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Abstract: Recent evaluations of counter-based periodic testing strategies for fault detection in
Microprocessor (µP) have shown that only a small set of counters are needed to provide complete
coverage of severe faults. Severe faults are defined as faults that leak sensitive information, e.g., an
encryption key on the output of a serial port. Alternatively, fault detection can be accomplished by
executing instructions that periodically test the control and functional units of the µP. In this paper,
we propose a fault detection method that utilizes an ’engineered’ executable program, combined
with a small set of strategically placed counters in pursuit of a hardware Periodic Built-In-Self-Test
(PBIST). We analyze two distinct methods for generating such a binary; the first uses an Automatic
Test Generation Pattern (ATPG) based methodology and the second a process whereby an existing
counter-based node-monitoring infrastructure is utilized. We show that complete fault coverage of
all leakage faults is possible using relatively small binaries with low latency to fault detection, and by
utilizing only a few strategically placed counters in the µP.

Keywords: Fault emulation, RISC-V, FPGA, ATPG, Fault Analysis, Fault Detection, DFT, Information
Leakage, Cryptography.

1. Introduction

Information leakage in µP, a security vulnerability that occurs when sensitive informa-
tion is accessed or transmitted without proper authorization while executing applications
such as cryptographic algorithms, has become a hotbed for research over the last couple
of years [1,2]. The challenges associated with providing leakage-safe implementations are
numerous and stem from the existence of countless vectors that lead to these situations.
For example, Electromagnetic Induction (EMI) can cause a µP to enter an unexpected state,
or a physical attack can damage the µP or disrupt its operation. Another common cause
of stuck-at faults is a hardware failure, such as a faulty transistor or a damaged electrical
connection. Software bugs can also cause a system stuck-at fault. For example, a bug in
the operating system or a malicious application can cause the µP to enter an infinite loop,
preventing it from servicing other concurrent applications. When these faults occur, it is
important to identify the root cause of the failure which may typically involve examining
hardware components, analyzing software logs, and performing diagnostic tests.

In this paper, we propose a low overhead method that utilizes already existing DFT
scan chains and a handful of counters, in conjunction with a specially designed binary to
achieve low latency hardware fault detection. We propose two methods of creating the
specially designed binary. In the first method, we use a counter-based leakage detection
method and a processor run-cycle analysis to determine the failure point on the µP caused
by an injected fault and to recreate the processor state at that failure point. In the second

Cryptography 2023, 1, 0. https://doi.org/10.3390/cryptography1010000 https://www.mdpi.com/journal/cryptography

https://www.mdpi.com/article/10.3390/cryptography1010000?type=check_update&version=1
https://doi.org/10.3390/cryptography1010000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0002-3984-197X
https://orcid.org/0000-0002-1876-117X
https://doi.org/10.3390/cryptography1010000
https://www.mdpi.com/journal/cryptography


Cryptography 2023, 1, 0 2 of 17

method, a binary is constructed with the assistance of ATPG tools, which coerces ATPG
vectors into closely matched processor instructions and register file values. The goal is
to create a relatively small binary program that provides high levels of fault coverage.
Experimental results are provided for each method and compared to determine which
process provides the highest coverage when considering binary generation complexity.

The specific contributions of this work include:

• The evaluation of fault propagation latency for leakage scenarios when executing a
common cryptography algorithm on a RISC-V processor.

• An analysis and discussion of the process that converts exact processor states, i.e. reg-
ister values, peripheral states, and instruction inputs, into specialized low instruction
count binaries targeted at triggering hard-to-reach faults. Given the binary will be
stored in memory for periodic fault detection, minimizing size, e.g., less than 100
instructions, is an important design goal.

• An analysis of the specialized binary executables, and an analysis that compares fault
trigger latencies with the latencies obtained when executing common cryptography
algorithms.

The remainder of this paper is organized as follows. Section 2 discusses additional
related work. Section 3 describes the experimental design and attributes of the binary
generation sequence. Section 4 presents the details of the proposed Periodic Built-In-Self-
Test (PBIST). Section 5 presents the fault coverage and latency results for the generated
binaries. Section 6 presents our conclusions.

