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Abstract—Authentication between IoT devices is important for maintaining security, trust and data integrity in an edge device
ecosystem. The low-power, reduced computing capacity of the IoT device makes public-private, certificate-based forms of
authentication impractical, while other lighter-weight, symmetric cryptography-based approaches, such as message authentication
codes, are easy to spoof in unsupervised environments where adversaries have direct physical access to the device. Such
environments are better served by security primitives rooted in the hardware with capabilities exceeding those available in
cryptography-only frameworks. A key foundational hardware security primitive is the physical unclonable function or PUF. PUFs are
well known for removing the need to store secrets in secure non-volatile memories, and for providing very large sets of authentication
credentials. In this paper, we describe two PUF-based mutual authentication protocols rooted in the entropy provided by a strong PUF.
The security properties of the authentication protocols, called COBRA and PARCE, are evaluated in hardware experiments on
SoC-based FPGAs, and under extended industrial-standard operating conditions. A codesign-based system architecture is presented
in which the SiRF PUF and core authentication functions are implemented in the programmable logic as a secure enclave, while
network and database operations are implemented in software on an embedded microprocessor.

Index Terms—Physical unclonable function, PUF-based Authentication

✦

1 INTRODUCTION

EDGE devices provide access points to core networks for
IoT devices, which are often cheap, low-power, em-

bedded systems deployed in unsupervised environments.
IoT devices often lack the computing and power resources
to leverage state-of-the-art software security primitives and
protocols, and are therefore an attractive target for adver-
saries. A compromised IoT device represents a threat to the
edge device and core network infrastructure because mali-
cious actors can potentially gain unauthorized access and
elevated privileges to back-end resources and/or supply
network applications with compromised data.

The cryptographic primitives and protocols used in
such systems are light-weight variants of compute-heavy
asymmetric core network security functions. Authentication
via message authentication codes and shared symmetric
keys are often used due to resource and power constraints.
Although software-based security and trust platform infras-
tructures are attractive from a developer’s perspective, they
cannot provide sufficient protection against active attackers
who can employ techniques to exfiltrate device secrets.
Stored secrets represent the root-of-trust in such systems,
and their most significant vulnerability.

A hardware-based root-of-trust which derives device
secrets from the random variations introduced by physical
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imperfections in modern microelectronic fabrication pro-
cesses engenders a device with unclonable authentication
credentials. The physical unclonable function or PUF em-
bodies the class of hardware-based security functions, which
are capable of providing significant enhancements to the
security profile of a device over software-only approaches.
Strong PUFs extend the capabilities of the profile by expo-
nentially expanding on the number of challenge-response-
pairs (CRPs) available per device. A large set of CRPs enable
a strong form of authentication where credentials are used
only once.

In this paper, two PUF-based, privacy-preserving, mu-
tual authentication protocols are described and evaluated,
called correlation-based robust authentication (COBRA) [1]
and PUF-based authentication in resource constrained en-
vironments (PARCE) [2]. Both protocols are built on top of
a strong PUF called the shift-register, reconvergent-fanout
(SiRF) PUF [3], and consequently, both inherit the security
properties of the SiRF PUF. The COBRA protocol utilizes
only helper data bitstrings generated by the SiRF PUF for
authentication, while PARCE utilizes a novel PUF-based en-
cryption technique. The specific contributions of this paper
are summarized as follows:

1) The security properties of COBRA and PARCE are
evaluated in two distinct FPGA test-beds and ex-
periments, the first while subjecting the devices to
extended industrial-standard temperature and volt-
age variations, and the second while exercising the
protocols in a realistic real-time, client-server-based
execution environment.

2) The information leakage of both protocols is as-
sessed, and a simple post-processing operation
is proposed to significantly strengthen device
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anonymity with no negative impact on the level
of certainty associated with the authentication de-
cisions made by the server and device.

1.1 Related Work

The primary threat to authentication protocols that utilize
a strong PUF with an unprotected interface, i.e., no crypto-
graphic primitives, is a model-building (MB) attack [4] [5]
[6] [7] [8] [9]. Previously proposed methods attempt to de-
feat MB attacks by adding internal complexity to the strong
PUF architecture [10] [11] [12], by obfuscating challenges
[13] [14], by introducing reconfiguration options [15] [16],
or by injecting noise into the responses [17] [18].

A wide range of light-weight, PUF-based authentication
protocols proposed prior to 2015 are described and assessed
in [19]. More recently, the authors of [20] propose an authen-
tication protocol that utilizes only challenges in the message
exchange, thereby eliminating the response bitstring. The
protocol requires the server to search for a pair of challenges
that produce the response bit from the device-generated
challenge when the response bits from the challenge pair are
XOR’ed. Although the protocol eliminates the response bit-
string in the message exchange, it is not privacy-preserving
and requires a reliable soft model of the PUF to be stored on
the server given the noise amplification commonly observed
when using XOR operations on response bits.

The authors of [21] propose a non-privacy-preserving,
lightweight, PUF-based mutual authentication protocol
which authenticates during the connection establishment
phase of WiFi using three CRPs. XOR operations in com-
bination with a router-generated nonce are used to encrypt
challenges and responses between device and router, and to
derive a set of CRPs for the next authentication. The protocol
assumes error-free responses (no helper data scheme is
proposed) and requires a secure hash function to ensure
data integrity.

A PUF-based authentication and key management pro-
tocol for IoT is proposed in [22], improving upon on the
attack resilience and performance overhead of the previous
method [23]. Elliptic curve cryptography (ECC) is used to
create shared keys among IoT nodes with the assistance
of a verifier. The scheme requires a certificate management
system (PKI or equivalent) and tamper-resistant hardware
in devices to protect secret keys. Similarly, a controlled
PUF that utilizes ECC is proposed as a lightweight au-
thentication and key generation protocol for IoT nodes in
[24], which relies on zero knowledge proofs to implement
a one-way device authentication technique. A PUF-based
El-Gamal algorithm is proposed for message encryption as
well as a PUF-based digital signature scheme. In parallel,
Yu et al. [25] propose a scheme that is designed to prevent
an adversary from obtaining sufficient CRPs to carry out
model-building attacks. The proposed approach limits the
number of authentications to the number of CRPs stored in
the database, requiring either reuse or re-enrollment of the
PUF.

A CRP noise-injection technique is proposed in [17]
where stable responses are recorded during enrollment,
while in-field response generation intentionally injects noise
into the response bits. Given the very large CRP space of

the PUF, noise injection is tolerable for some fraction of
the responses. Wang et al. [18] [26] propose a PUF-based
authentication protocol that utilizes internally generated
signals from a free-running LFSR in a dynamic response
mechanism to generate sub-challenges to a strong PUF, as a
means of preventing attackers from obtaining valid CRPs in
a MB attack. Authentication by the server is accomplished
using a matching algorithm that is able to associate the
dynamic response to an enrolled device. By contrast, the
COBRA protocol avoids the need to obfuscate the chal-
lenge by eliminating the response bitstring altogether in
the message exchange protocol. Given the exposed response
bitstrings are central to MB attacks, their elimination defeats
the traditional approach and requires an approach that
uses helper data bitstrings instead. The machine learning
(ML) algorithm would be tasked with predicting helper
data bitstrings for unseen challenges. As we will show, the
helper data bitstrings generated by SiRF PUF do not leak
information about the response bitstring, and therefore, the
model on which a ML algorithm would need to be based is
unclear.

