
A Novel Technique for Improving Hardware Trojan Detection and

Reducing Trojan Activation Time

Hassan Salmani and Mohammad Tehranipoor

ECE Department

University of Connecticut

{salmani h,tehrani}@engr.uconn.edu

Jim Plusquellic

ECE Department

University of New Mexico

jimp@ece.unm.edu

Abstract— Fabless semiconductor industry and government
agencies have raised serious concerns about tampering with
inserting hardware Trojans in IC supply chain in recent years.
Most of the recently proposed Trojan detection methods are
based on Trojan activation to observe either a faulty output
or measureable abnormality on side-channel signals. Time to
activate a hardware Trojan circuit is a major concern from the
authentication standpoint. This paper analyzes time to generate
a transition in functional Trojans. Transition is modeled by
geometric distribution and the number of clock cycles required to
generate a transition is estimated. Furthermore, a dummy scan
flip-flop insertion procedure is proposed aiming at decreasing
transition generation time. The procedure increases transition
probabilities of nets beyond a specific threshold. The relation
between circuit topology, authentication time, and the threshold
is carefully studied. The simulation results on s38417 benchmark
circuit demonstrate that, with a negligible area overhead, our
proposed method can significantly increase Trojan activity and
reduce Trojan activation time.
Index Terms — Security, Hardware Trojan, Trojan Detection,
Trojan Activation Time, Dummy Flip-Flop Insertion

I. INTRODUCTION

Outsourcing design and fabrication process has become a

trend in Integrated Circuit (IC) market due to economical

profit, with limiting the control of customer over IC supply

chain. Motivated adversary takes advantage of such restriction

to tamper IC supply chain by maliciously implanting extra

logic as hardware Trojan circuitry into an IC [1]. Consequently

serious concerns rise about security and trustworthiness of

electronic systems. An attacker can change a design netlist or

subvert the fabrication process by manipulating design mask,

without affecting the main functionality of the design [2].

Hardware Trojan detection is an extremely challenging

problem and traditional structural and functional tests cannot

effectively address it. Trojan circuits have stealthy nature and

are triggered in rare conditions. Trojans are designed such

that they are silent most of their life time and may have very

small size relative to their host design, with featuring limited

contribution into design characteristics. These suggest that

they most likely connect to nets with low controllability and/or

observability [3][4][5]. It is expected that Trojan inputs are

supplied by nets with low transition probabilities to lessen its

impact on circuit side-channel signals such as power and delay.

Automatic Test Pattern Generation (ATPG) methods used in

manufacturing test for detecting defects do so by operating on

the netlist of the Trojan-free circuit. Therefore, existing ATPG

algorithms cannot target Trojan directly [3].

Trojan detection makes efficient pattern generation nec-

essary to disclose Trojan impact on design characteristics

beyond process and environmental variations. Trojan detection

methods using transient power analysis [6][7][8][9] require

patterns that increase Trojan activity whereas keep circuit

activity low to magnify Trojan contribution into the circuit

power consumption. Methods that are based on delay analysis

[10] [11] require patterns that generate transition on nets that

supply Trojan inputs to reveal wiring and input gate resis-

tance and capacitance impact of Trojan on the circuit delay

characteristic. From authentication standpoint, it is critical to

(i) analyze time to generate a transition at Trojan input and in

Trojan circuit and (ii) reduce authentication time.

In this paper, we develop a methodology to increase the

probability of generating a transition in functional Trojan cir-

cuits and to analyze the transition generation time. Transition

probability is modeled using Geometric Distribution [12] and

is used to estimate number of clock cycles required to generate

a transition on a net. An efficient dummy flip-flop insertion

procedure is proposed to remove rare triggering condition of

Trojans. The procedure identifies nets with transition probabil-

ity less than a specific transition probability and inserts dummy

flip-flops such that the transition probabilities of all nets in

design are greater than the specific transition probability. It

should be noted that dummy flip-flops are inserted in a way

that will not change the functionality and timing of design.

The effectiveness of dummy flip-flop insertion is examined

by evaluating different transition probability thresholds for

various Trojan circuits. The relation between authentication

time, the number of required transitions in Trojan circuit,

and tester clock is studied. These parameters would help

determine the transition probability threshold of a design. The

transition probability threshold, in turn, provides an estimation

of area overhead induced by inserted dummy flip-flops. Our

simulation results show significant improvement in Trojan

detection and reduction in Trojan activation time.

The paper is organized as following: Section II describes

prior work on Trojan detection. Analyzing Trojan activation

time is presented is Section III. The proposed dummy flip-

flop insertion procedure is presented in Section IV. Transition

probability threshold analysis and simulation results are pre-

sented in Sections V and VI. Finally the concluding remarks

are presented in Section VII.

1

II. PRIOR WORK

In [4], the authors present a sustained vector technique. A

vector is applied to circuit and for several clock cycles (up

to 25) primary inputs are kept unchanged. In this way all

transitions in the circuit would be attributed to state bits and it

is expected that activities converge to a specific portion of the

circuit after some clock cycles. By applying the next vector

another portion of the circuit will be targeted.

Authors in [8] present a method to generate a power

fingerprint of genuine ICs considering various types of noise

in the circuit. Random patterns are applied to IC-Under-

Authentication (IUA) to generate a measurable difference

between the power profiles of the genuine IC and IUA.

The proposed method in [9] is based on analyzing local

IDDT current measured from power ports on the target chip.

A calibration process is performed for each IUA before actual

measurement to alleviate process variations impact. Trojan-

inserted designs are distinguished using outlier analysis. In

[13], a multiple supply transient current integration method

is presented to detect hardware Trojans in IUA. The current

is measured locally from various power pads or controlled

collapse chip connections (C4s) on the die. Random patterns

are applied to increase the switching in the circuit in a test-

per-clock fashion [14].

A randomization based probabilistic approach to detect

Trojans is presented in [15]. The authors show that it is

possible to construct a unique probabilistic signature for each

circuit by applying input patterns with specific probability.

