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Abstract: Internet of Things (IoT) devices rely upon remote firmware updates to fix bugs, update
embedded algorithms, and make security enhancements. Remote firmware updates are a significant
burden to wireless IoT devices that operate using low-power wide-area network (LPWAN) technolo-
gies due to slow data rates. One LPWAN technology, Long Range (LoRa), has the ability to increase
the data rate at the expense of range and noise immunity. The optimization of communications for
maximum speed is known as adaptive data rate (ADR) techniques, which can be applied to accelerate
the firmware update process for any LoRa-enabled IoT device. In this paper, we investigate ADR
techniques in an application that provides remote monitoring of cattle using small, battery-powered
devices that transmit data on cattle location and health using LoRa. In addition to issues related
to firmware update speed, there are significant concerns regarding reliability and security when
updating firmware on mobile, energy-constrained devices. A malicious actor could attempt to steal
the firmware to gain access to embedded algorithms or enable faulty behavior by injecting their own
code into the device. A firmware update could be subverted due to cattle moving out of the LPWAN
range or the device battery not being sufficiently charged to complete the update process. To address
these concerns, we propose a secure and reliable firmware update process using ADR techniques that
is applicable to any mobile or energy-constrained LoRa device. The proposed system is simulated
and then implemented to evaluate its performance and security properties.

Keywords: cattle monitoring; LoRa; firmware update

1. Introduction

Internet of Things (IoT) devices continue to proliferate across consumer, industrial,
and agricultural sectors as advances in mobile computing and networking make intelligent
automation and sensing both technically feasible and cost-effective. A primary limitation of
wireless IoT devices is energy consumption as they are typically powered by low-capacity
batteries. These devices connect to the Internet directly through Wi-Fi or cellular, or through
a gateway for radio frequency (RF) communication protocols, such as Zigbee, Long Range
(LoRa), and Bluetooth. A class of communication systems designed and optimized for
IoT exists known as low-power wide-area network (LPWAN) technologies that includes
LoRa wide-area network (LoRaWAN), Sigfox, Narrow Band IoT, and Long Term Evolution
Category M1 (LTE-M) [1].

LoRaWAN is a protocol developed by the LoRa Alliance meant to reduce the chal-
lenges of IoT device implementation by providing gateways in urban environments that
receive data from devices and forward it to the cloud. Its security has been vetted thor-
oughly and it can communicate over very long distances using minimal power [2,3]. There
are three classes of the LoRaWAN protocol which trade off communication flexibility for
total energy consumption. LoRaWAN is built on top of LoRa, which is a closed source
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protocol that uses chirped spread spectrum to enable long range communications while sac-
rificing data rates. LoRa has many configurable parameters, such as bandwidth, spreading
factor (SF), preamble size, and error correcting rates, enabling the device to communicate
at different data rates depending on the range required.

This research is motivated by the development of a battery-powered LoRa device
from Roper Solutions used to track the location and health of free-range cattle, as shown
in Figure 1 [4]. This device is comprised of a global positioning system (GPS) module,
accelerometer, LoRa communications module, microcontroller, solar panel, and battery.
The device periodically collects location and activity data and then transmits it to a custom
base station. While this system uses LoRa, it is unable to use LoRaWAN since none
of the three classes support the requisite energy efficiency and complex bi-directional
communication operations, such as mesh networking and firmware updates. LoRaWAN
Class C supports complex communication operations but also requires that devices operate
with their receivers always powered on. This requirement represents an unacceptable
energy consumption burden because Roper devices are highly size- and weight-constrained
and thus use a small, low-capacity battery.

The work presented in this paper focuses on the firmware update process. The time
to complete a firmware transfer of a 128 kB image is given in Table 1, presented as a
function of the LoRa speading factor (LoRa SF) and various frequency shift keying (FSK)
data rates. The 128 kB firmware image requires 2000 data transfers with a 64-byte data
packet size. Table 1 shows that this firmware update process takes an unacceptably long
period of time at SF = 12, takes a reasonable amount of time at SF = 6, and is fastest when
using FSK. An objective of this work is to devise energy efficient methods that achieve
high communication data rates with a reasonable bit-error rate using adaptive data rate
(ADR) techniques. While our emphasis is on firmware updates, these ADR techniques are
applicable to any large data exchange between LoRa-enabled devices. Other examples of
large data exchanges include sensor updates from high resolution sources, such as camera
images, Lidar, or audio. Bulk data transfers may also occur when a sensor does not have a
reliable RF link, so data collected for an extended period of time must be transmitted when
the link is reliable.

