gives the resources used in all 8 macros of our
implementation. The Measure Unit resources correspond to the components
shown along the bottom of Fig. 2. The column labeled GPIO corresponds to
two 32-bit general purpose input-output (GPIO) registers that are used as an
interface to the PS side of the Zynq 7010 device for status, data and control.
The resources used within each macro consist of two 2-to-1 MUXF7s and 28
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LUTs, sixteen for the shift registers, five for the 16-to-1 MUX (implemented
in two stages using 4-to-1 MUXs), one for the NAND gate, one for the XOR
gate and five for the XOR buffers.

For the purpose of comparing the SR-PUF with others in the following, we
show an alternative mapping of the SR-PUF components in Fig. 5. Here, we
utilize 3 CLBs (24 LUTs) to implement a set of 384 complete ROs, with MUXs
and pulse generator included. The LUTs labeled BUFx represent the sequence
of 5 buffers driving the XOR gate in the top portion of Fig. 2. The three 4-to-1
MUXs select one of the shift-register outputs in each SLICEM while the 3-to-1
MUX selects one of the 4-to-1 MUX outputs for measurement. The remaining
LUTs map to the other components shown in the top portion of Fig. 2.

Table 2 gives implementation details, bitstring uniqueness characteristics
and hardware efficiency values for the SR-PUF and a selected set of previously
proposed compact PUF architectures. The hardware efficiency (HE) metric
proposed in [19] is used in the table for comparing PUF architectures, and
is given by Eq. 3. The term N refers to the number of CLBs, and for the
comparision done below, we assume each CLB contains 8 LUTs. A smaller HE
metric corresponds to a more compact PUF architecture. The x component of
Eq. 2 expresses the number of PUF primitives, e.g., ROs, within each CLB,
while C describes how combinations of ROs expand into the number of bits
that all CLBs are capable of producing. It follows that larger values for x and
C are desirable.

C =
N × (N − 1)

2
(1)

Rbit = x× C (2)

HE =
N

Rbit
(3)

The PUFs proposed by [20], [21], [22], [23], [8] and [2] are RO-based, while
[24] and [25] propose cross-coupled PUF primitives. For the cross-coupled prim-
itives, the value of C in Eq. 2 is 1 because the PUF cell self-evaluates to a
binary value upon excitation.

The Hardware Efficiency row in Table 2 gives the HE values with N set to
3 to enable direct comparisons with the SR-PUF alternative mapping strategy
shown in Fig. 5, which uses three CLBs. The SR-PUF and Transformer PUF
possess the smallest HE values, and therefore, represent the most hardware
efficient PUF architectures.

4 RO Count Data Post-Processing Methods

The average RO counts (ROC) measured from the 32 ROs in SR0 and SR1,
and from 30 FPGAs, are shown in Fig. 6. The ROs are numbered 0 to 63 along
the x-axis (note: the group identified as 32 to 63 actually correspond to ROs 0
to 31 within SR1). The averages are computed from a set of sixteen samples,
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Table 2 Implementation characteristics of compact PUF architectures.
This
Work

[20] [24] [21] [22] [25] [23] [8] [2]

Year 2023 2022 2021 2020 2017 2017 2016 2011 2007

PUF SR R3O DD
Single

Slice RO
Transformer Pico RRO CRO RO

Device
Zynq
7010

Spartan
6

Artix
7

Artix
7

Artix
7

Artix
7

Spartan
6

Spartan
3E

Virtex
4

Unique-
ness

50.19% 49.96% 49.48% 48.05% 49.44% 49.90% 49.97% 47.31% 46.15%

Hardware
Efficiency
(N=3)

0.016 0.25 0.75 0.5 0.016 0.75 0.25 0.125 1

i.e., each RO is measured repeatedly and the mean RO count is computed and
plotted. All samples fell within the 3 ∗ σ bounds.

The ROs were configured to run for 5.12 µsec (running for longer periods
of time did not increase the resolution of the intrinsic entropy in the path
delays because the noise component also increased, effectively maintaining
the signal-to-noise ratio). The average RO count across all 4096 ROs and all
FPGAs is 1862, which gives an average frequency of oscillation of 364 MHz.
All measurements were made at room temperature.