The output of IUA after applying each pattern is compared

with that of golden circuit. In case of any difference, Trojan

infection is reported. Otherwise, after applying a set of N
vectors if the IUA and golden circuit give the same output,

using statistical reasoning, it is reported that the IUA is Trojan-

free with a confidence interval.

Gate-level characteristics can be used to detect hardware

Trojans [16][17]. Delay and power characteristics of each gate

of a design subjected to process variation can be individually

extracted. Linear programming is used to solve a system

of equations created using non-destructive measurements of

power and delays. Any extra power consumption or excessive

delay caused by Trojan may manifest in measurement error or

new characteristics for circuit’s gates.

A comprehensive taxonomy of Trojans in integrated circuits

is presented in [3]. Trojans are classified based on physical,
activation, and action characteristics. The physical char-

acteristic studies type, size, distribution, and structure of

a Trojan. In terms of type, Trojan can be functional or

parametric. Functional Trojans are realized through adding

or deleting of transistors or gates, while parametric ones are

realized through modification of physical geometry of design

to sabotage reliability. The number of gates or transistors

which are added or deleted defines Trojan size. Distribution
refers to the locations of Trojan components in physical layout.

They can be tight (i.e. placed close to each other) or loose (i.e.

dispersed across the layout.) Trojan insertion can affect chip

dimension, delay characteristic and power profile of a circuit.

Trojan activation characteristics refer to criteria that cause

Trojan to activate and carry out its disruptive function. The

types of disruptive behavior introduced by Trojan determines

Trojan action characteristics. For more details on Trojan

taxonomy, reader is referred to [3]. In this work, we focus

on functional Trojans and targeting parametric Trojans will be

part of our future work.

III. TROJAN ACTIVATION TIME ANALYSIS

Since there is no information about Trojan circuit in terms

of size, type, or location, from authentication standpoint, it is

crucial to analyze Trojan activation time (partially or fully).

In this paper, full activation of Trojan refers to patterns that

activate Trojan so that it impacts the circuit output and causes

malfunction. However, partial activation refers to generating

one or more transitions inside Trojan circuit so that it improves

the effectiveness of transient power-based methods [8][9][13].

In general, a functional Trojan consists of two parts: Trigger

and Payload [18]. The Trigger circuit is mostly inactive by

nature with no Payload effect. Under certain rare conditions

or events, the Trojan is activated (triggered) and then Payload

injects an error to the circuit. Generating transition in Trojan

circuit depends on its implementation. Switching at the first

level gates of Trojan circuit depends on its preceding cells.

The next levels of Trojan circuit are similar to the first level;

therefore, in the following, we focus on generating switching

in one Trojan gate at the first level of a Trojan circuit to carry

out our detailed analysis. However, the results in Section VI

will be presented for the entire Trojan circuit.

In general, the transitions in a circuit are induced by

transitions in scan cells and primary inputs [20]. We define

a Trojan cone as logic circuit connecting to the inputs of a

Trojan gate. Note that, in this section, we present one Trojan

gate for our analysis; however, a Trojan may contain more

than one gate. Also, note that we do not assume the location

of Trojan is known to us. The procedure developed in this

work is independent of location and size of hardware Trojan

in integrated circuits. Trojan cone can determine the required

time to generate transition in a Trojan gate. The number of

gates, gate types and the structure of Trojan cone can define

time to generate transition in the Trojan gate as well. Figure

1 shows two example Trojan cones. Trojans are named as

Trojan 1 and Trojan 2. Trojan 1 contains three gates in two

levels while Trojan 2 contains seven gates in three levels. Tg1

in Trojan1 is connected to the cone shown in Figure 1(a)

and Tg3 is connected to the cone in Figure 1(b). Other gates

in the two Trojans are assumed to be connected to other parts

of the circuit.

In Figure 1(a), Trojan cone consists of 17 gates in 11 levels.

Trojan cone contains all gates in original circuit impacting a

Trojan gate and the Trojan gate itself (here Tg1). Simulation

results show that after applying 1000 random test vectors in

test-per-clock fashion, there are 67 transitions at Tg1 output.

In Figure 1(b), Trojan cone consists of 7 gates in 2 levels.

The simulation results show that there are 421 transitions at

Tg3 output after applying the same number of test vectors, i.e.

2

Fig. 1. Two Trojan cone examples: (a) Trojans 1 and (b) Trojan 2

1000. Since random vectors are applied to the above circuits,

the results can be slightly different from one random vector set

to another. As seen from the results, the number of transitions

in the two Trojan gates varies significantly. This is mainly due

to the difference in Trojan cone structure, number of levels,

and number of inputs (scan flip-flops and primary inputs) and

Trojan gate type.

Probability can represent characteristics of a circuit since

it considers gates functionality and interconnections among

them. The probability of switching at a node in the circuit

provides a good estimation of the time to generate switching

on the node. Trojan cone determines switching probability at

the Trojan gate output, e.g. Tg1. Suppose the probabilities

of having ‘1’ and ‘0’ at Trojan output are P1 and P0,

respectively, the probability of switching from 0 to 1 or 1 to 0

at the output of a Trojan gate will be PtTgi = P1 × P0,

where Tgi is the ith gate at the first level of a Trojan.

For example, with assumption of applying random patterns

through inputs, with probability of 1/2, the probability of

generating a transition at the output of Trojan gate Tg3 (PtTg3)

is 0.25 as shown in Figure 2. The circuit shown in this figure

is the same as one depicted in Figure 1(b).

To obtain transition probability, a transition (i.e. success)

can be modeled using Geometric Distribution (GD) [12]. The

Geometric Distribution is a discrete distribution for n =
0, 1, 2, · · · with the probability function p(n) = P × (1−P)n.

The probability function states that after n clock cycles, finally

in the (n + 1)th clock cycle, there will be a transition, i.e.

(n + 1)th trial is the first success. The average number of

experiments is (P−1 − 1) which indicates the number of

required clock cycles, on average, to generate a transition.

Fig. 2. Transition probability for a target cone.

Fig. 3. Comparing mathematical and simulation results.