Table 1. The time required to update a 128 kB firmware image.

Time to Transfer Firmware for a 128 kB Image

LoRa SF 6 8 10 12

Time 16 min 46 min 2.49 h 8.36 h

FSK (bps) 19,200 57,600 115,200 300,000

Time 53.3 s 17.7 s 8.88 s 3.41 s

In addition to the challenges associated with ADR, reliability and security consid-
erations add complexity to the firmware update process. If a firmware update is not
completed properly, the device is likely to become inoperable. Since free-ranging cattle
can travel long distances, it is quite possible that they will roam outside of the operational
communication range of the base station, increasing the risk of an incomplete firmware
image transfer. In addition, the device’s low-capacity battery may not be able to provide
the power required to complete the firmware update process, resulting in an incomplete
transfer. The security of the update process is also a concern since a malicious actor could
try to hijack the firmware during the update process, which could allow them to access
data stored on the device, including the proprietary embedded algorithms. A malicious
actor could also subvert the devices using a Denial of Service (DoS) attack by loading code
onto the devices that is not functional. This paper addresses the aforementioned concerns
by providing techniques that ensure reliability and security, while using ADR to complete
the process as efficiently as possible.



Sensors 2021, 21, 2384 3 of 17

Figure 1. Roper device in housing and the sensor board printed circuit board (PCB).

1.1. Background

There are numerous research publications and applications employing LoRa and
LoRaWAN due to their excellent communications range at a given power consumption.
LoRaWAN has three classes of operation (A, B, and C) that allow devices to optimize their
performance at the expense of battery power when communicating to a LoRa Gateway.
For example, LoRaWAN Class A consumes the least amount of power but can only re-
ceive data after it transmits. Class C consumes significant power but allows for advanced
operations like mesh networking and is always able to receive data. Applications that
benefit from LoRa and LoRaWAN include emergency response communication systems
after earthquakes [5], livestock monitoring [6], and intelligent transportation systems [7].
Previous research primarily focuses on key technical issues, such as scalability [8], optimal
parameter selection [9], multi-hop capabilities [10,11], security [3], and energy consump-
tion modeling [12,13]. The prior work on LoRa rate adaptation emphasizes challenges
with LoRaWAN communication errors in congested RF environments [14,15]. A probing
algorithm to improve LoRaWAN efficiency is proposed in [9], and hysteresis is added to the
existing LoRaWAN ADR scheme to improve performance in [16]. The tuning parameters
and convergence time are analyzed in detail in [17]. Challenges with ADR for mobile
devices were covered in [18].

In prior work [19], we address challenges specifically associated with ADR in LoRa
ad-hoc networks. Dynamic timeouts and error recovery processes were used to maximize
the efficiency, and the ADR expanded into using both LoRa and FSK. We then evaluated
the performance of this system using simulations and hardware experiments. The ability to
update firmware using LoRaWAN, referred to as Firmware Update Over-The-Air (FUOTA),
was published by the LoRa Alliance in [20] and a variant of this capability was implemented
securely in a STM32L4 in [21]. Subsequent detailed analysis of the energy efficiency of the
LoRa Alliance capability was presented in [22,23]. To the best of our knowledge, no prior
work has been published on using LoRa for firmware updates independent of LoRaWAN.

1.2. Contributions and Outline

This work expands upon prior ADR research in [19] by applying it to a firmware
update process. The research described in this paper makes the following contributions:

1. A method is proposed for energy optimized firmware updates for mobile LoRa devices
that is both secure and reliable.

2. The method is designed to work in LoRa ad-hoc networks without LoRaWAN.
3. The method leverages LoRa ADR techniques to minimize energy consumption by

reducing the firmware image receive time.
4. A battery consumption approximation technique is provided to quantify the process

energy expenditure.
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5. A security assessment is performed to evaluate privacy and authenticity.