2. Related Work

An overview of the different strategies that can be employed to detect faults through
either continuous checkers (also called concurrent) or periodic testing is provided in [3]. The
authors describe four general approaches including redundant execution, PBIST, dynamic
verification, and anomaly detection. The periodical specialized binary run described in this
work falls under the periodic built-in self-test category. The method is uniquely applied
here to detect faults before information leakage occurs and is portable to a wide range of
µP architectures and input-output peripherals. The methods described in previous work
have higher overhead and do not address protection against information leakage.

Software-only fault detection methodologies are described in [4][5][6], which signifi-
cantly improve reliability without requiring hardware modifications. This makes software
redundancy techniques significantly cheaper and easier to deploy. For example, the authors
of [4] use code transformation and specialized instructions to create fault-resistant binaries,
which require a lengthy processor-specific fault agnostic run and do not provide true fault
detection, only fault tolerance under certain circumstances.

The authors in [7] introduced a RISC-V framework for hardware-software codesign
that can aid in the implementation of secure and safe SoCs based on RISC-V. The script-
based framework provides cycle-true verification, ensuring accuracy in the simulation
of hardware and software interactions. The framework’s versatility makes it applicable
in various scenarios, including designing systems resilient against Side-Channel Attacks
(SCAs) and other vulnerability points. Additionally, the authors show that the framework
enables the fast implementation, functional verification, and post-synthesis verification of
projects such as the design of Post-Quantum Cryptography ISA extensions for RISC-V and
cryptographic hardware accelerators for the Advanced Encryption Standard (AES). While
this framework is effective in speeding up the evaluation of software-aware hardware-
dependent metrics such as performance, power consumption, and area utilization, it is not
shown to be capable of aiding the detection of hardware-based information leakage faults.

The researchers in [8] propose a predominantly software-based fault detection scheme
supplemented by hardware. They utilize a special instruction set which they coin Access-
Control Extension (ACE) that interacts with a custom instrumented full scan chain to test the
µP. Unfortunately, the specialized instructions add complexity to the µP and create a side-
channel attack vector. Implementation of their approach is complicated because the ACE
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instructions are privileged to only the ACE firmware. Additionally, the tree architecture
exposes no avenue to target information leakage sites. In contrast, our proposed periodic
testing method introduces only a small set of counters and utilizes standard instructions,
eliminating the need for custom instructions.

The paper [9] proposed a µP with a unique architecture called Dynamic Implemen-
tation Verification Architecture (DIVA), designed to detect both transient and permanent
faults. In DIVA, a checker validates the functional unit result by recomputing it using the
instruction’s input operands and compares this result before permitting the instruction to
commit. Despite the advantage of simplified checker design due to leveraging processor
pipeline decisions, there is considerable overhead in the checker pipeline. This limitation
restricts its practical use to super-scalar architectures. Additionally, the effectiveness of
DIVA relies on the assumption that the register file and memory employ Error-Correcting
Code (ECC) for error detection and correction, serving as a mitigation strategy against
faults related to storage.

In [10], a high-level symptom-based fault detection technique, combining hardware
and software, is introduced. This method monitors software execution to identify anoma-
lous behavior. The fault detection process occurs at a high level by observing hardware
traps and utilizing µP performance counters. While the technique demonstrates a capabil-
ity to detect 95% of unmasked faults, it comes with a potential drawback of high latency.
Most faults are identified within the first 100,000 instructions, but some may take longer,
extending up to 10 million instructions.

In recent work [11], a high-speed fault emulation platform is developed on an FPGA
to assess the Potato RISC-V µP [12]. A dynamic verification or continuous symptom moni-
toring approach is proposed to evaluate information leakage events introduced by faults
from various classes. The study delved into the effectiveness and latency associated with a
set of countermeasures based on self-assertions called Self-Assertion-Based Countermea-
sures (SABC). The Self-Assertion-Based Countermeasures (SABC) performs consistency
checks on instruction and datapath values during program execution. The fault detection
results and the associated latency are compared to those provided by a periodic counter-
based countermeasure proposed in [13]. The evaluation of the SABC includes assessing
the number of Severe faults they can detect, the latency associated with these detections,
and the extent of collateral coverage for Active faults. The results demonstrated that the
SABC are nearly as effective as the node counter-based CM in detecting all Active faults,
and are nearly equivalent in effectiveness for detecting Severe faults. Notably, all Severe
faults are successfully detected by the SABC, highlighting the effectiveness of the proposed
countermeasures in preventing information leakage during program execution. The SABC,
however, are expected to scale somewhat poorly to more complex microprocessor architec-
tures, including super-scalar architectures. Integrating them will demand adjustments and
additional resources to navigate the heightened intricacies of the pipeline. Specifically, this
involves synchronizing assertions with out-of-order executed instructions and managing
the complexities associated with branch prediction and execution.