2 SIRF PUF OVERVIEW

The proposed COBRA and PARCE authentication protocols
use the shift-register, reconvergent-fanout (SiRF) PUF as a
hardware primitive for bitstring generation [3]. A block
diagram of the SiRF PUF architecture is shown in Fig. 2.
Symbol definitions used in the figures are given in Fig. 1.
The SiRF netlist component defines a complex network of
paths, which is synthesized into a region on the FPGA.
The paths are composed of FPGA primitive components
including shift registers, look-up tables (LUTs) and MUXs.

Fig. 1: Symbols definitions.

Variations in the delays of paths through this network
represent the source of entropy leveraged by the SiRF PUF.
The structure of the physical paths is defined using the vec-
tor component of the SiRF challenge, labeled Chlnga{v},
where vector v consists of 771 bits. The challenge bits
connect to a set of MUXes distributed throughout the netlist,
which enables different paths to be tested, i.e., the bits recon-
figure the netlist. Each challenge vector creates a unique set
of 32 paths through the netlist, which are drawn from a set of
224 (16 million) possible path configurations. No placement
or routing constraints are used during synthesis and place-
and-route, i.e., the SiRF PUF does not require the paths to
be identically-designed. The bias introduced by differences
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in the lengths of the paths are removed by post-processing
operations described in the following sections.

Fig. 2: Shift-register, reconvergent-fanout (SiRF) PUF archi-
tecture and algorithm.

2.1 Path Delays

Paths are tested using the Launch FFs shown along the
top of Fig. 2. The rising (0-to-1) transitions introduced by
the Launch FFs propagate through the netlist to the inputs
of a 32-to-1 MUX shown along the bottom of the figure. The
controlling state machine, labeled Control Mod., selects and
routes one of the paths to a time-to-digital converter (TDC).
The TDC utilizes a sequence of carry-chain elements in the
FPGA to measure the path delay at high resolution (approx.
18 ps). The carry chain extends the path-under-test, allowing
the signal transition to propagate along the chain until the
TDC Mod. asserts the stop clk signal. The rising edge of stop
clk captures the current state of the ThermFFs within the TDC
module, which record the position of the propagating signal
in the delay chain.

The Decoder reads out a thermometer code from the
ThermFFs, which is represented as a sequence of 1’s in the
initial portion of the TDC, followed by 0’s in the remaining
portion, and converts the number of 1’s into a digitized
delay value (DV). The carry chain is typically configured
to a length of 128 stages, which limits the maximum path
delay that can be measured to approximately 2.3 ns. In order
to accommodate SiRF netlist path delays of up to 20 ns, the
TDC includes components that extend its timing capability
(see [27] for details).

The Control Mod. increases precision by collecting mul-
tiple integer-based delay values (DV) for each of the paths,
and then averages them to create 16-bit fixed-point DVs,
which are stored in the Block RAM (BRAM). The SiRF PUF
post-processing algorithm is implemented as a sequence of
modules shown on the right side of Fig. 2 and by the flow
diagram in Fig. 3. All four of the modules apply linear
operations to the DV, with several of them accepting input
parameters p and ancillary data SF. The input parameters
represent a second component of the challenge, labeled as
Chlngb along the bottom of the figure. The parameters
expand the CRP space and increase the statistical quality
of the generated bitstrings and keys.
2.2 SiRF PUF Algorithm

The DVDiff module selects pairs of DVs using a LFSR-
based pseudo-random number generator, and creates delay
value differences (DVD), as shown in Fig. 3. These pairs are
drawn out of the rising edge delay value sets, DVR, and the
falling edge delay value sets, DVF , stored in the BRAM. The
pairing sequence is controlled by two LFSR seed parameters
specified in p. The global-process and environmental vari-
ation (GPEV) module reads the DVD and applies a linear
transformation to produce DVDc. The linear transformation
reduces chip-to-chip performance differences and undesir-
able environmentally-induced changes in the path delays.
Elements in the DVD distribution are first standardized, i.e.,
the mean of the distribution is subtracted and then each
value is divided by the range of the distribution. The stan-
dardized values are then multiplied by another component
of p called the range parameter [3].

The DVDc are then shifted vertically using a set of
server-computed spread factors (SF) to remove the bias that
exists because of non-identically-designed paths in the SiRF
netlist. The SF significantly improve the statistical quality
of the bitstrings by removing delay components from the
DVDc that do not contribute to the entropy of the PUF, a.k.a.
the median component of each DVDc. The SF are computed
by the server using DV stored in a database (see TDB in
Fig. 2) for a sample of devices. The SF remove the median
component and partition each of the DVDc from the device
sample equally over a 0 median value. The server transmits
the SF to the device, and the device applies them to the
DVDc to produce DVDco.

The BitGen module processes the DVDco into a response
bitstring. During enrollment, BitGen also generates helper
data (HD), which will be used later during regeneration to
reproduce the response bitstring while minimizing, ideally
eliminating, any bit-flip errors. Unlike PUFs that use error
correction codes, the SiRF PUF algorithm uses a thresh-
olding method to generate the helper data bitstring. The
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Fig. 3: SiRF PUF data post-processing algorithm.

threshold parameter is tunable and represents the last com-
ponent of p in Chlngb. It divides each of the 0-1 bit regions
into strong and weak regions as shown by the DVDco

distribution in Fig. 3.
The HD bitstring is constructed serially using a sequence

of DVDco, as shown by the example labeled XMR in SKE
mode along the bottom of Fig. 3. A 1 is added to the HD
bitstring when the corresponding DVDco falls within one
of the strong bit regions, and a 0 otherwise (the circled
points relate to the XMR process, which is described in
the following section). Although not shown, a response
bitstring can also be generated depending on the bitstring
generation mode. A bit value in this case is assigned based
on whether the DVDco is above (1) or below (0) the 0 line.

Additional details related to the SiRF PUF algorithm are in
[3].

3 COBRA AND PARCE BITSTRING GENERATION
ALGORITHMS

This section discusses the characteristics of the COBRA and
PARCE bitstring generation algorithms and highlights their
differences.

3.1 COBRA
COBRA leverages an observation made in our experiments,
that the helper data (HD) bitstrings generated by the thresh-
olding operation possess random but uniquely identifying
information about the device. In contrast to the response
bitstring, where bit values reflect whether the DVDco is
above (1) or below (0) zero, the HD bitstring classifies each
response bit as either strong or weak. Given the threshold
regions are symmetrically placed around zero completely
decouples the HD bitstring from the response bitstring, i.e.,
the HD leaks no information about the bit values assigned
to the DVDco. This characteristic of the thresholding method
will add to the difficulty of learning constituent path delays
by ML algorithms, in cases where only the HD bitstrings are
available, as is true in COBRA.