2. Materials and Methods

The proposed firmware update process is applicable to any device that uses the LoRa
protocol and is equipped with additional memory to store the new code. The memory can
be external to the processor or internal if the criteria in Equation (1) is met. Here, SDevice
designates the total amount of flash memory, SApplication represents the flash memory
requirements of the application, and SBootloader represents the requirements for the boot
loader. Figure 2 depicts the hardware components associated with the proposed system,
and includes components to carry out RF processing, battery monitoring, and an external
flash (if required). The battery monitor can vary in complexity but must be capable of
approximating the remaining battery capacity, as discussed below in Section 2.3.

SDevice >= 2SApplication + SBootloader. (1)

Figure 2. The functional diagram of the hardware required for the firmware update process.

The code resides in flash and is composed of a boot loader and the application. The
application code is responsible for implementing the device functionality and must be
re-based above the boot loader. The boot loader has the ability to modify and/or erase the
application code residing in the flash. The boot loader must also be able to start executing
the application code at different addresses depending on where the most recent application
update was programmed. The firmware update process is defined as a sequence of five
steps outlined below, with most of the functionality residing in the application code. The
device will not execute the boot loader code to update the firmware unless it has validated
the integrity of the new image and confirmed that there is sufficient battery power to
rewrite the flash.

1. Initial Exchange: Establishes status and general configuration information.
2. ADR Rate Optimization: Finds the optimal communication setting with which to

exchange the firmware.
3. Battery Approximation: Estimates total energy consumption for completing the up-

date process and terminates the process if the battery capacity is insufficient.
4. Firmware Transfer: Transfers the encrypted firmware image over the RF link.
5. Commit Code to Flash: After confirming that the firmware image is valid, the applica-

tion hands control over to the boot loader to load the new application code, and then
returns control to the new application.

We elaborate on the details of these five steps in the following sections.

2.1. Initial Exchange

The primary purpose of the initial exchange is to establish a common understanding of
the firmware update status between the base station and receiving device. The base station
will initiate the firmware update by sending a short command and the device will respond
with the device ID, battery capacity and health status, and current firmware version. The
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device will also transmit the status of any new firmware that has been received and how
much of the data has been transferred into the device. This information is relevant when a
partial firmware update has occurred, to avoid re-transferring the same firmware image.
The status of the device firmware update could be stored in the base station, but that would
prevent the firmware from being loaded by multiple base stations, which is a capability
that we want to maintain due to cattle mobility.

If it is determined that a new firmware update is required, the base station will send a
new firmware version number, the starting memory address to load the application code,
and the cyclic redundancy check (CRC) of the entire firmware image. The starting address
is used by the boot loader to instruct it on where to load the code into memory, and the
CRC is used to verify that a valid firmware image has been received. If it is determined
that an existing firmware update needs to continue, the base station will inform the device
and continue from the point of interruption. These communications are signed using
Advanced Encryption Standard-Cipher-based Message Authentication Code (AES-CMAC).
The details of the packet structures used in the message exchange between the base station
and receiving device are given in Figure 3.

2.2. ADR Techniques

After defining the firmware update parameters, the next step is to identify the maxi-
mum data rate that provides reliable communications. The communications setting has
a substantial impact on the total time to transfer data, as shown in Table 1. We leverage
the results of prior work on optimizing ADR transfers [19] by applying it to the firmware
update process. The parameter search space is limited to the 13 options shown in Table 2.
Note that we use all seven LoRa SF in combination with the six FSK bit rates shown in
column 3. The extension here over previous ADR work to include the FSK parameters is
beneficial because it enables significantly higher data rates when the devices are in close
proximity. Moreover, there is no additional hardware required to enable FSK since every
LoRa integrated circuit (IC) has FSK capabilities.

Figure 3. The packet structures for exchanging data during the initialization phase.
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Table 2. The settings and timeout values used for adaptive data rate (ADR).