Fig. 6 Raw RO Counts for the 32 ROs in SR0 and SR1 across all FPGAs.

The differences in the RO counts observed in Fig. 6 are introduced by
the following five sources of variation: chip-to-chip and across-chip process
variation, design bias, LUT path-length bias, within-die variation and noise.
Noise is reduced significantly using the average of 16 samples, as described
above, which was confirmed using several re-runs of the entire experiment.
Chip-to-chip and across-chip process variations and variations introduced by
design bias are significant, e.g., RO counts for RO0,0,0 vary over the range of
1550 to 2400 across the 30 chips. As we will discuss, LUT path-length bias
is much smaller but has a significant impact on the randomness statistical
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quality of the SR-PUF bitstrings. The remaining source of variation, namely,
within-die, represents the main source of entropy for the SR-PUF.

The goal of the data post-processing operations is to significantly reduce,
ideally eliminate, the undesirable sources of bias, namely, chip-to-chip and
across-chip process variations, and variations introduced by non-identically
designed (design bias) components and LUT path-length bias.

4.1 LUT Path-Length Bias Analysis

Before describing the data post-processing operations used for PUF bitstring
generation, we first analyze LUT path-length bias. The contribution to the RO
count values from chip-to-chip process variations and design bias are removed
using Eqs. 4 through 7. These equations perform two linear transformations.
The first one standardizes the RO counts using the mean and standard devi-
ation of a group of ROs while the second one reverses the process using
two fixed parameters, µBref and σBref . The RO groups are defined as the
32 ROs within each shift-register. The notation described earlier, ROx,y,z, is
expanded here to include a FPGA number, c, i.e., ROc,x,y,z. Each FPGA has
8 macros ∗ 16 SRs/macro so the transformation is carried out separately 128
times on each of the RO groups.

uBc,x,y =

32∑
z=1

ROc,x,y,z

32
(4)

σBc,x,y =

√√√√√ 32∑
z=1

(ROc,x,y,z − uBc, x, y)2

31
(5)

ZBc,x,y,z =
(ROc,x,y,z − uBc,x,y)

σBc,x,y

(6)

ROCBc,x,y,z = ZBc,x,y,z ∗ σBref + uBref (7)

The first transformation significantly reduces chip-to-chip and across-chip
performance differences and variations introduced by design bias but preserves
LUT path-length bias and within-die variations. The second transformation
scales all RO counts to a zero mean and a fixed range, which normalizes the
performance differences across all FPGAs and shift-registers to the average
value of the population. The values used for µBref and σBref are 0.0 and 20.9,
with the latter representing the average range of variations in the RO counts
across all shift-registers and FPGAs before the transformations are applied.

The bar graphs in Figs. 7 and 8 portray the average LUT path-length bias
for each of the 32 ROs. Fig. 7 plots the results for each FPGA while Fig. 8
shows the results averaged across all FPGAs. The differences in the bar heights
suggests that a symmetric MUXing scheme as shown in Fig. 1 is not used
within the Xilinx 6-input LUT. The ROs in the first half of the LUT are slower,
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Fig. 7 LUT path-length bias for the 32 ROs in each shift-register averaged across all macros
and shift-registers in each FPGA (Chip #).

Fig. 8 LUT path-length bias for the 32 ROs in each shift-register averaged across all
FPGAs, macros and shift-registers.

on average, than those in the second half, with the exception of RO31. Each
increment of the RO count on the y-axis corresponds to approximately 1.45
ps. Therefore, from Fig. 8, the variation in delay due to LUT path-length bias
varies from -14.5 to 7.4 in RO counts, and between -21.0 to 10.8 ps in actual
delay. Given that within-die variations are approximately ±6 RO counts on
average (as we will show), this represents a significant bias that needs to be
removed in order to generate high quality bitstrings.