The basis of the claim that HD bitstrings posses uniquely
identifying information about the device is rooted in the
combination of SiRF PUF entropy and the algorithm’s post-
processing operations. As described earlier, the GPEV op-
eration transforms the DVD to remove variations intro-
duced by process and environmental factors. The com-
pensated DVDc produced by GPEV are very similar to
the values measured under nominal conditions. Therefore,
the strong/weak classification of the DVDco carried out
during bitstring generation are highly correlated when re-
generated using the same challenge, and are insensitive to
environmental conditions. An authentication technique can
leverage this correlation by recording subsets of DVR and
DVF for each device in a database on a server (given as
TDB in Fig. 2), and then request HD bitstring generation
be performed by both the device and server independently
using the same challenge. A simple matching operation can
then be used to identify a specific device. Note that the
response bitstring in this scenario is discarded.

3.2 PARCE
The authentication mechanism used by PARCE, in con-

trast to COBRA, makes use of the response bitstring, but
does so in a non-traditional manner. The thresholding-based
bitstring generation operation described in the previous
section is altered to enable a special mode, called secure-
key-encoding or SKE.

3.2.1 Secure Key Encoding (SKE)
SKE mode takes a random nonce as input and generates

the HD bitstring needed to reproduce it. Therefore, SKE
mode is a PUF-based encryption mechanism that encrypts
the plaintext (the nonce) and produces an HD bitstring as
the ciphertext. The encryption key is represented by the
entropy of the PUF. SKE mode also includes a reliability
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enhancement component that reduces the probability of bit
flip errors when the ciphertext is decrypted. The reliability
enhancement component is layered on top of the threshold-
ing method discussed earlier. We refer to this component
of SKE as XMR. XMR is modeled after the popular triple-
modular-redundancy technique for detecting and correcting
errors introduced by faults, except that the redundancy used
here is represented in the sequence of strong bits produced
by thresholding.

3.2.2 Thresholding

The enrollment operation carried out by SKE is illus-
trated along the bottom of Fig. 3 using a 3-bit XMR scheme.
Here, each XMR box represents a bit generated from pro-
cessing three bits of the response. The five boxes corre-
spond to the five-bit portion of the PARCE authentication
nonce, labeled Enroll: nx, which represents the input that
is encrypted by the SKE algorithm. SKE processes the nx

bits, one bit at-a-time, starting with the left-most ‘1’ bit.
SKE scans the DVDco left-to-right searching for a strong
bit match to the first nonce bit, which it finds at position
1. The algorithm continues to scan the DVDco searching for
two more instances of strong ‘1’s, skipping strong ‘0’s and
DVDco previously labeled as weak during thresholding.

Strong bits identified in the thresholding-only HD bit-
string (labeled Thresh. in the figure) that are associated with
mismatching strong response bits are changed from ‘1’ to
‘0’ during the scan, i.e., they are re-labeled as weak. A mis-
matching strong response bit occurs when the bit generated
by the corresponding DVDco is opposite in value to the
current nx bit. The updated thresholding-only HD bitstring
is labeled as XMR in the figure, and shows three strong
0’s have been relabeled as weak because they mismatch
with the ‘1’ specified by n[1]x. The three strong ‘1’s of the
3MR sequence needed to encode the n[1]x bit are circled
and highlighted in the figure, and are located at positions
1, 7 and 8. Once n[1]x is fully encoded, the algorithm starts
again with n[2]x. A strong ‘1’ is found at position 9 and the
process continues.

3.2.3 Regeneration

Regeneration utilizes the XMR HD bitstring as input to
reproduce the nonce nx. The ‘1’s in the XMR HD bitstring
indicate which DVDco to use in the reconstruction of the
XMRx sequences. Unlike enrollment, an nx bit is generated
for each XMRx sequence using majority vote among the X
bits in each XMRx bit sequence. This characteristic of XMR
adds resiliency to bitstring regeneration because an nx bit
will not flip unless X/2 + 1 or more of the X strong bits
flip. For the XMR example, majority voting is able to correct
two single bit flip errors in the Regen: XMRx sequences,
which enables exact reproduction of the nx bitstring (note:
the regenerated DVDco are not shown).

The PARCE protocol leverages SKE mode by having the
server transmit an authentication nonce, nx, to the device
along with a challenge. The device runs SKE enrollment
to produce a XMR HD bitstring, which is then transmitted
back to the server. The server runs SKE regeneration using
the XMR HD bitstring and the DV data sets from its TDB

to produce a set of n′
x, which are then matched against

Fig. 4: The SiRF PUF provisioning process.

the original nx. The device from the TDB which produces
the best match, i.e., the fewest number of bit flip errors, is
identified and authenticated by the server. The details of the
protocol are described in the following sections.

3.3 Comparison between COBRA and PARCE

Both protocols preserve privacy because the ID of
the authenticating device is not sent to the server in the
message exchange protocol. Instead, the server carries
out an exhaustive search of the TDB to identify the
authenticating device. However, for scenarios in which
privacy is not important, the authenticating device can
transmit its ID as a means of accelerating the authentication
process, by virtue of eliminating the database search
operation. Moreover, for PARCE, the nonce that is sent
by the server to the device can be encrypted using SKE
because the identity of the authenticating device is known.
This would eliminate the open transmission of nx, reducing
the amount of information available in a MB attack to that
provided by the XMR HD bitstrings, similar to COBRA.

4 SIRF PUF PROVISIONING

Many PUFs require a provisioning phase to boot-strap the
CRP-based authentication functions. For the SiRF PUF, the
provisioning process involves collecting and storing timing
data [28], in contrast to other PUFs which create a database
of CRPs. The process is shown in Fig. 4, where a provision-
ing authority generates and transmits challenges to the de-
vice. The device applies the challenges to its hardware PUF
in provisioning mode (HPUFp), and transmits the DV to the
provisioning authority. The DV and challenges are stored
in TDB and VecDB databases, respectively, along with the
identity of the device. The TDB is securely transferred to
the server after provisioning (and updated periodically as
new devices are added to the system), while the VecDB

is transferred and stored on both the server and devices.
Note that a separate programming bitstream is used for
provisioning, and is not available to fielded devices.

The provisioning authority derives challenges, ca,
(which are equivalent to sets of Chlnga{v} referenced
earlier), in advance, and when combined with the corre-
sponding DV, they enable the device to carry out millions of
authentications before re-provisioning is required. A large
fraction of the challenges, ca, are referred to as common pool
challenges because they are applied to every device. The
common pool challenges are used to preserve privacy in
COBRA and PARCE as we will discuss. However, other se-
curity functions including server authentication and session
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key generation can utilize challenges in the set ca that are
unique for each device.

5 COBRA AND PARCE PROTOCOLS

The message exchange diagram for the COBRA and PARCE
protocols is presented in this section. Although both proto-
cols have been described in previous work [1] [2], they are
analyzed and compared in this paper using the same test
beds and operating conditions, and in real-time. Moreover,
the PARCE authentication scheme is extended beyond the
earlier work in several ways. First, a database search opera-
tion is added to enable authentication to be carried out pri-
vately. Second, a bilateral, server authentication component
is added to the original device-only protocol. Third, this
work includes an experimental evaluation of PARCE, which
was not included in [2]. And last, a new post-processing
operation is added to both protocols that removes leakage
related to the authenticating device’s identity in the trans-
mitted HD bitstrings.