Setting Number Modulation
Type

Setting
Configuration Master Timeout Device Timeout

0 FSK 300 kbps 0.1 s 0.4 s
1 FSK 200 kbps 0.1 s 0.4 s
2 FSK 115.2 kbps 0.1 s 0.4 s
3 FSK 57.6 kbps 0.1 s 0.4 s
4 FSK 19.2 kbps 0.1 s 0.4 s
5 FSK 9.6 kbps 0.1 s 0.4 s
6 LoRa SF = 6 0.1 s 0.4 s
7 LoRa SF = 7 0.2 s 0.4 s
8 LoRa SF = 8 0.25 s 0.8 s
9 LoRa SF = 9 0.4 s 1.6 s
10 LoRa SF = 10 0.7 s 2.8 s
11 LoRa SF = 11 1 s 4 s
12 LoRa SF = 12 3 s 12 s

This work evaluates two techniques, called incremental search and binary search,
which identify the optimal data rate setting using an iterative process, and a third technique
that uses the received signal strength indication (RSSI) to intelligently locate the optimal
communication setting. The incremental search starts by establishing communications
at setting 12, and then the base station commands the device to go to setting 11. The
base station listens for the device to acknowledge on setting 11, and then iterates this
process decrementing the setting. It continues until the base station fails to receive an
acknowledgement because the device signal strength is not sufficient at the base station.
Note that the device and base station can only listen on a single setting. This type of setting
discovery process adds complexity because when communications fail, the device and
base station must revert back to a previous setting to re-establish communications. The
base station and the device both have timeouts, as shown in Table 2, that allow them to
re-synchronize if communications fail. Note that the magnitude of the timeout values
are dependent on the communication setting. This is referred to as the error recovery
process which initiates communications at Scurrent and Snext in an attempt to re-establish
communications with the device.

Binary search uses a methodology similar to incremental search except the next search
setting is defined according to Equation (2). Here, Scurrent refers to the setting the devices
last successfully communicated on and Shighest, f ailed is the highest setting that failed.

Snext = Scurrent − ceil(
Scurrent − Shighest, f ailed

2
). (2)

The RSSI optimal search method establishes communications at the worst-case setting
(setting 12) and then uses the RSSI level to intelligently select the best Snext. The RSSI
is automatically measured by LoRa ICs when they receive a valid packet so this process
does not require special hardware. Snext is computed by Equation (3) and is derived
from sensitivity specifications of FSK and LoRa (with BW=125kHz). RSSI is measured
in dBm and should be padded by reducing the measured value by the error tolerance.
The hardware measurement error tolerance is 2 to 6 dBm depending on the amount of
averaging used. This technique avoids the iterations needed by the other search methods
but requires more communications at setting 12 to achieve a reliable RSSI value.

Simulations were performed using the search algorithms associated with each tech-
nique and the convergence times are shown in Figure 4. The simulation models were
configured with the following parameters: (1) bandwidth set to 125kHz, (2) 12-symbol
preamble, (3) CRC enabled, (4) implicit header enabled, and (5) error coding rate set to
5/4. The transmitted commands used to find the optimal ADR settings posses a 4-byte
payload. The commands utilized to change settings are given as follows: (1) Go to ADR
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mode, (2) Go to setting, (3) Exit ADR, (4) Ping, and (5) Acknowledgment (Ack), or No
Acknowledgement (Nack).

Snext = ceil(−0.0002(RSSI)3 − 0.0751(RSSI)2 − 8.7614(RSSI)− 343.76). (3)

Figure 4. The convergence times of the different ADR search techniques.

Binary search is the most efficient technique when converging to lower settings but
struggles at the higher settings. This is true because the device must fail more often
at the higher settings in order to converge there. Incremental search is more efficient
when a higher setting is required because it only fails once, but is slower to converge
to a lower setting because it must communicate on every setting. The RSSI optimal
search method improves upon incremental search and is best overall at higher settings
because the search process is eliminated. However, the additional overhead of obtaining
an accurate RSSI value reduces its performance. Further analysis of the ADR method
including acknowledgement techniques, starting parameter settings, and the breakdown
of transmit and receive time are assessed in detail in [19].