5 PUF Application Results

The linear transformations required to reduce three of the sources of unde-
sirable variations, namely, chip-to-chip process variations, and variations
introduced by design and LUT path-length bias, are given in Eqs. 8 through
11. Note that across-chip process variations are not addressed by these trans-
formations. Here, the groups of ROs included in each transformation operation
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are the identically-designed ROs across the eight macros. Therefore, 512 sepa-
rate transformations are performed for each FPGA. The values used for µP ref

and σP ref are 0.0 and 46.3, with the latter representing the average range
of variations in the RO counts across all RO groups and FPGAs before the
transformations are applied.

uPc,y,z =

8∑
x=1

ROc,x,y,z

8
(8)

σPc,y,z =

√√√√√ 8∑
x=1

(ROc,x,y,z − uPc,y,z)2

7
(9)

ZPc,x,y,z =
(ROc,x,y,z − uPc,y,z)

σPc,y,z

(10)

ROCPc,x,y,z = ZPc,x,y,z ∗ σref + uref (11)

The primary component of the variation that remains after these trans-
formations is within-die variations, which represent the best source of entropy
for the SR-PUF. The bar graph in Fig. 9 depicts the RO counts for the same
ROs and in the format as shown in Fig. 6 to illustrate the effect of the trans-
formations. The distribution appears to be random with no obvious signs of
bias. The range of variation is approximately ±14, which translates to ±21 ps
of delay variation, using 1.45 ps per RO count in the conversion.

Fig. 9 Within-die variation in RO counts for the 32 ROs in SR0 and SR1 across all FPGAs.

The mean delay and range computed across all 4096 ROs for each chip are
plotted in Fig. 10. The mean values are relatively constant at approximately
± 3.0 ps, while the range varies from approximately ± 10 to ± 20 ps. This
indicates that within-die variations vary over a range of 2X in the sample of
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FPGAs used in our analysis. The data calibrated as shown in Fig. 11 is used
in the bitstring generation algorithm described in the next section.

Fig. 10 Average mean and range of within-die variation in RO counts of all ROs in each
of the FPGAs.

5.1 Bitstring Generation Algorithm

The proposed bitstring generation algorithm avoids bit flip errors using a
thresholding technique, in contrast to applying error correction techniques. A
subset of the RO calibrated differences (ROCD) are plotted along the x-axis
for FPGA1 in Fig. 11 as an illustration. Two symmetrical thresholds at ±2
are highlighted and the region between them is labeled weak. ROs that gen-
erate values in this region are close to the bit-flip line at 0, and are excluded
by recording a bit value of 0 in the helper data bitstring for these ROs during
enrollment (not shown). Strong bits, on the other hand, are represented by
RO count values falling above the upper threshold or below the lower thresh-
old, and are assigned a bit value of 1 in the helper data bitstring. The outputs
from the enrollment operation are the strong bitstring and the helper data bit-
string. Bits in the strong bitstring are assigned 0 (1) if they are less (greater)
than 0 and below (above) the lower (upper) threshold.

Although the ROC Count values shown in Fig. 9 and the ROCD in Fig. 11
appear to be random, there still exists small levels of bias that was not removed
by the calibration process described earlier. The left-over bias restricts the
elements that can be paired in the bitstring generation algorithm.

Bitstring generation during enrollment is carried out by applying the
following operations to the ROC Count values.

• Create 2048 ROCD by subtracting pairs of unique RO values from the set
of 4096.

• Apply the thresholding technique to the ROCD to select bits classified as
strong, to create a strong bitstring or BSS , while simultaneously generating
the helper data bitstring, BSHD.
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Fig. 11 Illustration of the SR-PUF bitstring generation, which utilizes two thresholds of
±2 to avoid bit-flip errors.

The bias that remains is not apparent in the BSS that is generated. How-
ever, the ’Runs’ test in the NIST statistical test suite fails if pairings are
selected randomly from the original set of 4096 RO count values (to create
the differences). One of the pairing strategies that succeeds in producing high
quality random bitstrings is to select the pairing using adjacent ROs in the
array, e.g., RO0,0,0 and RO0,0,1. The results given below utilize this pairing
strategy. Alternative strategies that also succeed are discussed below.

5.2 Experimental Results

Inter-chip hamming distance has emerged as a standard for evaluating unique-
ness of the bitstrings generated by the set of FPGAs. The ideal value is 0.5,
which indicates that half of the bits in the pairing of two bitstrings from differ-
ent FPGAs are different (and half are the same). Eq. 12 gives the expression for
computing hamming distance, where bsi represents the entire bitstring from
FPGAi while bsi,k refers to individual bits k. The bits k that are compared are
those that are classified as strong in both bitstrings, i.e., those corresponding
to the same RO pairings. The strong bit selection and same RO pairing con-
dition used in the Hamming distance calculation reduces the number of bits
that are compared from the original length of 2048. The min(|bsi|, |bsj |) refers
to this smaller number of comparisons.