For the Trojan gate shown in Figure 2, the calculation based

on Geometric Distribution shows that on average three clock

cycles are required to generate a transition at the Trojan gate

(Tg3) output. This is demonstrated by our simulation results

since, on average, in each 2.37 clock cycles a transition was

generated after applying 1000 test vectors. Note that the 1000

random test vectors are generated with the probability of 1/2

for ‘0’ and ‘1’.

Figure 3 presents two new Trojan cones and compares the

average clock cycles per transition using GD (i.e. probability

analysis) and simulation. Figure 3(a) shows that the simulation

result of applying 1000 random patterns is very close to that

of GD. Trojan cone in Figure 3 consists only of AND gates

such that the probability of generating ‘1’ at Trojan gate Tgj

output is much less than that of ‘0’ therefore, there is a

3

TABLE I

S298 AND S344 BENCHMARKS CHARACTERISTICS.

Benchmark # of in-
puts

of flip-
flops

the total number
of inputs and flip-
flops

the number
of gates

s298 3 14 17 68

s344 9 15 24 71

small transition probability for Tgj . Any transition to ‘1’ will

most likely follow immediately by a transition to ‘0’ since

Trojan cone mostly provides ‘0’ at the output of Tgj gate.

The simulation results by applying 1000 test vectors show that

each 250 clock cycles there is one transition at Trojan output

and probability analysis shows that every 255.6 clock cycles,

one transition can be generated at the output of Tgj gate.

Beside the interconnection among gates (i.e. circuit topol-

ogy), transition probabilities of nets depend on the number of

inputs and flip-flops of Trojan cone. Primary inputs and flip-

flops can determine a net’s depth which is the minimum dis-

tance of the net from either a primary input or a flip-flop. Such

dependency is examined on two ISCAS’89 benchmarks (s298

and s344). Table I shows the benchmarks’ characteristics. The

benchmarks have roughly the same number of gates; however,

their number of inputs and flip-flops are different. Primary

inputs and flip-flops provide immediate access to internal parts

of a circuit, and thus increase transition probabilities of nets.

Figure 4 compares the transition probabilities frequency of the

benchmarks.

Figure 4 shows that s344 benchmark, having more number

of inputs and flip-flops, has more number of nets with high

transition probability. Further, simulation results of applying

random vectors in 1000 clock cycles report 56560 transitions

in s344 while 44600 in s298. Therefore, enhancing accessi-

bility to internal parts of circuit by inserting dummy flip-flops

can be an effective way to increase transition probability of

nets.

It is seen from both analyses (GD and simulation) that

as P0 or P1 of a net becomes too large or too small,

the transition probability reduces significantly. Therefore, to

increase transition probability of a net, it would be preferred

to ensure that P0 and P1 values are close. The maximum

transition probability of a net can be Pt = 0.25 and it happens

when P0 = P1 = 1/2. Given a cone structure and various

gate types used in the cone, making the transition probability

Fig. 4. Transition probability frequency in s298 and s344 benchmarks.

Fig. 5. The number of required clock cycles versus transition probability
based on geometric distribution.

values (Pt) closer to each other would seem impractical but

by improving controllability by inserting dummy flip-flops,

we would be able to increase transition probability for both

0 → 1 and 1 → 0 transitions. This is validate by the analysis

performed using Geometric Distribution as shown in Figure

5. As seen, as the transition probability decreases, the number

of clock cycles to generate transition increases exponentially.

IV. DUMMY SCAN FLIP-FLOP INSERTION

When the probabilities for ‘1’ and ‘0’ of nets on a path

in a cone becomes unidirectional, i.e. P1 ≫ P0 or P0 ≫
P1 similar to the example shown in Figure 3(b), transition

probability of the nets (Pti = Pi0 × Pi1) rapidly decreases.

To ensure transition probabilities are greater than a specific

threshold (PTH), dummy flip-flops can be inserted so as to

close probabilities of ‘1’ and ‘0’ nets. Note that in this paper

both terms “dummy flip-flop” and “dummy scan flip-flop”

refer to the increased controllability (transition probability) in

a circuit.

Figure 6 shows the structure of dummy scan flip-flop (dSFF)

in addition to an extra gate (AND or OR). If probability of

‘0’ on target net Neti, Pi0, is less than its probability of ‘1’,

Pi1, an AND gate is placed after scan flip-flop and net Neti
restitched through the AND gate to increase Pi0, as depicted

in Figure 6(a). However, if Pi1 is less than Pi0, an OR gate

is being used to increase Pi1, as in Figure 6(b). In this work,

dSFF-AND and dSFF-OR represent dummy scan flip-flops

with AND and OR gates, respectively. Accompanying a net

having low transition probability with a dSFF would increase

the net’s and following nets’ transition probabilities. When

Fig. 6. The dummy flip-flop structures when (a) Pi0 ≪ Pi1 and (b) Pi0 ≫
Pi1.4

Test Enable (TE pin) is active, the output of scan flip-flop is

supplied by Scan Input (SI pin). The inserted dummy scan

flip-flop has no impact on the functionality of the circuit. In

normal functional mode, the output of scan flip-flop is supplied

by either ‘0’ or ‘1’ depending on the gate type at the output

of scan flip-flop to avoid changing the functionality of Neti.
The probabilities of ‘1’ and ‘0’ at the output of scan flip-

flop are 1/2. Thus, by supplying internal nets with nets having

equal ‘1’ and ‘0’ probabilities, the ‘1’ and ‘0’ probabilities on

target nets can become closer and their respective transition

probabilities can be increased. Assume that Pi0 of Neti is

much greater than its Pi1, where

Pi0 =
K

N
and Pi1 = 1 −

K

N

where K and N are cardinal values. The denominators of

probabilities would be the number of clock cycles in an

experiment and their numerators are the number of desired

value. Pi0 approaches to 1 (i.e. K ≈ N) when it is assumed

Pi0 ≫ Pi1. By inserting proposed dummy flip-flop as in

Figure 6(b), new probabilities are

P ′

i0 =
K

2N
, and P ′

i1 = 1 −
K

2N

As a result, P ′

i0 will be smaller than Pi0 and P ′

i1 will be

greater than Pi1. Thus, after dummy flip-flop insertion, the

transition probability of the target net and its following nets

would be greater as

P ′

i0 × P ′

i1 > Pi0 × Pi1

K

2N
× (1 −

K

2N
) >

K

N
× (1 −

K

N
)

2N − K > 4(N − K)

which is true because K ≈ N and N > K .