In other recent work [13][14], a counter-based node monitoring technique and a fault
injection technique are proposed. In this paper, we will expand on previous work to explore
µP information leakage by analyzing internal node fault effects and discuss a low overhead
fault detection methodology that enables periodic fault detection without the need for
special instructions or taking the µP offline.

3. System Overview

This section describes the RISC-V architecture used in the emulation experiments,
including a special add-on feature referred to as Emulation ROM Side Loading (ERSL)
which enables binary executable loading to be accomplished at run time, as well as the
characteristics of the fault campaign, Fault Injection Manager (FIM) and Fault Emulation
Engine (FE). Also discussed are the CAD tools used in the synthesis and implementation,
the testing process, and details regarding counter-based periodic testing.
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3.1. RISC-V Architecture

The architecture of the Potato µP utilized in this research is shown in Figure. 1. Potato
is compliant with the RISC-V v2.0 standard [12] and is classified as a 32-bit RISC-V ISA CPU
core (RV32I). It possesses a complete set of integer instructions, with Control and Status
Register (CSR) and exception handling, while supporting RISC-V integer (I), multiplication
and division (M), and CSR instructions (Z) extensions (RV32IMZicsr). All instructions
except load and store execute in 1 clock cycle. Potato utilizes the wishbone B4 standard as
an internal bus.

Figure 1. Block diagram of Potato’s five-stage pipeline. [12]

3.2. Fault Campaign Characteristics

A fault campaign refers to the characteristics of the Fault Injection (FI) system [15].
The architecture employed in this research is shown in Figure. 2 and has the following
features:

• The Potato µP [12] serves as the processor-under-test, configured with a 32 KB ROM
for application code and a 132 KB BRAM for scratch memory. The netlist for Potato is
generated using an ASIC synthesis and place&route computer-aided design (CAD)
tool flow, in which 34,110 fault injection circuits are integrated. The netlist is instru-
mented with scan chains, which provide access to fault injection circuits and counters.
The instrumented netlist is used as input to an FPGA CAD tool flow to produce the
programming bitstream for the FPGA.

• The Xilinx UltraScale+ Multiprocessor System-On-Chip (MPSoC) FPGA on the ZCU102
development board serves as the emulation platform for the Potato µP.

• The Fault Injection Manager (FIM) is implemented as a C program that runs on an
embedded processor within the FPGA. Similar to the FI architecture proposed in [11],
we leverage two 32-bit high-speed, memory-mapped General-Purpose Input/Output
(GPIO) registers to facilitate fault injection, control, and counter data retrieval between
the Processing System (PS) and Programmable Logic (PL) components.

• The fault injection circuits implement four fault types, namely stuck-at-0 (SA0), stuck-
at-1 (SA1), delay, and inversion, and are configured using the GPIO-connected scan
chains.

• The FE is realized as a set of State-Machines (SM)s designed to collect serial and address
bus data as Potato executes the Advanced Encryption Standard (AES) algorithm [16].
Configured by the FIM, the SMs limit the number of run cycles. When combined with
a binary search routine implemented within the FIM C program, this setup enables
the latency of fault effects to be determined.

• A wishbone-based independent ROM binary side-load architecture is integrated into
the design, which significantly accelerates the testing process.

• The C program running in the PS of the FPGA is used for communication with and
control of the Fault Emulation Engine (FE) and the ROM wide-load module, which
are both implemented in the PL.

• The fault detection capabilities and detection latencies of the countermeasures (CM)
are assessed offline using data collected from the scan chains.
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Figure 2. Block diagram of the experimental setup, with ROM side-load for rapid binary loading and
testing. Adapted from [13] .

3.3. System Architecture

The emulation hardware platform uses a Xilinx ZCU102 development board, in which
both the PS and PL are utilized in a codesign-based system architecture.