2.3. Battery Approximation

After settling on an acceptable communication setting, the device determines whether
to initiate the firmware transfer based on the whether the battery has sufficient energy
to complete the operation. The total energy consumption is dependent on the size of
the firmware image (i), the status of an existing firmware update (is), i.e., whether a
partial image already exists, and the setting the data is transferred with (s). The energy
consumption is partitioned into a data transfer portion and a portion required to carry out
the application flash write operations as given by Equation (4).

Eupdate(i, is, s) = ETrans f er(i, is, s) + EAppFlashWrite(i). (4)

The data transfer can be further subdivided into the energy consumption associated
with receiving data, transmitting acknowledgements, performing AES encryption, and
writing the flash to store the firmware image, as shown by Equation (5). Note that the flash
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write operation stores the image on the device but does not commit it to application mem-
ory. The electrical current associated with data reception, packet acknowledgement, AES
computation and flash write operations is given by Ireceive, Itransmit, IAES, and IextFlashWrite,
respectively. The transmit and receive time depend on the communication setting but
the AES and flash times are fixed. Vs is the supply voltage, and η is the efficiency of the
switch mode power converter that supplies energy from the battery to the components.
For scenarios in which external flash is not being used, TextFlashWrite = 0.

ETrans f er(i, is, s) =
(i − is)Vs

η
(IreceiveTreceive(s) + ItransmitTtransmit(s)+

2IAESTAES + IextFlashWriteTextFlashWrite) (5)

The energy to write the application flash depends solely on the firmware image size
and is broken down into external memory read, AES encryption, and the application flash
read and write components, as shown in Equation (6). The external memory read and AES
encryption operations occur twice: first to validate the firmware image and second to write
the image to flash. For scenarios in which external flash is not being used, TextFlashRead and
TAES are set to 0. The specifics of this process are covered in Section 2.5, Committing Code
to Flash.

EAppFlashWrite(i) =
iVs

η
(2IextFlashReadTextFlashRead + 2IAESTAES+

I f lashWriteTf lashWrite + I f lashReadTf lashRead) (6)

After the setting and firmware image parameters are defined, the device will use these
energy consumption calculations to compute the expected battery capacity after completing
the update. This is accomplished using Equation (7) where the capacity C is defined as
the percent charge left in the battery, similar to what a phone or laptop computer would
indicate for battery life. BSOH is the state of health of the battery which begins at 1 and
degrades to 0 over time. Rechargeable batteries are generally rated to maintain 80% of full
capacity up to 2000 cycles. The energy associated with a fully charged battery (E f ullBattery)
can be calculated using the amp-hour specification for the battery and the average output
voltage. The battery capacity estimation techniques used here are based on those presented
in [24].

CA f terUpdate(i) = CBattery − 100
Eupdate

BSOHEFullBattery
. (7)

After computing the final capacity value, the device then determines if it can commit
to the firmware update process. The exact threshold depends on several factors including
the importance of the firmware update, the ability of the system to recharge, the external
temperature, the consequence of a discharged battery, and the current capacity of the device.
While the cutoff threshold is application-specific, we use a 50% threshold for illustration in
this work. Assuming there is adequate energy in the battery, the system will proceed to the
firmware transfer step of the update process.

2.4. Firmware Transfer

The firmware transfer step involves the base station transferring the firmware image
to the device. The packet structure of the transmitted firmware image includes the device
ID, the packet number that is being transmitted, 16-bytes of the encrypted firmware
image, and a 16-byte MAC to ensure authenticity. The device responds with either an
acknowledgement (Ack) or negative acknowledgment (Nack) depending on whether
the data arrived reliably and is authenticated via a MAC calculation. The device stores
the encrypted data in external memory as it is received. The data is encrypted as a



Sensors 2021, 21, 2384 9 of 17

countermeasure to adversarial attacks that attempt to read the image from external memory.
If an Ack is received, the base station sends the next packet of the firmware image. If a
Nack is received, the base station re-sends the same packet. This process is repeated 8000
times to transfer the entire set of 16-byte encrypted data packets constituting the 128 kB
firmware image. If the base station does not receive a response or gets a Nack after three
consecutive packet transfer attempts, the base station will re-initiate the ADR to update the
optimal communication setting. The base station can also monitor the RSSI of the incoming
packets from the device. If there is a significant increase in RSSI, the base station can direct
the device to a lower communication setting to speed up the data transfer process.