Using same analysis, it can be proven that by inserting

AND gate when Pi0 of a net is much lower than its Pi1,

the transition probability of the net can be increased. In this

case, mathematical analysis shows that inserting a dSFF-OR

on upper input net of Tgi gate in Figure 3, as depicted in Figure

7, reduces the number of clock cycles per transition from

255.6 to 30 on average at the output of Tgj gate. Furthermore,

simulation results also closely confirm 33.4 clock cycles per

transition.

A. Removing Rare Triggering Conditions

An able adversary would ensure that Trojans are activated

only under very rare conditions. It could be a rare circuit state,

certain temperature or noise, etc. This is necessary to avoid

Trojan detection accidentally using structural or functional

patterns. As an example, for functional Trojans [3], a Trojan

can have q ≫ 1 trigger inputs which can be nets with (i)

very low transition probabilities and (ii) rare combinations.

When the transition probability of Neti is very low, either

Pi0 is much greater than Pi1 or vice versa, as discussed in

Section III. With q number of trigger inputs, the probability

of generating a specific trigger vector is

Ptrigger−vector =

q
∏

i=1

Pi (1)

where

Pi =

{

Pi0 for trigger input Neti to be 0

Pi1 for trigger input Neti to be 1.

It is expected that Ptrigger−vector to be very low if Pi0 or

Pi1 is low. By inserting dummy scan flip-flop, the transition

probability of nets would increase since Pi0 and Pi1 values

become closer. As a result, Ptrigger−vector also increases

and the trigger vector will not be a rare event anymore.

By increasing the transition probability of nets with low

transition rate, we will eliminate hard-to-activate sites in a

design. This would result in increasing the probability of

switching in Trojan circuit. If fully activated, Trojan’s output

can impact design functionality and it will be detected. In case

of increasing switching in the Trojan, called partial activation

in this paper, the Trojan can be detected much easier using

transient power or charge-based analysis methods [8][9][13].

This method eliminates the need to focus on rare conditions

as proposed in [18][19].

For example, Table II shows probability of two nets in

s38417 benchmark before and after dummy scan flip-flop

insertion. Assuming that Trojan needs trigger vector {01}
on Net1 and Net2, as seen in the table, the probability

of the trigger vector would be Ptrigger−vector = PNet10 ×
PNet21=4.079e-06 in the original circuit without dummy flip-

flop. However, the probability increases to 0.094 after dummy

flip-flop insertion.

B. Dummy Scan Flip-Flop Insertion Procedure

Figure 8 shows the proposed dSFF insertion procedure. Nets

with transition probabilities greater than determined transition

probability threshold (PTH) and close to nets with transition

probabilities lower than PTH are good candidates for dSFF

insertion since each of them can impact several low transition

nets at their fanout cone at once.

Fig. 7. Increasing transition probability by inserting dSFF-OR.5

TABLE II

PROBABILITY OF TWO NETS IN S38417 BENCHMARK BEFORE AND AFTER DSFF INSERTION.

Before dSFF insertion After dSFF insertion
P0 P1 PNet10 × PNet21 P0 P1 PNet10 × PNet21

Net 1 0.999995317077 4.6e-06 4.079e-06 0.989 0.011 0.094
Net 2 0.999959170737 4.08e-06 0.905 0.095

01: Set PTH (The desired threshold).
02: CurrentDesign = SetDesign (the original circuit).
03: NetsProbability = NetsTransitionProbability (CurrentDesign).
04: HighTransitionNets = Nets (1, PTH , NetsProbability).
05: Set Order “Increasing”.
06: SortedHighTransitionNets = Sort (HighTransition, Order).
07: LowTransitionNets = Nets (PTH , 0, NetsProbability).
08: NumberofLowTransitionNetsBefore = Fequency (LowTransitionNets).
09: TargetNet = Pop (SortedHighTransitionNets).
10: Insert (dSFF, CurrentDesign, TargetNet).
11: UpdatedDesign = SetDesign (CurrentDesign).
12: NetsProbability = NetsTransitionProbability (UpdatedDesign).
13: LowTransitionNets = Nets (PTH , 0, NetsProbability).
14: NumberofLowTransitionNetsAfter = Fequency (LowTransitionNets).
15: If (NumberofLowTransitionNetsAfter < NumberofLowTransitionNetsBefore) Then {
16: CurrentDesign = SetDesign (UpdatedDesign).
17: }
18: If (NumberofLowTransitionNetsAfter > 0) Then {
19: NumberofLowTransitionNetsBefore = NumberofLowTransitionNetsAfter;
20: Go To Line 09;
21: } Else { Return CurrentDesign.}

The description of functions :
Set Var1 Var2: Sets the value of variable/constant Var2 to Var1.
SetDesign (Design): Returns the Design variable.
NetsTransitionProbability (Design): Obtains Design variable and return the transition probability

of each net of Design.
Nets (High, Low, Nets): Obtains an upper limit through High variable, a lower limit through Low variable, and

a list of nets through Nets. Returns any net with transition probability between High and Low variables.
Sort (Nets, Order): Obtains a set of Nets and put them in order based on Order variable which can have two

values: Increasing, and Decreasing
Frequency (Nets): Returns the number of Nets
Pop (Nets): Removes the net at the top of Nets
Insert (dSFF, Design, Net): Inserts a dSFF in Design and restitches Net through dSFF.

Fig. 8. dSFF insertion procedure.

After setting PTH and original design as CurrentDesign
(Lines 1-2), the procedure will calculate transition probability

of all nets in the design (Line 3). Nets are then divided into

two groups: (1) nets with transition probability higher than

PTH , and (2) nets with transition probability lower than PTH .