3.4. Fault Injection Circuit with Counter (FIC)

The Fault Injection (FI) circuit structure is implemented using three scan chains,
scan_in[0], scan_in[1], and scan_in[2]. The first scan chain, with scan_in[0], is used to
selectively enable one of the faults, while scan inputs [1] and [2] are used to select from
one of four fault types. The scan chain consists of 34,110 elements, i.e., one instance of
the FI is added to each of the gate input signals driving the logic gates within an instance
of Potato’s core ASIC design. The term fault injection with counter or FIC refers to the
encompassing circuit, which includes both a counter and an FI circuit instance. The scan
chains are extended into the counter circuit, shown in Figure. 3, to enable the count values
to be scanned out after each FI experiment. The counters record the number of rising and
falling transitions that occur on the node during the program’s execution.

In prior work [11], we showed that a substantial proportion of the active faults within
various fault types, including Stuck At 0 (SA0), Stuck At 1 (SA1), delay, and invert fault
classes can be identified by a relatively small number of counters. In particular, a set of five
counters are shown to identify a large fraction of all faults. Notably, this identical set of
counters also proves adept at detecting all severe faults, underscoring their efficacy across
all active fault scenarios. Several severe faults, however, are shown to have high latency,
with as many as 6 million cycles during program execution.

In this work, we demonstrate that a small number of µP carefully crafted instructions
designed to exercise specific nodes and the small subset of counters identified in previous
work, referred to as TopCounters, can be used to detect all faults that lead to information
leakage with very low latency. Therefore, an effective countermeasure can be constructed
with the node-monitoring counters in Figure. 3 (without the fault injection portions) to
serve as a part of Periodic Built-In-Self-Test (PBIST) Counter-Measure (CM) for the detection
of information leakage faults in the Potato RISC-V design.

3.5. Testing Process

To initialize each test, the C program uses the The Processor Configuration Access
Port (PCAP) interface to configure the FPGA fabric with the instrumented Potato bitstream.
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Figure 3. Schematic of the counter circuit without fault injection signals.

This bitstream incorporates the default AES binary executable stored in the BRAM-based
emulated ROM of the µP. The ERSL, shown in Figure. 4, is used to override the boot
memory locations with the executable binary being tested. The fault-free counter values
associated with each designed binary are then computed by executing a fault-free run of
Potato at 1024 clock cycle increments, for the entirety of the AES algorithm execution, which
spans 6,717,440 clock cycles. In subsequent steps of the testing process, faults are injected
in a set of faulty runs of the selected binary to determine the latency to fault detection.

Figure 4. Block diagram of the Wishbone Side-Load architecture.

4. Fault Trigger Binary Executable (FTBE)

The Fault Trigger Binary Executable (FTBE) is a minimized set of instructions, designed
to recreate a processor state that leads to information leakage in the presence of a fault,
with minimal latency. In this section, we describe two methods that can be used to generate
a FTBE and discuss the tradeoffs between the two. The first, which we call the Fault-Run-
Cycle-Based FTBE (RCBE), is created by utilizing the counters already present in the FE,
where we identify the run-cycle in which faults are first observable while running the
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cryptography algorithm encode/decode sequence. The second method, which we call the
ATPG-Based FTBE (ATPGB), is created by using an ATPG flow to create high-coverage test
vectors, which are coerced into µP instructions, and represent a sequence of concise stimuli.

4.1. Run Cycle based Binary

The process of generating the Fault-Run-Cycle-Based FTBE (RCBE) is visually pre-
sented in Figure. 5 and is categorized into three segments. The first segment is called
Identification of Fault-Observable Run Cycles IFTC and is color-coded in blue. It in-
volves determining the specific run cycles during which faults become observable on the
node counters while the AES algorithm is executing. The second set of steps handle the
Determination of Microprocessor (µP) state at IFTC, color-coded in purple, are executed
once the IFTC is found and are used to determine the state of the Microprocessor (µP) at
the identified fault-observable run cycles. The last segment, color-coded in green, is called
Binary Creation for Fault-Triggered State Replication. In this step, using the knowledge
of the IFTC and µP state, a binary is crafted to replicate the state of the µP where faults are
triggered. Each step is discussed in greater detail in the following subsections.

4.1.1. Identification of Fault-Observable Run Cycles IFTC

Identifying the IFTC requires generating and searching through node counter values
for over 6 million clock cycles. Carrying out this search in a single-cycle incremental search
would be impractical, therefore the task is broken down into stages that combine a binary
search and an incremental search to define a solution that has much lower memory and
run-time overhead.