As noted earlier, COBRA authenticates a remote party
by correlating HD bitstrings, while PARCE authenticates
by counting bit flip errors in the regenerated nonce. The
server has access to the TDB , which stores a relatively small
set of approx. 10,000 DV per device. TDB engenders the
server with the ability to generate millions of uncorrelated
bitstrings for authentication. The authentication model pre-
sented in the following occurs between the server, which
implements a software version of the SiRF PUF algorithm,
and devices, which include the PUF itself and a hardware
implementation of the algorithm.

5.1 Message Exchange Diagrams
The message exchange diagram for the PARCE protocol
is shown in Fig. 5. The diagram for COBRA is identical
except for the nonce generation and transmission operations
(which are omitted), and the SiRF PUF bitstring generation
mode. As indicated, COBRA does not require the nonce nx,
and it utilizes the default bitstring generation mode based
on thresholding, as opposed to PARCE which uses XMR
and SKE mode. Last, the BitFlip function is replaced with an
XNOR correlation function in COBRA. The PARCE protocol
consists of 12 steps, described as follows with annotations
in the figure.

1) The device requests authentication from a server.
2) The server generates a random 32-bit vector-

selection seed tx, random nonces nx and q′x. The
seed tx will be used by the server and device to
select a set of vectors from the common pool of vec-
tors stored in the VecsDB . The nonce nx represents
the authentication nonce. The nonce q′x is used to
specify the LFSR seed parameters to the SiRF algo-
rithm once it is XORed with a corresponding device-
generated nonce. The tx, q′x and nx are transmitted
to the device. The SiRF PUF parameter set px is
constructed by combining qx returned by the device
with the range and threshold parameters discussed
earlier. The SFx are derived from DVi stored in the
TDB using parameters px, and then transmitted to
the device.

3) The device XORs q′x with its own TRNG-generated
version to produce qx, which is transmitted to
the server. The qx construction and exchange pro-
cess prevents adversaries from engaging in chosen-
message attacks on the device. The device extracts
vecsx from its VecDB and applies vecsx, px, SFx

and nx to its hardware PUF, HPUFE, in enrollment
mode. The PUF produces only a helper data bit-
string, HDx, when configured in SKE mode.

4) The device transmits HDx to the server.
5) The server performs authentication by searching its

TDB for a device i that can reproduce nx. For each
device i in the TDB , the DVi corresponding to the
vectors vecsx, along with px, SFx and the device-
generated HDx, are used as input to a software
version of the PUF, SPUFR, configured to run in
regeneration mode. A correlation coefficient (CC) is
computed for each device in the database using n′

x

and nx as input to a function called BitFlips. BitFlips
counts the number of mismatching bits that exist
between nx and n′

x, and in the TMRx sequences.
The CC array is sorted once all CCs are computed,
and then the two smallest CCs are used to compute
a percentage-change coefficient, PCC (discussed fur-
ther below). If the PCC exceeds a server-defined
threshold, the server accepts the authentication re-
quest, otherwise it rejects and halts the process.

6) In cases where the server accepts the device au-
thentication request, the device performs a similar
process to authenticate the server. Here, the device
generates a nonce ny , and transmits it to the server.

7) The server generates nonces ty and q′y , and trans-
mits q′y to the device.

8) The device runs its TRNG to create qy and transmits
it to the server. The device also constructs py.

9) The server constructs py and reads out vectors
vecsy from the VecDB . Since the device’s identity
is known, the vectors in this case are drawn from
the unique set defined for each device. The TDB

is consulted to derive a set of spread factors SFy ,
which are used as input to the SPUFE, along with
vecsy , py and ny to produce helper data HDy . The
server transmits ty , SFy and HDy to the device.

10) The device extracts vectors vecsy and runs HPUFR

to generate n′
y and computes a CC using the BitFlips

function.
11) Given the CC represents the number of bit-flip

errors, the device accepts the authentication if the
CC is below a device-defined threshold, otherwise
it rejects.

12) The server is notified of the authentication decision
and proceeds to engage with the device in some
type of secure transaction for cases in which device
accepts the server authentication request.

6 ZED AND ZYBO EXPERIMENTS

The ZED and ZYBO Avnet FPGA boards are used in two
different experiments to provide data for evaluating the
COBRA and PARCE security properties. Provisioning (tim-
ing) data is collected from 20 copies of the ZED board, on
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Fig. 5: PARCE privacy-preserving mutual authentication protocol.

which 6 identical instantiations of the SiRF PUF are created.
The 120 instances are subjected to 16 extended industrial
standard temperature-voltage (TV corner) conditions, which
are referred to as TV0 through TV15 in Table 1. The timing
data associated with 4096 paths is collected from each board
under each of the 16 TV corners, and a software program is
used to emulate the COBRA and PARCE protocols.

A set of 35 ZYBO boards are used in the second ex-
periment, on which 4 identical instantiations of the SiRF
PUF are created, for a total of 140 instances. The SiRF PUF
provisioning process is used to collect timing data, which
is stored in the TDB and used in a real-time evaluation of
the protocols. A programmable logic implementation of the
SiRF PUF is used to produce the HD bitstrings utilized in the
protocols, e.g., for the HPUFE/R functions in Fig. 5, while
other database-related and network communication-based
components of the message exchange protocol delegated
to the devices are implemented in a C program running
under Linux. The server runs a multi-threaded C program
which executes all message exchange diagram operations
(including the SiRF PUF algorithm) in software. The exper-
iment is configured to enable 12 ZYBO devices to carry out
authentications concurrently over a wired ethernet network.
The server searches the TDB data of all 140 devices in each
authentication operation.

TABLE 1: Temperature-voltage (TV) corners definitions.

Acronym TV Corner Used As
TV0 25o C, 1.00 V Server TDB data
TV1,2,3 25o C, 0.95, 1.00, 1.05 V In-field Device data
TV4,5,6 0o C, 0.95, 1.00, 1.05 V In-field Device data
TV7,8,9 −40o C, 0.95, 1.00, 1.05 V In-field Device data
TV10,11,12 85o C, 0.95, 1.00, 1.05 V In-field Device data
TV13,14,15 100o C, 0.95, 1.00, 1.05 V In-field Device data

6.1 Experimental Evaluation of COBRA

For COBRA, the server correlates the device-generated
HDx with the HDy bitstrings computed using the timing
data stored in the TDB for all devices y. Correlation refers to
determining the degree of similarity of two HD bitstrings. A
correlation coefficient, CCCobra, is computed for each pairing
of HD bitstrings using Eq. 1. The sum represents the number
of matching bits over the 2-bit columns of the HD bitstrings,
NB represents the number of bits, and HDx and HDy

represent the pair of HD bitstrings. Given this definition, the
authentic device is expected to posses a significantly larger
value of CCCobra than other enrolled devices in the database.

CCCobra =
NB∑
i=1

HDx[i]⊕HDy[i] (1)

Authentication critically depends on the uniqueness
property of the HD bitstrings to accurately identify the
authenticating device and to detect forged authentication
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Fig. 6: Authentication scenarios illustrated using COBRA HD bitstrings obtained from FPGA hardware experiments.

attempts by adversaries, as well as the randomness property
to prevent MB and impersonation attacks. The scenarios
important to assess regarding uniqueness are shown in Fig.
6 (a) through (d). Each of the scenarios includes two 64-
bit segments from a pair of HD bitstrings under evaluation.
Scenarios (a) and (b) represent cases where the server should
accept the authentication attempt while (c) and (d) represent
cases that should be rejected. For (a), the server generated
an HD bitstring for FPGA0 using Chlng0 that matches with
the device generated HD bitstring on 57 of 64 bits (and on
1833 bits of the full-length 2048-bit bitstrings not shown).