Nets in the first group obtained in Line 4 are then sorted and

permanently stored in SortedHighTransitionNets (Line 6).

In the following, in Lines 7 and 8, nets with

transition probability less than PTH are identified and

stored as LowTransitionNets and their number as

NumberofLowTransitionNetsBefore. The procedure,

in Line 9, removes the net with the lowest/highest

transition probability, depending upon Order, from

SortedHighTransitionNets. The removed net is restitched

through dSFF in Line 10. Transition probability of nets after

dSFF insertion is again calculated and the number of low

transition nets is obtained. If the value is less than the number

of low transition nets before dSFF insertion, the inserted dSFF

is kept otherwise the dSFF would be ignored since no gain

was obtained. In the following, if there is still any net with

transition probability less than PTH , the procedure continues

until there would not be neither any net with low transition

probability nor any nets in SortedHighTranstionNets.

We acknowledge that inserting dummy scan flip-flop in-

creases the delay of paths and can impact design performance.

Note that it is unlikely that adversary uses nets on critical paths

as input since it can impact the path delay due to the increased

capacitance and can be easily detected using path delay fault

test patterns. Using the above procedure, we avoid inserting

dummy flip-flops on critical paths by eliminating nets on the

critical paths from HighTransitionNets.

V. TRANSITION PROBABILITY THRESHOLD ANALYSIS

Inserting dummy flip-flops to increase transition probability

of nets would increase circuit area. The area overhead mainly

depends on transition probability threshold (PTH). By setting a

PTH , our proposed procedure ensures that all nets in the circuit

have transition probability greater or equal to this threshold.

PTH would impact both area overhead (i.e. the number of

6

Fig. 9. Probability threshold versus authentication time and the number of
transitions.

dSFFs) and transition generation time in hardware Trojan

gates. In general, setting smaller PTH would result in smaller

number of dSFFs but would require more time, on average, to

generate switching in Trojan gates. On the other hand, setting

larger PTH would require more number of dSFFs but reduces

the transition generation time in hardware Trojan gates.

To set PTH , there are several parameters that should be

considered. They can be grouped into two main categories

namely authentication and circuit parameters. Authentication

parameters are of authentication characteristics and consist of

two sub-parameters: 1) authentication time of each integrated

circuit, TAu, and 2) the clock period of tester, TTester. Circuit

parameters represent circuit characteristics and consist of three

sub-parameters: 1) the number of required transitions in Trojan

circuit, NTr, 2) the average number of clock cycles per

transition which can be modeled using Geometric Distribution,

and 3) circuit activity, Cactivity . Note that NTr is an important

parameter when using transient power analysis methods for

detecting hardware Trojans since it indicates the contribution

of Trojans into the total circuit power consumption. The larger

the NTr, the easier the detection of a Trojan would be.

Equation (2) shows how authentication and circuit parame-

ters are related:

TAu ∝
NTr × TTester × (P−1

TH − 1)

Cactivity

(2)

TAu is a user-defined parameter that depends on time-to-

market and criticality of the application in which the circuit

will be used. The equation is based on the time-to-generate

a specific number of transitions in a Trojan gate. From

Geometric Distribution analysis, on average, (P−1

TH − 1) clock

cycles are required for each transition on nets whose transition

probabilities are PTH . It is assumed that the inputs of Trojans

are nets with transition probabilities of PTH in the Equation to

consider the worst authentication case. TAu is also subjected

to Cactivity reversely.

Equation (2) shows that there is a direct relation between

TAu, NTr and TTester :

1) Requiring the more number of transitions at Trojan

implies the longer authentication time.

Fig. 10. Transition probability frequency in s641 and s5378 benchmarks.

TABLE III

S641 AND S5378 BENCHMARKS CHARACTERISTICS.

Benchmark # of inputs # of flip-
flops

the number of compo-
nents

s5378 35 176 823

s641 35 19 127

2) Clock period of tester (TTester) determines how fast

authentication patterns can be applied to IUA. Applying

patterns with higher frequency decreases TAu.

PTH determines transition probability threshold of design

and using Geometric distribution increasing PTH would de-

crease TAu. For a specific design with Cactivity of “unit” and

assuming TTester = 4×10−3 second, Figure 9 shows that for

a target authentication time, PTH increases by the number of

required transitions at Trojan output; therefore, area overhead

increases. Further, PTH decreases at any specific number of

transitions by increasing authentication time. The minimum

PTH is obtained when the number of transitions is minimum

and authentication time is maximum.

Circuit activity (Cactivity) is a function of transition occur-

rence frequency of circuit which is defined as

0.25
∑

Pt=0

(fPt × Pt ×

0.25
∑

Pt′=Pt

(fPt′ × Pt′)) (3)

where Pt and Pt′ is transition probability and fPt and fPt′

represents the number of nets with transition probability of Pt
in the entire circuit. Equation (3) represents circuit character-

istics by importing the influence of nets with higher transition

probabilities on nets with lower transition probabilities. Circuit

activity parameter is studied for s5378 and s641 benchmarks

by inserting a NAND gate Trojan. Trojan inputs in the two

benchmarks have roughly the same transition probabilities

(Pt = 0.015). Table III shows the benchmarks’ characteristics

and Figure 10 presents their transition probability frequency.

Although both circuits have the same number of inputs, but

s5378 is larger with more number of components, consisting

of gates and flip-flops. Transition occurrence frequencies of

s5378 and s641 benchmarks are 578.84 and 124.92, respec-

tively. It is expected that s5378 with higher Cactivity generates

more number of transitions in the Trojan. Considering PTH =

7

10e − 05, simulation results show that there is one transition

in each 29.8 clock cycles at the output of Trojan in s5378

whereas 132.0 clock cycles in s641, on average.

TAu depends on NTr and circuit characteristics in terms of

Cactivity and PTH . NTr determines the number of required

transitions to distinguish between Trojan-inserted and Trojan-

free circuits. Circuits with higher Cactivity may increase

Trojan activation and reduce TAu. Furthermore, PTH provides

and estimation of maximum TAu by implying the rarest Trojan

input vector application.