The process for identifying the IFTC is listed below:

1. Fault-free counter values for each node, while running the AES binary, are generated
and stored in increments of 1024 cycles from cycle 0 to 6,717,440.

2. A binary search with an exponentially increasing multiple of 1024 clock cycles is then
performed.

• The binary search concludes when a multiple of 1024 clock cycles is identified
where the fault remains undetected at the lower bound but is detected at the
upper bound.

• Since the search spans from 1024 to 6,717,440 clock cycles in increments of 1024,
each fault necessitates 13 iterations to complete the process.

3. When a fault is detected through the binary search method, the run-cycle is stored as
a Binary Search Fault-Detected Cycle (BFTC).
Table. 1 shows the BFTCs, Severe-fault detect cycles at 1024 cycle increments, for
Potato when running the AES binary. Each run cycle is passed onto the next step in the
process, incremental sweep search, as a starting value for the single-cycle increment
analyses. The highest latency fault triggered is at cycle 6,078,464 and correlates to
delay faults. Detecting these delay faults at much lower latency is crucial to this work.

Table 1. AES BFTCs on Potato
Fault-Type Run Cycle triggered
Stuck-At-0 1024 552,960; 557,056; 1,728,512
Stuck-At-1 1024; 557,056; 552,960; 1,728,512; 1,478,656
Delay 1024; 552,960; 557,056; 573,440; 1,478,656; 1,728,512; 1732608; 6078464
Invert 1024; 557,056; 552,960; 1,728,512

4. Perform an incremental sweep strategy.

• The incremental sweep begins at run cycle BFTC − 1024, due to the binary
search being implemented on 1024 clock cycle increments, and iterates on single
clock period increments. Both the fault-free and faulty tests are executed in this
1024-cycle incremental run.
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Figure 5. Flowchart for generating the RCBE

• The clock cycle in which the counter values differ is referred to as Incremental
Search Fault-Detected Cycle (IFTC) and is the exact cycle in which the fault is
first observable by analyzing the node counters.

• A script that takes multiple BFTCs as input arguments, and performs the in-
cremental search while iterating through the BFTCs is utilized to automate this
process.

Table. 2 shows the IFTCs, Severe fault detect cycles at single cycle increments, for
Potato when running the AES binary. Each run cycle is passed onto the next step as a
stop cycle for the simulation run.

4.1.2. Determination of Microprocessor (µP) state at the IFTC

The µP state at the IFTC is extracted with a SystemVerilog testbench which instan-
tiates a clean non-instrumented version of Potato loaded with the same AES executable
as the instrumented Potato. This ensures that, in a fault-free run, both the simulated and
emulated Potato would be in the same state, including register values, peripheral states,
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Table 2. AES IFTCs on Potato
Fault-Type Run Cycle triggered
Stuck-At-0 184; 641; 553,064; 550,800; 1,728,272
Stuck-At-1 184; 641; 550,800; 553,064; 553,320; 1,728,272; 1,477,576
Delay 184; 641; 553,064;553,320; 550,800; 569,576; 1477576; 1728272; 1728696;

1729024; 1728512; 6,076,072
Invert 184; 641; 550,800; 553,064; 1,728,272

and instruction inputs. The testbench starts at run cycle 0 and simulates Potato to the
IFTC, it then stores the values of each general-purpose register as well as the previous 10
instructions before that point. The testbench also stores the values read from and written to
execution memory and the Wishbone interconnect bus for that time frame.

4.1.3. Binary Creation for Fault-Triggered State Replication

With the µP state values at the IFTC extracted, the FTBE is created with the following
steps:

1. First, register states are recreated. This is accomplished by utilizing Load upper
immediate (LUI) and ADD Immediate (ADDI) instructions. 1

2. Second, memory locations that are accessed by the binary executable are reconstructed
by storing the values read by the µP in the simulation into the addresses from which
the binary executable will later be read.

Combining these into a binary program, with the memory and peripheral state re-
construction instructions executed first, followed by the register load instructions, creates
an executable that mimics the processor state at the IFTC. Figure. 6 shows a system-level
view for generating the RCBE from node counter values and which device is utilized. The
counter values are extracted from the Potato core by the PL, the fault trigger cycles are
analyzed by the PS, the processor state values are determined by simulation running on
the host, and the binary is constructed then constructed. Finally, the binary is loaded into
the Potato core for testing using the ERSL.