Scenario (b) is similar except the device generated its HD
bitstring under adverse environmental conditions, namely
{100o C, 1.05 V}. Although the number of matching bits
is smaller at 51 (1687), it is still larger than the number
of matching bits under scenarios (c) and (d). Scenario (c)
shows the results when the device HD bitstring for FPGA0 is
correlated by the server with the HD bitstring from another
device in the TDB . Scenario (d) portrays an artificial scenario
where the device uses a different challenge, Chlng1, as
a means of illustrating that HD bitstrings from the same
device are distinguishable.

Fig. 7: COBRA CCCobra results for 120 SiRF PUF instances
on the ZED boards tested at 15 TV corners (x-axis) with 10
challenges.

The curves shown in Fig. 7 show that the CCCobra by itself
can be used to distinguish the genuine (authentic) device
from other (non-authentic) devices enrolled in the database.
The analysis uses the 2048-bit HD bitstrings generated from
a single iteration of the SiRF PUF algorithm. Here, the
CCs computed by the server are plotted for the authentic-
enrolled (AE) device in black and the largest non-authentic-
enrolled (NE) device in red. The average CCCobra computed
using all device CCs from each authentication are shown
in green. The nomenclature ’enrolled’ refers to PUF devices
whose timing data is stored in the TDB , in contrast to ’not
enrolled’, a scenario discussed further below.

The graph shows the CCs values for 10 separate chal-
lenges superimposed, with the results for all 15 TV corners
adjacent along the x-axis for each of the 120 FPGAs. There
are no instances in which the CCCobra for a NE device is
larger than the corresponding AE CCCobra, and therefore, all
accept decisions made by the server are done correctly using
only the top ranked CCs in each authentication.

Fig. 8: PCCCobra results for 120 SiRF PUF instances on the
ZED boards, tested at 15 TV corners with 10 challenges.

Although the CCCobra metric by itself is effective in
distinguishing the authentic device from other devices, it
does not allow a fixed threshold to be used by the server
for accept-reject decisions. An alternative metric, called
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the percentage change coefficient, PCCCobra, addresses this
deficiency and is defined in Eq. 2. PCCCobra measures the
fractional difference between consecutive CCs in the sorted
list of CCs, and in particular, the CCs at positions x and x+1.
Here, the expectation is that the AE device, represented by
CC1, is significantly larger and stands apart from the closest
NE device, represented by CC2.

PCCCobra =
CCx − CCx+1

CCx
∗ 100% (2)

The PCCCobra results are plotted in Fig. 8 in the same
format as Fig. 7. The AE PCC are computed using the two
largest CCs for each authentication, while the NE PCC are
computed using CCs ranked 2nd and 3rd in the sorted
list. The ’Worst case AE’ and ’Worst case NE’ PCCs are
highlighted illustrating the smallest margin is 7.3%. The
server can set the threshold close to a lower bound that
remains secure, i.e, well above the worst case NE, e.g.,
at 15%, as a means of creating a fixed pass-fail criteria
for authentications, and retry on the off-chance of a false
negative (reject) authentication decision.

Fig. 9: COBRA worst case margins (differences) between the
AE and NE PCCs for each TV corner.

The bar graph shown in Fig. 9 depicts the worst
case margins for an authentication i, i.e., (smallest AEi) −
(largest NEi), per TV corner. It is clear from the height of
the right-most bars that the worst case margins occur at TV
corner 100oC , 1.05 V. Although the difference is small, the
margin for the worst case AE-NE authentication pair in these
results is slightly larger at 8.78% than the worst case margin
shown in Fig. 8 between the circled points for two different
authentications.

As indicated, the ZED experimental results described
above use 2048-bit HD bitstrings created from one iteration
of SiRF PUF algorithm. In the ZYBO experiments, we extend
the analysis to 4096- and 6144-bit HD bitstrings to determine
if the worst case margin improves (increases) when using
additional entropy (in the form of additional HD bits) from
the authenticating devices.

The graphs shown in Fig. 10(a)-(c) display the AE
(black), NE (red) and average NE (green) points for 100,000
COBRA authentications carried out using 12 ZYBO boards,

with each device authenticating approx. 8,300 times. The
results using 2048-bit HD bitstrings in Fig. 10(a) show a
large number of false-reject decisions, i.e., AE data points
that fall below the 15% threshold defined in the ZED exper-
iments. Reducing the threshold to, e.g., 10%, would reduce
the number of false-rejects but it also reduces the worst case
AE-NE margin to approx. 5%.

The results shown in Fig. 10(b) for 4096-bit HD bitstrings
improve on the 2048-bit results, by reducing the number of
false-rejects to 14, as well as the worst case NE magnitudes.
However, the best results are shown in Fig. 10(c), which uses
6144-bit HD bitstrings. All of the AE points exceed the 15%
threshold, and the points for the worst case NE and average
NE curves are reduced even further, to an upper bound of
5%. In general, the trends in the graphs show that the AE-NE
margins increase as the number of HD bits increase, which
enables the server to tune the level of certainty it requires
for a successful authentication.

We also tested the COBRA protocol using randomly
generated HD bitstrings, as one possible strategy to evaluate
authentication attempts by devices that are not included
in the database (referred to as the ’not enrolled’ scenario
earlier). The CCs and PCCs produced were similar to the
average case NE values shown in the result graphs of this
section, confirming that such authentication attempts are
rejected by COBRA.

6.1.1 Statistical analysis of COBRA HD Bitstrings
The COBRA protocol as described provides anonymity be-
cause no IDs are transmitted between the server and device.
However, the HD bitstrings themselves may leak informa-
tion about the identity of the device that an adversary can
leverage. In this section, we show that leakage does in fact
occur and propose a simple change to the SiRF algorithm
that removes the source of the leakage.

In our analysis, we observed that the mean value of
within-die variations i.e. the source of entropy, varies among
the FPGAs, where some FPGAs posses a larger overall
level of within-die variation relative to a fixed noise level.
The average level of entropy impacts the number of bits
classified as strong and weak during bitstring generation,
and therefore, variations that occur across FPGAs will be
apparent in the number of 1’s in the HD bitstrings, which
can leak information about the identity of the authenticating
device.

The disparities in the number of 1’s in the HD bitstrings
is shown in Fig. 11 using data collected from the ZED board
experiments under TV0 (nominal) conditions. The number
of 1’s in the HD bitstrings is reported as a percentage
called the ’HD-1 Percentage’ along the y-axis for each of
the FPGAs (x-axis). The mean, minimum and maximum
HD-1 percentages are shown by the black and blue curves,
respectively, from an analysis of the HD bitstrings produced
by applying 10 challenges to each FPGA. Although groups
of devices possess similar HD-1 percentages, which benefits
anonymity, the large range from 10% to 65% may allow an
adversary to derive a smaller list of authenticating device
candidates.

The most straightforward way of eliminating this source
of leakage is to determine a ’personalized’ threshold con-
stant (PTC) for each device. The threshold parameter from
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(a) COBRA PCC results using 2048-bit
HD bitstrings.