VI. SIMULATION RESULTS

We apply our dummy flip-flop insertion procedure to s38417

benchmark which contains 1564 flip-flops and 4933 gates.

Four different transition probability thresholds are examined

in this work (PTH=10e-05, 10e-04, 10e-03, and 10e-2). The

amount of area overhead (number of dSFFs) to ensure all nets

have transition probabilities higher than PTH is evaluated.

Further, four combinational comparator Trojan circuits, pre-

sented in Figure 11, are inserted into the benchmark circuit.

Assuming that PTH=10e-05, transition probabilities of nets

are calculated and nets are divided into three groups: (1) Low

Transition (LT) nets whose transition probabilities are less than

10e-05, (2) Medium Transition (MT) nets whose transition

probabilities are between 10e-05 and 5x10e-05, and (3) High

Transition (HT) probability nets whose transition probabilities

are greater than 5x10e-05. Similar categorization is used for

the other PTHs used in this paper. To simulate the worst cases

of Trojan activation, nets of the first and second categories are

selected to be connected to the Trojans.

Each Trojan circuit consists of two parts: Trigger and

Payload. As in Figure 11, the Payload inputs come from

Trigger output and data input which is part of the original

circuit. The comparators look for rare combinations of Trojan

inputs based on their ‘1’ and ‘0’ probabilities. Payload gates

are selected based on Trojan outputs’ dominant values. Dash

lines above Trojans in the figure represent the connection in

the original circuit which is assumed to be restitched through

Trojan’s Payload by adversary.

The simulation results show the number of transitions in

the entire circuit and specifically transitions of LT and MT

nets. The total number of transitions at Trojan inputs and in

Trojan circuit, and the number of transitions on Trigger output

that can potentially cause functional failure are reported. Then,

it is studied how much dSFFs can magnify Trojan impact

based on Trojan to Circuit Activity (TCA) factor which is

the ratio of the number of transitions in Trojan circuit (NTr)

to the entire design. Additionally, the number of transitions

on Payload output is also obtained and we will investigate the

difference between payload output and its data input to further

analyze the number of erroneous logic values injected into the

circuit.

When the value of Trigger output is dormant (i.e. ‘1’ for

AND/NAND Payloads and ‘0’ for OR/NOR Payloads), the

Payload output is the same as Payload’s data input; otherwise,

the Payload output depends on values of both Trigger output

and data input. If both are the same, then the output will be

similar to the both inputs. However, a different Payload input

combination assuming the Trigger is active would mean that

the Payload output is due to Trigger input. This is called full

activation of Trojan since the Payload output change (POC)

can cause functional failure.

The POC rate depends on transition rate of Trigger output

and Payload data input. It is expected when both Payload

inputs have low transition probability the POC rate to be

unpredictable (small or large). For example, if Payload is an

AND gate and data input and Trigger output have high ‘1’

probability, low POC rate is expected. On the other hand, if

one of the Payload inputs has higher transition probability

than the other, larger POC rate is expected. If Trigger output

is active for many clock cycles, a large Payload output change

is expected.

The proposed method can help Trojan detection in two

ways:

1. Transient Power Analysis : By increasing the number

of transitions in Trojan circuits, the proposed method

can help improve the previously proposed power-based

methods [5][6][9][11]. In this case, the vectors are

applied in a test-per-clock (TPC) fashion since no obser-

vation is made by the flip-flops. In fact, the power pads

and C4s are the observation points since transient current

is being measured. Suppose Nsff is the number of scan

flip-flops and Nvec tpc is the number of vectors, the total

number of clock cycles Ntotalcycle = Nvec + Nsff − 1.

When Nvec ≫ Nsff , the total number of clock cycles

equals the number of test vectors Ntotal cycle tpc =
Nvec.

2. Full Activation : By increasing the probability of full

activation of a Trojan (making the data input to be dif-

ferent from Payload output) the probability of observing

an incorrect response to the applied vectors would also

increase. In this case, the test vectors are applied in a

test-per-scan fashion since the response of a test vector

pair must be captured and scanned-out. The test vectors

are applied similar to launch-off-shift method used for

delay testing except that there is no requirement on at-

speed scan enable signal. The second vector is only 1-

bit shifted version of the first vector (i.e. initialization

vector). If Nsff is the number of scan flip-flops and

Nvec tps is the number of vectors, the total number of

clock cycles Ntotal cycle tps = (Nsff + 1) · Nvec tps.

A. Without Dummy Flip-Flop

Simulations are run for Nvec tpc = Nvec tps = 144 test

vectors. Table IV shows the design transitions statistics and

the contribution of Trojans into the original circuit, i.e. before

dSFF insertion. Column 2 shows the number of transitions in

the entire circuit including Trojans. In the next two columns,

transition count for LT and MT nets are reported. These

numbers can represent activity of nets which are more prob-

able to constitute Trojans’ inputs to make Trojan activations

rare. The fifth column presents the number of transitions at

8

Fig. 11. Trojan circuits.

TABLE IV

TROJANS ACTIVITY ANALYSIS BEFORE DSFF INSERTION.

Trojan Total number of
Transitions

of Transi-
tions on LT
nets

of Transi-
tions on MT
nets

of Transitions
at Trojan inputs

of Transitions
inside Trojan cir-
cuit

of Transitions
at Trojan output

NTr TCA POC

Trojan 1 310418 7 105 4 NAa 0 0 0.0E+00 0

Trojan 2 310429 7 105 16 11 0 11 3.54E-05 0

Trojan 3 310443 7 105 35 25 0 25 8.05E-05 0

Trojan 4 310470 7 105 89 51 0 51 1.64E-04 0

aNot Applicable

TABLE V

TROJANS ACTIVITY ANALYSIS AFTER DSFF INSERTION WITH PTH = 10e − 5.