Figure 6. Block diagram of the Fault-Run-Cycle-Based FTBE (RCBE)

4.2. ATPG based Binary

Creating an ATPG-Based FTBE (ATPGB) requires generating ATPG test vectors and
then converting those normally serial test vectors into binaries that correlate with high fault
coverage of the ATPG test vectors. Figure. 7 shows a flowchart for the ATPGB generation
process. The first step is to modify the Potato RTL so that the values of the instruction
memory and general-purpose registers are observable on output ports at the top level. This

1 Note that Potato does not implement the Load Word Immediate (LWI) instruction and that LWI should be
used for processors that do implement the instruction.
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is done to make extracting the µP state values easier following synthesis and to ensure
minimal impact on the generated test patterns. Next, an open source Design For Testing
(DFT) solution, AUCOHL-Fault (Fault)[17] is utilized to automatically generate test patterns.
The test patterns are then converted into a FTBE.

Figure 7. Flowchart for generating the ATPG FTBE
To create the ATPG test vectors, the Potato module is synthesized and mapped to the

osu035_stdcells library [18] by calling Faults synth command. This initiates a Yosys [19]
based synthesis script and generates a flattened netlist. The netlist is then cut using the
fault cut command, which eliminates the flip flops in the netlist, converting it into a pure
combinational netlist which is utilized in conjunction with the original netlist to generate
the test vectors. Last, test vectors are generated with AUCOHL-Faults built-in PODEM [20]
test pattern algorithm. Patterns are generated with default values of 100 test vectors and an
expected minimum of 95% coverage. The generated test vectors for Potato offer 82% fault
coverage of the design.

Figure. 8 shows a diagram of the conversion process from ATPG test vectors to the
FTBE which is described as follows:

1. The DFT scan inserted Potato µP is simulated in test_mode, i.e. scan_en asserted, with
the ATPG vectors as a stimulus into the scan_in port.

2. During the simulation, instruction memory values as well as the general-purpose
registers are captured from the signal exported to the top-level ports, and stored for
each test vector.

3. Processor state values are parsed to extract only those that contain valid instruction
memory inputs and at valid address ranges. The processor state values extracted
from the ATPG vectors differ from the RCBE in that preceding instructions are not
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Figure 8. Block diagram of the ATPG based FTBE

available due to the non-contiguous nature of ATPG vectors. As a result, the binary
program conversion process is slightly different.

4. A RISCV assembler [21] is used to convert the instructions into the RV32I [22] set that
Potato supports.

5. The set of instructions is used to heuristically construct a coherent binary program
while avoiding endless loops and other unwanted processor states.

5. Experimental Results

The primary goal of the FTBE fault coverage experiment is to determine the fault
detection capabilities of each binary executable and to identify the minimum latency in
which they trigger those faults. In this section, we focus on identifying the designed binary
programs that provide the smallest possible severe fault trigger latency and compare the
results with the latency of other binary executables. The analysis in this section is carried
out on the faults in the SevereFaults [14] class only, and the five counters discussed earlier
in Section 3.4 that are determined to provide the highest fault coverage.

For each test run, the ERSL is utilized to override the initial binary that Potato is
synthesized with, saving hours of bitstream generation time by avoiding the need to
re-synthesize Potato each time a new binary is tested. To avoid running Potato while
the instruction memory is changing, the ERSL loads binary-under-test using a secondary
clock to the emulated ROM module, while ensuring that the clock to the rest of Potato is
de-asserted.

A fault-free run is then performed with each binary to get fault-free counter values at
1024 increments. Next, Potato is run with faults introduced for each of SA0, SA1, Invert,
and Delay Severe faults, while examining the TopCounters values. Figure 9 plots the fault
trigger results for each binary program on faults in the SevereFaults class as percentages of
the total number of faults in the class. Each binary is given a unique color to differentiate it
from others. The size of each binary in Kilo-bits is given along the x-axis. The fraction of
SevereFaults detected by each binary is given along the y-axis. Each point represents the
fraction of the SevereFaults detected by each binary in comparison to the binary size. The
results for each binary program tested are summarized below:

• For the Fault-Run-Cycle-Based FTBE methodology, the optimal number of binaries
needed to satisfy requirements is determined to be three; deemed B0, B1, and B2 are
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generated from IFTC 6,076,072, 1,728,512, and 550,800 respectively. Each binary targets
specific faults that are triggered at the IFTC from which it is derived.