(b) COBRA PCC results using 4096-bit
HD bitstrings.

(c) COBRA PCC results using 6144-bit
HD bitstrings.

Fig. 10: ZYBO experiments: COBRA AE and NE PCC results.

Fig. 11: Original HD-1 percentages in the COBRA 2048-bit
HD bitstrings for 120 ZED boards and 10 challenges.

Section 2 defines the sizes of the strong and weak bit
regions. A personalized threshold constant for each device
can be chosen such that the number of strong and weak
bits in the HD bitstrings are nearly equal, e.g. 50%. The
drawback of reducing the threshold parameter is that the
response bitstring can become less resilient to bit flip errors
for devices which require a larger value, which is the case
for nearly all of the devices shown in Fig. 11. However,
COBRA does not utilize response bitstrings, and therefore,
the proposed operation has no negative consequences.

The PTC value can be readily determined during pro-
visioning by applying a set of challenges and computing
the fraction of 1’s in the HD bitstrings. We developed a
search algorithm that iteratively scales the PTC value for
each device until the average HD-1 percentage converges
to a value close to 50% for each device. The personalized
threshold constant can be stored in a non-secure NVM by
the device since it leaks no information about the individual
bits within the HD bitstrings.

The average HD-1 percentages obtained after computing
and applying the PTC to the ten HD bitstrings used in Fig.
11 are shown in Fig. 12. The HD-1 percentages hover around
the target 50% value. Although it is possible to fine tune
the PTC values further to obtain percentages even closer
to 50%, this is not necessary because the region delineated
by the minimum and maximum percentages nearly fully

Fig. 12: New HD-1 percentages after applying PTCs in the
2048-bit HD bitstrings for 120 ZED boards and 10 chal-
lenges.

encapsulates the average values, and therefore, variations in
the HD-1 percentages introduced by the challenges masks
the identity of the device carrying out the authentication.
The COBRA authentication results presented earlier, as well
as the results for PARCE presented in the next section, are
obtained with PTCs applied.

6.2 Experimental Evaluation of PARCE

As discussed earlier, the encoding component of SKE is a
PUF-based encryption technique, where plaintext informa-
tion is encrypted by a PUF-entropy-based encryption key to
produce an HD bitstring, which represents the ciphertext.
The plaintext can be a nonce sent in the clear by an authenti-
cation server to the device, or it can be, e.g., a password or an
account number, that the device wishes to send encrypted
to the server (or vise versa) across an untrusted network.
The message exchange diagrams for these two scenarios
are shown in Fig. 13. Note that the latter encryption-based
scenario can also serve as a key sharing mechanism where
the device and server encrypt and decrypt, respectively,
a shared secret. In this paper, we evaluate PARCE under
ScenarioA and leave the evaluation of ScenarioB for a future
work.
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Fig. 13: PARCE application scenarios: ScenarioA, authentication and ScenarioB , light-weight encryption.

6.2.1 PARCE Accept-Reject Decision Criteria
In step 5 of Fig. 5, the accept-reject authentication decision
made by the server is based on the results from the Bit-
Flips function. BitFlips compares the n′

x regenerated by the
server for each enrolled device in TDB with the original
server-generated nx. Given the authenticating device HD is
optimized by the device to reproduce nx, when the server
uses its DV from the database, the number of mismatches
between n′

x and nx should be zero in the ideal case. In con-
trast, the DV for other devices will be inconsistent with the
device regenerated DV, resulting in mismatches. The most
straightforward method of identifying the authenticating
device is to count the number of mismatches, and select the
IDx from the database with the smallest number.

However, the XMR technique provides additional infor-
mation in the HD bitstring that can be leveraged to increase
the robustness and certainty of the authentication decision.
The TMRx sequences produced during regeneration also
record mismatches, but on a bit-by-bit basis, in contrast to
bits in n′

x which are obtained from majority voting across
the TMRx sequences. The example set of TMRx sequences
labeled Regen: TMRx along the bottom of Fig. 3 show TMR
sequences where two bit flips have occurred. Given the
bit flips occur within the TMRx sequences, we refer to
them as ’minority bit flips’ (MBF), and the total number
of occurrences across all TMRx sequences as NMBF. For the
same reasons given for n′

x, the NMBF is expected to be very
small for the AE device and large for the NE devices.

The BitFlips routine does not use the MBF directly be-
cause they do not take into account bit flip errors that occur
in the n′

x bitstring. When an n′
x bit mismatch occurs, the

majority voting operation applied to the TMR sequence
produces the wrong n′

x bit value, and therefore the number
of mismatches should be represented by the number of
majority bits in the TMR sequence, not the number of
minority bits. The BitFlips routine therefore uses mismatches
in both the n′

x bitstring and TMR sequences to compute the
’true’ number of bit flip errors that have occurred. The term
NTBF is used in reference to the true number of bit flips,
and represents the correlation coefficient (CC) for PARCE as
given by Eq. 3.

Fig. 14: CCParce results for 120 SiRF PUF instances tested at
15 TV corners with 10 challenges in the ZED experiments.
The points from different challenges are superimposed.

CCParce = NTBFx (3)

Like COBRA, the accept-reject decision in PARCE is
based on a percentage change coefficient (PCC). The PCC
expression is given by Eq. (4) and is designed to measure
the relative difference between the two top ranked NTBF
values in the sorted array. For PARCE, the top ranked values
are the smallest NTBF values at positions 1 and 2. A device
authentication request is accepted if the PCCParce is larger
than a server-defined threshold.

PCCParce = (NTBFx+1 −NTBFx)/NTBFx+1 ∗ 100%
(4)

The experimental results from the two FPGA experi-
ments again focus on the the AE and NE PCCs. The AE PCC
is computed using the NTBF values ranked 1st and 2nd in
the sorted array, while the NE PCC is computed using the
NTBF values ranked 2nd and 3rd.
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Fig. 15: PCCParce results for 120 SiRF PUF instances tested at
15 TV corners with 10 challenges in the ZED experiments.

The CCParce results are plotted in Fig. 14 for the ZED
experiments. The SiRF PUF XMR algorithm configured in
SKE mode with XMR set to 5 (5MR) is run for one iteration,
which is able to encode 103 bits of a randomly generated nx

on average. Similar to the COBRA results presented earlier,
the CCParce can be used to distinguish the AE device from
the other devices in all 18,000 authentications (120 device,
15 TV corners and 10 challenges), but the threshold needs to
be customized for each device.

On the other hand, the PCCParce results shown in Fig.
15 allow a fixed threshold to be defined by the server.
The worst case AE and NE PCCs are highlighted at 58.0%
and 43.5% and occur for two different authentications. The
server can use a conservative threshold of 55.0% for the
accept-reject decision.

Fig. 16: PARCE worst case margins (differences) between AE
and NE PCCs for each TV corner (x-axis) and XMR (y-axis)
in the ZED experiments.

The bar graph in Fig. 16 present the worst case margins,
(smallest AEi)−(largest NEi), for an authentication i across
the 10 challenges from the ZED experiments as a function of
temperature-voltage (x-axis) and XMR (y-axis). The smallest
margins are associated with a worst case TV corner (100oC ,

1.05V ), where the overall smallest margin is 27.10% for
9MR. It should be noted that even though the devices
used in the study are commercial grade, no authentication
failures occurred.