Trojan Total number of
Transitions

of Transi-
tions on LT
nets

of Transi-
tions on MT
nets

of Transitions
at Trojan inputs

of Transitions
inside Trojan cir-
cuit

of Transitions
at Trojan output

NTr TCA POC

Trojan 1 318257 57 144 37 NA 1 1 3.13E-06 0

Trojan 2 318284 57 144 64 14 0 14 4.39E-05 0

Trojan 3 318299 57 144 97 28 0 28 8.79E-05 0

Trojan 4 318365 57 144 163 95 0 95 2.98E-04 0

Trojan inputs, implying attempts to activate Trojans subjected

to various input combinations. Columns 6 and 7 show the

number of transitions inside and at the output of Trojans,

respectively. The total number of transitions in Trojans (NTr),

the sum of transitions inside and at the output of Trojans,

is reported in Column 8. Trojan contribution into the entire

circuit is evaluated by TCA factor and presented in Column

9. The last column (POC) indicates the number of Trojan full

activations which results in functional error inside the host

design.

Table IV shows that before dSFF insertion none of the

Trojans is fully activated. The results indicate larger Trojans

9

TABLE VI

TROJANS ACTIVITY ANALYSIS AFTER DSFF INSERTION WITH PTH = 10e − 4.

Trojan Total number of
Transitions

of Transi-
tions on LT
nets

of Transi-
tions on MT
nets

of Transitions
at Trojan inputs

of Transitions
inside Trojan cir-
cuit

of Transitions
at Trojan output

NTr TCA POC

Trojan 1 327293 149 399 69 NA 18 18 5.49E-05 14

Trojan 2 327322 149 399 148 73 7 80 2.44E-04 9

Trojan 3 327357 149 399 190 116 0 116 3.54E-04 6

Trojan 4 327436 149 399 361 195 0 195 5.95E-04 0

TABLE VII

TROJANS ACTIVITY ANALYSIS AFTER DSFF INSERTION WITH PTH = 10e − 3.

Trojan Total number of
Transitions

of Transi-
tions on LT
nets

of Transi-
tions on MT
nets

of Transitions
at Trojan inputs

of Transitions
inside Trojan cir-
cuit

of Transitions
at Trojan output

NTr TCA POC

Trojan 1 235378 46 243 30 NA 11 11 4.67E-05 3

Trojan 2 235394 46 243 42 38 1 39 1.65E-04 0

Trojan 3 235418 46 243 96 62 0 62 2.63E-04 0

Trojan 4 235523 46 243 186 167 0 167 7.09E-04 0

contribute more into the entire design activity, i.e. larger

NTr, and thus have greater TCA, more attributed to internal

Transitions.

B. PTH = 10e-05

There are four nets in s38417 benchmark with transition

probability less than 10e-05. Using our procedure, 4 dSFFs

are needed to increase transition probabilities of these nets

beyond 10e-05. The 4 dSFFs make an area overhead about

0.2%. Table V shows circuit activity decreases slightly while

Trojans activity increase. Although none of the Trojans is fully

activated, there is increase in Trojans’ TCA in proportion to

their size. Furthermore, activity of LT and MT nets increases

and is manifested in increasing Trojans’ activity. In the fol-

lowing, PTH is increased to 10e-04 and corresponding results

are presented in Table VI.

C. PTH = 10e-04

The dSFF insertion procedure identifies 28 nets with tran-

sition probability less than 10e-04. In this case, 16 dSFFs

are inserted to ensure these nets have transition probability

greater than PTH , incurring 0.8% area overhead. The results in

Table VI show LT and MT nets are more active by increasing

PTH relative to the previous cases. In addition, Trojans of

smaller size are fully activated and cause functional errors in

the host design several times, and larger Trojans bring forth

more internal transitions. Consequently, there is high activity

in Trojan circuits and significant increase in Trojans’ TCA.

To verify that continuously increasing PTH increases Trojans

contribution, PTH is increased to 10e-03 and

D. PTH = 10e-03

Increasing transition probability of nets beyond 10e-03

requires 60 dSFFs and imposes 3.0% overhead. The results

in Table VII, contrary to what was expected, show decrease

in both circuit and Trojans activity. LT and MT nets are less

active relative to PTH = 10e-04, and as a result Trojans get

less activated. Even the total number of transitions in the entire

design decreases. As an exception the TCA factor of Trojan 4

is increased although it gets less active due to relatively more

decrease in the total number of transitions in the entire design.

More detail analysis in the following shows that increasing

transition probability of nets beyond a specific threshold does

not necessarily increase the number of transitions in the entire

design.

Any circuit consists of primary gates mainly NAND and

NOR gates, and any other complex gate and module can be

made using these primary gates. Transition at the output of a

gate is a function of transition on its inputs. Figure 12 shows

transition probability at the output of 2-input NAND and 2-

input NOR gates based on transition probability of their inputs.

The maximum transition probability of a net is 0.25 and is

obtained when probabilities of 1 and 0 of the net are equal to

1/2. However, Figure 12 indicates that maximum transition

probability at the output of the gates are when transition

probability of one of its input is high and that of the other

input is low. This trend can be seen in both NAND and NOR

gates. Further, Figure 12 indicates when transition probabilities

of inputs are both 0.25 (the maximum value), the transition

probabilities at gates’ outputs are 0.1875 in the both gates.

In sum, increasing PTH to increase transition probability of

individual nets may not necessarily increase the number of

transitions in the entire design. To confirm this fact PTH is

increased to 10e-02 and results are presented in Table VIII.

E. PTH = 10e-02

Incurring 5.2% area overhead, 100 dSFFs are required to

have transition probability of all nets greater than 10e-02. As

it was expected the total number of transitions in the entire

design decreases more and the number of transition inside and

at the output of Trojan circuits is less than the results with

PTH = 10e-04. However, since the number of transitions in

the entire design is roughly half of corresponding values with

PTH = 10e-04 there is increase in Trojans’ TCA with PTH =

10e-02.

10

Fig. 12. Transition density analysis for NAND and NOR gates.

TABLE VIII

TROJANS ACTIVITY ANALYSIS AFTER DSFF INSERTION WITH PTH = 10e − 2.