– B0 triggers nine faults,
– B1 triggers one-hundred and thirteen faults.
– B3 triggers the remaining one-hundred and twenty-two faults.

• The ATPG binary requires fewer instructions in total, which directly correlates to the
memory overhead needed to store the target binary, however, it also detects fewer
SevereFaults than the previous binaries at 188.

• The Coremarks algorithm requires the most instructions in total and triggers 191 faults
in the SevereFaults class throughout a full program run.

• The hello world program, included in the analysis for surety, requires the least amount
of instructions but only triggers 1 fault in the SevereFaults class.

We surmise from this analysis that while the ATPGB provides adequate coverage, it
is likely limited by the test vector coverage achieved by the pattern generator as well as
the complexities of converting disjointed ATPG test vectors into effective coherent binary
programs. A possible better utilization of ATPG principles in this research track could be
the creation of a special five-node scan chain that is made up of the TopCounter nodes. This
concept is discussed fully in Section 5.3.

Figure 9. Binary size to effectiveness comparison for both FTBEs and several other general binaries.

Additionally, RCBEs are shown to be effective in detecting the specific faults observed
at IFTC they are generated from but are not guaranteed to detect any other faults, even
though they often do. Also, their modular nature means that multiple binaries or a larger
contiguous binary would have to be stored to fully utilize this method. Combining multiple
RCBEs in one is a relatively simple process, consisting of overwriting registers that differ
between binary programs and then updating instructions. Overall, we believe the RCBE
method provides the combination of binary size and low latency for achieving 100%
information leakage fault coverage.

5.1. Latency Analysis

The objective of the latency analysis is to determine whether the FTBEs can detect
the presence of faults well before the AES algorithm, thereby justifying the area overhead
that their storage incurs. This goal is addressed for the FTBEs by evaluating latency
for each designed binary and then comparing them to other generic binaries. For this
analysis, only faults in the SevereFaults class are considered. First, fault-free runs are
executed for each binary to acquire fault-free counter values. Then fault-injected runs are
performed for each binary and fault type at 4096 cycle increments starting at clock period
0 to 1,024,000. The latency results are presented as a cumulative fault detection graph
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in Figure 10, where the number of clock cycles that Potato is run for is plotted along the
x-axis and the cumulative number of faults detected is plotted along the y-axis. Each binary
program is given a different color to differentiate, and a color guide is provided to the right.
Both FTBEs demonstrate much better performance in terms of latency when compared to
other standard binaries. The RCBE detects all SevereFaults by 4096 run clock cycles while
the ATPGB triggers 188 faults by the 4096 run clock cycle index.

Figure 10. Subset of fault trigger latencies for select binaries

5.2. Overhead Analysis

In this section, a comparative analysis is undertaken to evaluate the performance and
area overhead of the proposed counter-based Counter-Measure (CM) along with the FTBE
in contrast to previous works. Because our primary focus is detecting leakage-sensitive
faults, comparing the overhead of our technique with previous methodologies that aim
for complete fault coverage is not a clear comparison, as they essentially address different
problems. Leakage sensitive faults have inherent latency and sequence dependencies
while generic faults might not, this discrepancy is likely to lead to differences in the
detection techniques overhead costs. Additionally, techniques such as continuous symptom
monitoring (CSM), and PBIST also have unique complexities that must be taken into
account when making comparisons.

The counter circuit, consisting of two 24-bit counters, is analyzed for area overhead
using Synopsys Design Compiler and the ASAP7 standard cell library. The synthesis report
indicates an area of 339 µm² per counter, and deploying five counters results in an overhead
of 1695 µm². In contrast, the Potato core has a larger area of 28,510 µm². The fractional
area overhead is approximately 5.9%. The performance overhead is estimated using a
checkpoint interval of 100 million instructions, akin to the ACE technique reported above.
Notably, unlike the ACE methodology, the number of scan clock cycles is minimal (120 with
5 24-bit counters), and the vast majority of self-test time is attributed to program execution.
Leveraging the full runtime required to reach maximum fault detection of the generated
FTBEs 1350 clock cycles for the RCBE and 1072 clock cycles for the ATPGB, the performance
overhead is estimated at (1350, 1072)÷ 100million ≈ (0.0035%, 0.00107%), for the RCBE
and the ATPGB respectively. Thus, our proposed counter-based CM + FTBE methodology
incurs minimal overhead compared to existing methods.