InterChipHDi,j =

min(|bsi|,|bsj |)∑
k=1

bsi,k ⊕ bsj,k

min(|bsi|, |bsj |)
(12)

The results are shown in Fig. 12 for the adjacent pairing strategy. Bitstring
Size 652 refers to the smallest number of strong bits in the bitstrings from all
FPGAs. The number of strong bits for each of the FPGAs is plotted in Fig.
13, which shows the smallest sized strong bitstring is associated with FPGA
number 26. The average number of bits used in each of the HD calculations
subject to the same RO pairing condition referenced above is 161. The interchip
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HD values for all combinations of 30 FPGAs, e.g., 30*29/2 = 435, are plotted
as a histogram. The mean of 50.19 is very close to the ideal value.

Fig. 12 Inter-chip HD distribution using RO pairing strategy that uses adjacent ROs in
the differencing operation.

Fig. 13 Strong bitstring sizes after thresholding for the 30 FPGAs using adjacent ROs in
the differencing operation.

The results obtained by applying the NIST statistical test suite to the
30 FPGA bitstrings of size 652 bits are given in Fig. 14. NIST requires all
bitstrings to be the same size, so bitstrings longer than 652 bits are truncated.
The limited size of the bitstrings allowed only five of the NIST tests to be
applied. A test is considered passed when at least 28 of the 30 FPGA bitstrings
pass the test. All NIST tests are passed, with all bitstrings passing every test,
except for the LongestRun test, where one FPGA failed. These results indicate
that the bitstrings are random and high quality.
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Fig. 14 NIST statistical test results for 30 FPGAs. Bitstring size is 652 bits, restricting
the number of applicable NIST tests to the five shown.

A second pairing strategy that succeeds in passing all NIST tests is to pair
vertically adjacent ROs in the array, e.g., use RO0,0,0 and RO1,0,0 as a pair
in the differencing operation. Moreover, the combined bitstrings defined using
both adjacent pairing strategies also pass all NIST tests and produce a mean
InterChipHD value of 50.14 %. Other non-adjacent pairing strategies fail at
least one of the NIST statistical tests, in particular the Runs test. Failing
a NIST test indicates that fewer than 28 FPGA bitstreams produce a test
statistic larger than the required α value, 0.01.

These results suggest the following conclusions related to the design and
performance of the SR-PUF architecture:

1. Calibration that reduces LUT path-length bias, as well as chip-to-chip
process variation and design bias, is required for obtaining high quality
bitstrings with good statistical properties.

2. Across-chip bias is not addressed using the proposed calibration method,
resulting in non-random artifacts occurring in the bitstrings created using
arbitrary pairing strategies.

3. PUF architectures that leverage localized sources of entropy require addi-
tional processing steps, in contrast to PUF architectures that derive entropy
over a larger region of the device where localized bias effects are less
dominant because of the averaging effect.

6 Conclusion

A PUF architecture called the shift-register PUF (SR-PUF) is proposed in
this paper for the analysis of entropy within FPGA lookup-tables (LUTs). The
SR-PUF architecture enables individual paths through Xilinx FPGA 6-input
LUTs to be measured in a ring-oscillator configuration. A set of 4096 SR-PUF
ROs are instantiated in a set of 30 FPGAs. An RO frequency analysis shows
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that significant differences exist in the lengths of the individual paths through
the LUTs, which represents a source of undesirable bias for PUF applications.
LUT path-length bias can be eliminated in post-processing using calibration
methods; one such technique is proposed in this work. The results of statistical
testing illustrate that cryptographic quality bitstrings can be produced by the
SR-PUF, but uncompensated across-chip bias restricts bitstring generation to
utilize ROs that are topologically close in the layout of the array. Future work
will investigate alternative methods that address this shortcoming, as well as
provide an analysis of other important PUF properties, including reliability,
aging and machine learning resilience.
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