2.5. Committing Code to Flash

After a firmware image is received, the device must first validate it before committing
and allowing the image to be executed. Validation begins by reading the image from
memory, decrypting it, and then computing its CRC. The CRC computed over the entire
image is compared to the CRC value that was sent during the initial exchange. If the two
CRCs do not match, the firmware update process is restarted. Additional checks can be
performed to increase the confidence that the firmware image is valid, such as checking it
against a minimum size threshold and validating the correctness of the initial instructions.

Once the image is validated, the system will begin to execute the new application. The
process varies significantly depending on whether external or internal memory is used,
as seen in Figures 5 and 6, respectively. For the external memory case, the device first
confirms that there is sufficient battery to commit the code to flash, and then jumps to the
boot loader to begin loading the memory. It reads and decrypts each 64-byte portion of the
new firmware update, and then writes the data to flash. After each write, it reads the flash
to check that there are no write errors. Upon completion, the processor will reset and jump
to the starting address of the application code. In the scenario where external flash is not
used, the device bypasses the flash write step since the code already resides in application
space. It instead jumps to the starting address (assuming the code is properly re-based) and
begins execution. For future firmware updates, it alternates the flash locations between App
Code 1 and App Code 2, as indicated in Figure 6.

Figure 5. Flash memory breakdown for using external flash.
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Figure 6. Flash memory breakdown for using internal flash.

Before jumping to the new application, all interrupts and processor initialization
are disabled and the stack pointer and vector table are re-based. We accomplish this
by simply resetting the processor and setting registers in the boot loader to point to the
new application code location. This ensures that everything is disabled when the boot
loader hands over control to the application. Although it is possible to jump to a new
application directly without resetting the processor, doing so mandates that all interrupts
and initialization are first disabled which can be tedious.

3. Results

The firmware update process described in the prior section was simulated and then
implemented on the cattle monitoring sensor. The application flash size met the criteria
from Equation (4); therefore, internal flash is used because it is more energy efficient than
external flash.

3.1. Functional Characterization

We first carry out experiments to measure the parameters associated with each com-
ponent of the transfer process including the AES, flash, and LoRa operations. We utilize a
Microchip SAMR34 Xplained evaluation board because it provides a simple interface for
measuring current and timing information. Figure 7 shows the measured timing values for
the AES encode and decode and flash read and write operations. The flash write is the most
expensive operation and cannot be performed without first executing a page erase (the
erase time is included in the reported value of 3.735 ms). The LoRa transmit and receive
values are setting dependent and were validated in previous work [19]. The parameters
used in the following simulations are given in Table 3.
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Figure 7. Timing characterization for Advanced Encryption Standard (AES) and flash read and
writes.

Table 3. The settings used for modeling the firmware update parameters.

Function Time Average Current

AES Encode 200 µs 6.5 mA
AES Decode 196 µs 6.5 mA
Flash Read 170 µs 6.5 mA
Flash Write 3.735 ms 25.5 mA

LoRa Transmit varies 100 mA
LoRa Receive varies 10 mA

3.2. Simulation

We modeled the energy consumption for a 128 kB firmware image update under both
the secure and insecure versions of the proposed system. The performance was modeled
using MATLAB because existing LoRa simulator tools were insufficient to quantify total
power consumption on the cattle monitoring device. The LoRa transmit and receive
characteristics used in the modeling were validated in [19]. The results are shown in
Figure 8. The insecure version is similar to the secure version but omits the encryption and
MAC operations to authenticate each packet. The orange line indicates the full capacity
of a 200 mAh battery which possesses 2.8 kJ. The parameters used in the simulations
are given as follows: (1) LoRa Bandwidth = 62.5 kHz, (2) 12-symbol preamble, (3) CRC
enabled, (4)implicit header disabled, (5) error coding rate = 5/4, (6) η = 90%, (7) Vs = 2.8 V,
(8) Itransmit = 100 mA, and (9) Ireceive = 10 mA. Note that our model here excludes the ADR
operations, which were covered previously in [19] and the initial exchange because its
contribution is negligible.