It is assumed that the FTBE will be stored in non-volatile memory which is tightly
coupled with the µP, perhaps on-chip at some offset from the bootloader. This presents
another overhead that must be considered and analyzed. Using an area of 0.52 µm² per
memory bit we estimate the total area of each FTBE. We calculate area overhead by taking
into account the total number of bits per binary and the total area of Potato, ((6300, 4800)×
0.52m)÷ 28, 510) ≈ (%11.4, %8.7) respectively. Table 3 shows the area overhead compari-
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Table 3. Memory Allocation per Counter-Measure
Method Memory Allocation(KBits) Area Overhead (%)
RCBE 6.3 11.4
ATPGB 4.8 8.7
ACE 32 18.7
ACE Hybrid 32 5.8

son between our two generated binaries with the closest equivalent in literature [8]. While
the FTBEs require more overhead area than existing works, the Potato µP analyzed in this
work is a much smaller core than the OpenSPARC T1 µP used in [8]. A comparison to the
Rocket µP analyzed in [13], which has an overall area of 112,224 µm², yields better overhead
results at (%2.9 and %2.2) for RCBE and ATPGB respectively. Our prior analysis on both
Potato and Rocket [11][13] implies that the number counters necessary to detect all severe
faults are common in most µP architectures, therefore we have reason to believe that the
counter-based periodic testing methodology will scale well with larger processor systems.

5.3. Next Steps

The output of the Fault Trigger Binary Executable (FTBE) is a counter value that could
be stored in memory and later compared to the fault-free counter value also stored in
memory. Additional efforts would be needed to create a test controller software binary that
works in conjunction with hardware timers to periodically run the Fault Trigger Binary
Executable (FTBE). This test controller would need to have special rights if running on an
operating system and analysis would performed to determine what test frequencies would
be ideal when PBIST induced downtime is considered.

The ATPG-Based FTBE performs poorly compared to the Fault-Run-Cycle-Based FTBE,
this is largely because ATPG vectors do not take into account sequential operations and
transitions in the internal states of the circuit, which are typically associated with clock
cycles or other triggering events. When bypassing state transitions, the objective is to
directly set or reach a particular state without going through the intermediate states that
would occur in normal circuit operation. This can be useful in certain testing scenarios
where the primary goal is to reach a specific state quickly for fault detection or analysis.
However, replicating these optimizations in a standalone binary and achieving the same
levels of efficiency is difficult, as discussed in Section 5. A minimized scan-chain consisting
of only the TopCounters nodes could offer the precision of ATPG vectors without the need
to serially scanin data to the over 34,000 nodes in Potato. Future work could investigate the
process of muxing and chaining the TopCounter nodes into a "mini-scan-chain" as well as
implementing a specialized BIST controller [23] which serially scans in the test vector and
inspects the serial data output. These test vectors would likely be much shorter than those
described in this work, while the BIST controller would likely consume minimal overhead
due to only interacting with a handful of nodes.

In addition, the final goal for this track of research is to demonstrate the counter-based
PBIST in a manufactured processor on a viable technology node. Future research could tape
out the Potato µP with the counter-based countermeasures inserted at the five TopCounters
nodes with the FTBE and fault-free values stored in memory with a program set to run it
periodically. This instrumented µP could then be inserted into a high radiation environment
and tested for fault countermeasures. The insights gained from these experiments could be
invaluable in accessing failure probability for both temporary and permanent faults and
comparing theoretical countermeasure performance to actualized performance.

6. Conclusions

This paper investigates the generation of specially designed executable binary pro-
grams for a counter-based periodic BIST intended for detecting faults in the Potato RISC-V
microprocessor, using an FPGA emulation platform. The specially designed binary pro-
grams are generated using two different methods with varying successes. The detection
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and latency capabilities of the designed binaries using the counter-based approach are
evaluated on a subset of the active faults referred to as severe faults, which are defined as
faults that leak sensitive information, e.g., a portion of the plaintext and/or encryption key,
on the serial port output. The designed binary programs when utilized in combination
with a small set of strategically placed counters are shown to achieve high fault coverage
and low latency while adding little overhead when compared to competing approaches.
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