Fig. 17: PCCParce results from the ZYBO experiments
showing AE PCCs (black) and NE PCCs (red) using a 256-
bit nx with XMR set to 5.

For the ZYBO experiments, the XMR value is fixed at 5,
and the server is configured to generate a random 256-bit
nx. The device iterates three times on average to encode
the nx, with each iteration processing 2048 DVDco. The
total time per authentication is less than 2 seconds. The
experiment is set up to enable simultaneous authentications
to be carried out by 12 ZYBO boards, each of which authen-
ticates approx. 8300 times with the multi-threaded server
application, for a total of 100,000 authentications.

The PCCParce results for the ZYBO experiments are
shown in Fig. 17. All of the AE PCCs are larger than the NE
PCCs, which indicates that all authentications succeeded in
correctly identifying the AE device. The worst case PCCs
for AE and NE are 57.3% and 40.7%, respectively, which
enables the same 55.0% accept-reject threshold determined
in the ZED experiments to be used here.

6.3 Server Authentication
The server authentication process performed by the device
needs to utilize the CCCobra and CCParce defined by Eqs. 1
and 3 to make accept-reject decisions. This is true because
the device does not have access to the TDB database used
by the server to compute PCCs. As indicated earlier, the
CCs are equally effective as the PCCs for making accept-
reject decisions, but the threshold for each device will vary.
Customized thresholds can be computed during the pro-
visioning process (along with the PTC discussed earlier),
and the devices can store them in a non-volatile memory.
The CC result graphs generated from the ZED and ZYBO
experiments are not shown because the results are nearly
identical to the CC graphs given in Figs. 7 and 14. No
failures were observed in any of the server authentications.

7 IMPLEMENTATION CHARACTERISTICS

Customer devices run the PUF-Cash protocol on mobile,
hand-held devices and therefore, a low-power implementa-
tion is important in a practical application. A block diagram
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depicting the mapping of the protocol’s components is
shown in Fig. 18. The prototype system is implemented on a
Xilinx 7 series SoC, which incorporates an ARM Cortex A9
microprocessor (PS side) with a programmable logic region
(PL side) on the same device. All of the core security func-
tions are implemented in the low-power PL side, and only
the network and database components are implemented in
a C program that runs on the microprocessor. In this section,
we summarize the resource utilization, power consumption,
and performance of the SiRF PUF and protocols on this
system architecture.

Fig. 18: System architecture of the SiRF PUF and protocols
on the Xilinx Zynq 7010 SoC.

7.1 Resource Utilization and Power
Table 2 gives the SiRF PUF resource utilization on a Xilinx
Zynq 7010 FPGA. The SiRF Engine and Netlist components
are listed separately, with the latter referring to the top-
most component of Fig. 2, and the former referring to the
remaining components. The resource utilization given for
the Netlist relates to the SiRF PUF entropy source configured
with three rows of modules (see Fig. 2). Additional rows add
linearly to the resource utilization, e.g., LUTs increase from
796 to 1062, but exponentially to the number of paths, as
described in the next section. The SiRF Engine component
includes implementations of device and server authentica-
tion, session key generation and a TRNG.

TABLE 2: SiRF PUF resource utilization on the Zynq 7010.
Resource SiRF Engine Netlist Available % Used

LUT 5842 796 17,600 37.72
LUTRAM 60 96 6000 2.60

FF 4377 32 35,200 12.53
BRAM 5 - 60 8.33

DSP 2 - 80 2.50
BUFG 2 - 32 6.25

Xilinx Vivado’s power analysis tool estimates power
consumption at 1.43 W for the processor side and 27 mW
for the programmable logic side, which indicates that most
of the power consumption occurs in the microprocessor.

7.2 Performance Analysis

The average run time of the SiRF algorithm for either
enrollment or regeneration of a 256-bit response or 2048-bit
HD bitstring is 1.4 s, which includes the network transfer
time to retrieve the challenge components from the server.
Larger bitstrings can be generated by running additional
iterations of the algorithm, where each additional iteration
adds only 100 ms to the overall run time.

8 SECURITY ANALYSIS

8.1 Challenge-Response-Pair (CRP) Analysis

The engineered netlist with an array of 3 × 8 modules as
shown in Fig. 2 possesses 224 distinct rise and fall paths. A
characterization process (see [3] for details) is carried out
on a sample of devices that groups the set of 224 paths
into compatibility sets, where compatibility is defined as
a subset of paths whose delay changes linearly, within a
margin, across different temperature and supply voltage
conditions. Therefore, the set of 224 paths are partitioned
into multiple compatibility sets, where the cardinality of
each set is approx. 20,000 paths. This yields approx. 838
distinct, non-overlapping compatibility sets (all paths are
compatible with some subset of paths from the initial set).
Assuming each compatibility set consists of 10,000 DVR and
10,000 DVF , the number of distinct path delay differences
(DVD) is equal to 100,000,000. Therefore, the total number of
unique path combinations (and corresponding bits) across
all 838 compatibility sets is approx. 84 billion (236).

8.2 Learning Parity with Noise (LPN) Hardness

The underlying guarantees of the protocol stem from the
hardness of the PUF primitive. Here we start from the
position that the PUF is a physical random oracle that is
constructed to achieve LPN hardness [29]. To demonstrate
LPN hardness, we must show that both challenges C and
responses R are chosen uniformly from {0, 1}n, and the
mapping between challenges and responses can be ex-
pressed as ∀i, ri = f(ci) + ei, where f() represents the PUF
transformation operating on challenge bit ci summed with
the noise term ei. Here, each input challenge C is generated
via an LFSR using a 32-bit random PRNG seed defined by
vectors v. If each seed is used only once, we can assert that
challenges are chosen uniformly over the set {0, 1}n.

In prior work [3], we experimentally verified the statis-
tical quality of individual responses by subjecting a broad
range of responses to the NIST statistical test suite analysis
[30]. Statistical analysis on compensated path delays is also
conducted to demonstrate that f(C) is an unbiased distri-
bution for large numbers of C , therefore (C, f(C) + e) is
random for large numbers of CRPs as well, thus achieving
LPN hardness. Note that LPN hardness does not guarantee
protection against MB attacks. However, LPN hardness does
guarantee that the number of challenges required to build a
sufficiently predictive model will be quite large, a property
that we exploit in the following section.
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8.3 Model-Building Resistance
The authors of [4] and [9] conclusively demonstrate that
a strong PUF can be modeled with a subset of CRPs via
evolutionary models or logistic regression (multi-layer per-
ceptron). In particular, Arbiter XOR PUFs were shown to be
broken, which is relevant to the proposed SiRF architecture
as it has an arbiter-style structure. While a thorough model
building analysis is still pending, we can make a prelimi-
nary claim that SiRF is likely to resist such attacks due to
the following properties:

8.3.1 Ambiguous Delay and Entropy
Unlike a typical Arbiter XOR PUF, the SiRF has a reconver-
gent fan-out property. This means that at specific junctions,
the output fans out before reconverging at downstream
nodes. This introduces ambiguity in which path is actually
timed on a given device for a specific challenge, i.e., the
fanout branch which dominates the timing will vary across
devices and challenges. This type of physical path structure
does not exist in most other PUFs, e.g., the XOR Arbiter
PUF. Additionally, the determination of which of the 2048
DVDco are weak (and discarded) and which are strong
is probabilistic, because of uncompensated temperature-
voltage variation in the measured DV . This adds uncer-
tainty regarding the classification of some bits as weak or
strong during enrollment. Moreover, the bit assignment of
the remaining weak bits are not observable at all on a given
device, but may in fact be classified as strong on other
devices.