These results show that it is not even possible to update a firmware image of this
size with LoRa settings 11 and 12 on a single charge. The power consumption decreases
dramatically with each setting however, motivating the need for ADR. The power con-
sumption for the insecure implementation is similar to the secure implementation, which is
justified by the relative energy breakdown shown in Figure 9. The energy consumption of
the AES operation is very small because it is executed efficiently in hardware. Despite the
LoRa receive time being much longer for the higher settings, it is less significant because
the transmit current is 10x the receive current. Therefore, most of the energy expenditure
comes from the packet acknowledgment operation under the high LoRa settings. As the
settings decrease toward setting 1, the memory write operation begins to dominate because
the RF communications become very small in duration.
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Figure 8. The energy consumption required to update a 128 kB firmware image.

Figure 9. The energy consumption breakdown for the secure implementation.

3.3. Implementation

The secure firmware transfer process was validated in hardware using the test setup
shown in Figure 10, which consists of a host computer, a Microchip SAMR34 Xplained
evaluation board, and a Roper sensor printed circuit board (PCB) powered by a 200 mAh
lithium polymer battery. The computer controls the update process via a .NET program
which initiates the exchange, transmits the images, and then requests execution of the new
application code. The host computer user interface that is used to test the prototype is
shown in Figure 11. In order to securely transfer the update, the host program parses the
new firmware update file, encrypts the firmware image, generates the MAC, and then
transfers the encrypted image via Universal Serial Bus (USB) to the base station. The
SAMR34 Xplained Pro evaluation board serves as the base station and acts as a USB-to-
LoRa converter to handle RF communications at 915 MHz. The last byte of the USB message
indicates the transmit and receive setting, and then all other bytes are transmitted over
LoRa. In addition, the device data received by the base station is relayed asynchronously
to the host along with the measured RSSI and signal-to-noise ratio (SNR) data. This custom
code was developed and then loaded onto the base station.

The firmware for the cattle monitoring device represents 30% of the firmware image
while the boot loader represents 25% of the image. Therefore, the constraints discussed
earlier allow the next firmware update to be stored in internal flash memory. The sensor
operation executes after the ADR is complete and the initial code load address has been
initialized. An interrupt is generated when a packet is received, which allows the sensor
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to validate the packet, decrypt the data, and then write it to flash. Upon receiving a
valid packet, an acknowledgement is sent to the base station to confirm that a successful
transfer occurred. After the complete image has been transferred, a CRC is computed
on the new code image. If the calculated CRC matches the transmitted CRC, a start
application command is sent, which causes the sensor to reset and begin executing the new
application code.

Figure 10. The experimental setup used to validate the firmware update process.

Figure 11. The PC interface to control the firmware update.

In order to validate the modeling, the energy consumption is measured for the
firmware update process using settings 7 through 11. The results are shown in Table 4. The
total energy consumption is estimated by measuring the battery open circuit voltage (OCV)
before and after the firmware update. We then used a third-order OCV-to-battery-capacity
mapping function to approximate the change in capacity. The firmware image used in
the update is 106.6 kB which requires 6666 packet transfers when using the packet format
specified in Figure 12. The total number of packets is calculated by dividing 106.6kB by 16
since 16-bytes of firmware data are transferred per packet. The hardware results are within
13% of those obtained from simulations except for setting 7. The most notable sources
of error are given as follows: (1) The hardware experienced packet re-transmissions after
failed transfers that were not present in the simulations. (2) The hardware experienced
additional delay with the receiver on but without data being received. The root cause
of this issue is attributed to delays in the processing time between the PC program and
the base station. (3) The OCV-to-capacity model is temperature dependent, but we only
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applied the mapping under room temperature conditions. Any deviation in temperature
would shift this capacity measurement slightly.

Figure 12. This shows the packet structures for exchanging the firmware image.

Table 4. The energy consumed doing a firmware update at each Long Range (LoRa) setting.