8.3.2 Brute Force Attack on Entropy Source
In an ideal strong PUF, challenge response pairs are unique
and responses are guaranteed to be uncorrelated with each
other. A brute force attack could be conducted by gener-
ating all possible challenges and reading out all possible
responses. The time required to generate a response is
intrinsic to the internal operations of the PUF architecture,
e.g., digitization, compensation and other post-processing
operations. Section 8.1 describes a valid selection space of
236 challenge pairs and corresponding response bits. In
the current architecture, the response-bit generation rate
is measured at 0.5 milliseconds. Therefore, a brute-force
application of all possible challenges to extract the entire
set of response bits of the PUF would take more than a year.

If additional security is required, the source of entropy
can be increased by adding another row of modules to the
block diagram shown in Figure 2, exponentially increasing
the number of distinct rise and fall paths. Each additional
row adds a factor of 64 to the number of paths for each
output. With four rows and 32 outputs, this expands the
selection space to 242 and brute-force read-out time to
68 years. The response measurement time makes a brute-
force attack economically infeasible. Additionally, the attack
would need to be repeated for every PUF in the system.

8.4 Protocol security
We prove the following properties for protocol security:

8.4.1 Adversary
We assume that a powerful adversary that supplies a coun-
terfeit device with the intent that the server authenticates the
counterfeit as a legitimate device. Additionally we assume
that the adversary is able to observe all interactions on
the communications channel between the device and the
server (Fig. 5). Then, in Step 2, the adversary would have
access to the challenge vector seed t, spread factors SF,
parameters p and nonce n. Similarly, in Step 4, the adversary
has access to the helper data bitstring HD associated with
each PUF response. The adversary may replace one or more
of these variables with modified versions to generate the
desired PUF response and helper data, HD, which would
be accepted by the server.

8.4.2 Brute Force Attack on the Protocol
We observe that t, the q component of p and n are generated
randomly via a server and device TRNG. t is a 32-bit value,
n is a 256-bit random nonce, q is a 22-bit seed for the
LFSR. The SF is 16,384 bits and is generated by a dedicated
function that takes p and DV as input. The output, HD, is
2048 bits for the parameters chosen in this work. Under the
assumption that HD bits are indistinguishable from random
bits, an adversary attempting to directly guess the output
would be required to guess all randomly and independent
chosen bits of HD correctly with a probability of 2−2048,
which is considered infeasible.

8.4.3 Packet Injection
The adversary may inject modified versions of t, q’, n and
SF to prompt a specific response from the device. As the
attacker only has helper data HD to correlate responses
against, the probability of guessing the right output based
on an input is 2−2048, which is highly unlikely. Additionally,
injecting randomly generated values would cause authenti-
cation to fail as the server generates HD responses using it’s
own versions of t, n and SF and DV recorded during the
provisioning step.

8.4.4 Response Prediction
Finally, the adversary may attempt a model building attack
by gathering traces from multiple successful executions of
the protocol. Let us suppose 10,000 successful executions of
the protocol were traced over a period of 10,000 - 20,000
seconds. Upon termination, the adversary would possess
10,000 tuples of < {t,p, n,SF},HD >, with {t,p, n,SF}
as input and HD as output. For the reasons outlined earlier,
this PUF is likely to be resistant to such an attack.

8.5 Discussion
In this section, we compare and contrast features and re-
sults of the COBRA and PARCE protocols as a means of
developing a usage scenario that provides the best overall
security profile. Both protocols are demonstrated to convey
a high level certainty to the server and device regarding
authentication accept-reject decisions and both have sim-
ilar performance characteristics, in particular, individual
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authentications can be completed in less than 2 seconds.
And both protocols provide device anonymity by virtue of
the database search carried out by the server, and through
the use of personalized threshold constants as a means of
reducing leakage in the HD bitstrings.

On the other hand, COBRA reveals less information to
an adversary than PARCE. Although the nx used by PARCE
is not a response bitstring in the traditional sense, it is
constructed using PUF response bits and is therefore vuner-
able to a MB attack. In contrast, a MB attack on COBRA
would need to be developed using only the HD bitstrings.
It is unclear how one would craft a ML model that is
capable of learning constituent delay elements of the tested
paths without having access to the response bitstrings, given
that response bitstrings represent the centerpiece of most
previously proposed MB attacks. We note that assessing the
MB resistance of the protocols is required for completeness
in the evaluation of the protocols’ security profile, but the
complexity of the analysis precludes its inclusion in this
paper, and we instead defer this analysis to a future work.

Given these considerations and results, the most attrac-
tive strategy is to use COBRA for device authentication and
either COBRA or PARCE for server authentication, given
that MB attacks are not possible in the server authentication
component of the protocol. This is true because device
authentication ’gates’ server authentication, i.e., it is not
performed unless device authentication succeeds. Moreover,
the enhanced set of resources available on the server allow
it to detect repeated attempts to authenticate. A second
attractive scenario is to use both COBRA and PARCE, in that
order, for device and/or server authentication. This type of
methodology requires the adversary to develop imperson-
ation methods for both protocols, significantly increasing
the difficulty of a successful attack.

9 CONCLUSION

The COBRA and PARCE PUF-based, privacy-preserving,
mutual authentication protocols are evaluated and com-
pared using common test beds in this paper. The test beds
utilize ZED and ZYBO boards, both incorporating Xilinx
Zynq SoC-based FPGAs. The ZED board experiments assess
the protocols for resiliency across industrial-standard envi-
ronmental conditions while the ZYBO board experiments
assess real-time performance characteristics of the protocols.
All authentications carried out in both protocols, totaling
18,000 and 100,000 for the ZED and ZYBO boards, respec-
tively, succeeded in identifying the authenticating device
and provided a large margin in the decision metric.

The PARCE protocol exchanges a challenge, a nonce
and a helper data bitstring with the authenticating agent
(device or server) while COBRA exchanges only a challenge
and a helper data bitstring. Both protocols are privacy-
preserving, and utilize a novel personalized threshold con-
stant to minimize leakage of the device identity in the helper
data bitstrings. Both protocols avoid utilizing cryptographic
primitives for protecting the device interface against attacks,
and both protocols allow the server and device to tune to
the number of elements that are correlated during authen-
tications. The latter feature enables the authenticating agent

to define the level of certainty it wishes to achieve regarding
an accept-reject decision.

Neither PARCE or COBRA use the PUF’s response bit-
strings in the message exchange protocol, which deters
standard approaches to MB attacks. COBRA exposes less
information in the message exchange, and is therefore a
more secure protocol for device authentication where ad-
versaries can engage in a wide range of attacks. A series
application of both protocols further increases resilience
against impersonation attacks. Future work will investigate
MB attacks, and other applications, including the use of the
SKE algorithm for implementing a PUF-based, light-weight
encryption mechanism.
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