Setting Start OCV Stop OCV Measured
Energy

Expected
Energy

7 4.19 V 4.09 V 266.63 J 200.2 J

8 4.09 V 92.3 V 430.7 J 389 J

9 4.18 V 3.96 V 709.06 J 684.5 J

10 4.18 V 3.82 V 1166.14 J 1350 J

11 4.17 V 3.29 V 2669.2 J 2664 J

4. Discussion
4.1. Security Assessment

A malicious actor could try to steal the embedded firmware to access data or the
proprietary embedded algorithms stored on the device, or they might attempt to load
malicious firmware. The firmware, encrypted with AES by a herd specific key Kh, is
exposed when it is broadcast over the air using LoRa by the base station, and when it
resides on the device. Therefore, the attacker would only be able to collect the encrypted
firmware image if they are able to track the ADR process to determine the base-station-
to-device communication settings. An alternative attack is to spoof the base station by
impersonating a device in need of a firmware update, and then collecting the encrypted
firmware image. However, the protocol requires the initial exchange of messages to be
signed with a device-specific key Kc; therefore, this attack would fail without the key
because the base station would refuse to send the firmware update.

When the device receives the firmware image, it stores it in external memory. Storing
an encrypted image consumes additional power since it must be decrypted to verify the
message integrity. Moreover, the stored image is decrypted again before committing it to
flash. An alternative is to decrypt the image during reception, and then store it unencrypted.
The drawback here is that this enables a malicious actor to access the unencrypted image if
they obtain access to the device. Note that the dual decryption operations are not required
if the firmware update is stored in internal flash, but this is only possible if the firmware
image meets the criteria from Equation (4). In the event that a device from the herd is stolen,
it would be prudent to update Kh for the entire herd in case the device is compromised
using invasive techniques.

The second major security concern is loading malicious firmware onto the device.
The malicious firmware could be as simple as code that disables the device causing a
permanent DoS attack, or the malicious code could broadcast the wrong location so the
system is unaware that cattle are being stolen. As a countermeasure, a MAC is appended
to messages from the base station during the initial exchange which prevents unauthorized
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attempts to upload firmware to the device, unless Kc becomes compromised. In the event
that a malicious actor waits until after the initialization occurs to begin attempting to
transfer a malicious image, the transfer would be unsuccessful because it would also need
to be signed using Kc. Note that using Kc to sign the update prevents multiple devices
from being updated at the same time since Kc is unique to each cattle. The code transfer
cannot be signed with Kh because this leaves the system open to replay attacks where
the adversary could load old firmware versions onto the device without knowing Kh. A
summary of this analysis is provided in Table 5.

Table 5. The summary of the security risks and mitigation.

Objective Method Mitigation

Get Firmware Observe firmware update by
capturing it over RF.

The update is encrypted so it
is meaningless to the observer

after it is collected.

Get Firmware Falsely claim to be a cattle that
needs a firmware update.

The attacker would not have
so it would fail the initial

authentication.

Get Firmware Read the firmware from the
external memory chip.

The image is still encrypted
external to the chip so it

would not reveal any useful
information.

Change Firmware
Falsely claim to be the base

station and update the
firmware on a sensor.

The malicious actor could not
compose a valid MAC to pass

the initial exchange.

Change Firmware
Wait until after the initial

exchange and begin adding
new firmware to the device.

Each data packet is signed
using Kc so no

un-authenticated packets
would ever be accepted.

4.2. Conclusions and Future Work

A secure and reliable firmware update methodology is proposed for mobile, energy-
constrained LoRa devices. The secure code transfer and execution steps were simulated and
then implemented on a battery-powered LoRa device. The most critical aspect of ensuring
energy efficient updates is using ADR to find the optimal RF setting with the highest
available data rate. Energy consumption scales non-linearly with the settings, making it
worthwhile to invest time in converging to the optimal RF setting. The proposed secure
authentication and encryption features add only an incremental burden on total energy
consumption. The sensor AES computations also consume a negligible amount of time
and energy. The most significant security burden is associated with the increased reception
time of the MAC address. The proposed methodology could be improved by reducing the
number of acknowledgements sent by the LoRa device since transmitting these impose the
greatest energy burden. Fewer acknowledgements improves performance in the nominal
scenario but introduces risk and redundancy if packets are frequently dropped or have
transmission errors. Future work will integrate ADR during the data exchange as a means
of maintaining the optimal RF settings when the LoRa device is mobile.
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