Trojan Total number of
Transitions

of Transi-
tions on LT
nets

of Transi-
tions on MT
nets

of Transitions
at Trojan inputs

of Transitions
inside Trojan cir-
cuit

of Transitions
at Trojan output

NTr TCA POC

Trojan 1 185875 139 383 67 NA 10 10 5.38E-05 5

Trojan 2 185915 139 383 132 67 2 69 3.71E-04 0

Trojan 3 185946 139 383 176 100 0 100 5.37E-04 0

Trojan 4 186049 139 383 352 204 0 204 1.09E-03 0

TABLE IX

THE TRANSITIONS STATISTICS IN THE ENTIRE DESIGN AND MT AND LT NETS.

Pth The number of transitions
in the entire design

The transitions percent-
age of MT and LT nets

Average number of
transitions on LT and
MT nets

Average number of
transitions per clock
in the entire design

Average number of
transitions on each net

Before dSFF insertion 310418 3.6e-02% 5.6 2155 66

10e-05 318527 6.3e-02% 10.0 2212 68

10e-04 328684 1.5e-01% 25.4 2283 70

10e-03 236314 1.2e-01% 14.4 1641 50

10e-02 185875 2.8e-01% 26.1 1290 39

Table IX presents transitions statistics in the entire design

and LT and MT nets at examined PTHs. The results in Column

2 indicate increasing PTH decreases the number of transitions

in the entire design, caused by transition characteristics of

primary gates discussed. On the other hand, Column 3 shows

increase in the percentage of transitions on LT and MT nets.

In other words, there is a transition movement from HT nets to

MT and LT nets. The next column also demonstrates that by

increasing PTH , the average number of transitions on LT and

MT nets would increase. The last two columns corroborate

that by increasing PTH there is decrease in the number of

transitions in the entire design per clock and on each net on

average.

In Table X, the results show that by increasing PTH al-

though there are more number of low transition nets, relatively

there is decrease in the number of required dSFF. Further, the

simulation results show that smaller Trojans, e.g. Trojan 1

and Trojan 2, can be fully activated with higher rate while

they have less contribution into circuit activity. On the other

TABLE X

PTH ANALYSIS.

Pth 10e-05 10e-04 10e-03 10e-02

the number of nets 4 28 129 275

the number of dSFFs 4 16 60 100

Area overhead 0.2% 0.8% 3.0% 5.2%

The ratio of # dSFF to # nets 100% 57% 46% 36%

hand, larger Trojans, e.g. Trojan 3 and Trojan 4, are harder

to be fully activated and contribute more into circuit activity.

Therefore, we believe that smaller Trojans are easier to detect

using ATPG with dSFF insertion technique and larger Trojans

using power-based techniques.

VII. CONCLUSIONS

In this paper, we demonstrate that the topology of a circuit

and the number of primary inputs and flip-flops determine

switching activity of the circuit. In the following, transitions

are modeled using geometric distribution and the number of

clock cycles taking to generate a transition is estimated on

11

average. Furthermore, it is shown that inserting dummy scan

flip-flop can reduce transition generating time. This realization

leads to develop a dummy flip-flop insertion procedure aiming

at augmenting transition probabilities of nets in a design, and

increasing activity of hardware Trojans in Integrated Circuits.

The simulation results for s38417 benchmark demonstrate that

it is possible to significantly increase switching activity in

Trojan circuits. Smaller Trojans may be fully activated and

cause functional failures. Larger Trojans more contribute into

side-channel signals and are detected as abnormality.

VIII. ACKNOWLEDGEMENTS

The work of Hassan Salmani and Mohammad Tehranipoor

was supported in part by the National Science Foundation

Grant CNS-0716535. The work of Jim Plusquellic was sup-

ported in part by NSF grant CNS-0716559.

REFERENCES

[1] U.S.D. Of Defense. “Defense science board task force on high perfor-
mance microchip supply,” http://www.acq.osd.mil/dsb/reports/2005-02-
HPMS Report Final.pdf

[2] S. Adee “The Hunt for the Kill Switch,”
http://www.spectrum.ieee.org/print/6171

[3] X. Wang, M. Tehranipoor and J. Plusquellic, “Detecting malicious
inclusions in secure hardware: Challenges and solutions,” in Proc. of
the IEEE International Workshop on Hardware-Oriented Security and

Trust(HOST 2008), pp. 15-19, 2008.

[4] M. Banga and M. S. Hsiao, “A Novel Sustained Vector Technique for the
Detection of Hardware Trojans,” in Proc. of the International Conference

on VLSI Design, pp. 327-332, 2009.

[5] R. S. Chakraborty and S. Bhunia, “Security Against Hardware Trojan
Through a Novel Application of Design Obfuscation,” in Proc. of the
International Conference on Computer-aided Design(ICCAD09), 2009.

[6] M. Banga and M. S. Hsiao, “A region based approach for the identifica-
tion of hardware trojans,” in Proc. of the IEEE International Workshop

on Hardware-Oriented Security and Trust (HOST08), pp. 40-47, June
2008.

[7] M. Banga, M. Chandrasekar, L. Fang, and M. S. Hsiao, “Guided test
generation for isolation and detection of embedded trojans in ICs,” in
Proc. of the in Proceedings of the IEEE/ACM Great Lakes Symposium
on VLSI, pp. 363-366, April 2008.

[8] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi and B. Sunar,
“Trojan Detection using IC Fingerprinting,” in Proc. of the Symposium
on Security and Privacy, pp. 296-310, 2007.

[9] R. Rad, X. Wang, J. Plusquellic and M. Tehranipoor, “Power Sup-
ply Signal Calibration Techniques for Improving Detection Resolution
to Hardware Trojans,” in Proc. of the International Conference on
Computer-Aided Design (ICCAD08), pp. 632-639, 2008.

[10] J. Li and J. Lach, “At-speed delay characterization for IC authentication
and Trojan Horse detection,” in Proc. of the IEEE International Work-

shop on Hardware-Oriented Security and Trust(HOST 2008), pp. 8-14,
2008.

[11] Y. Jin and Y. Makris, “Hardware Trojan detection using path delay
fingerprint,” in Proc. of the IEEE International Workshop on Hardware-

Oriented Security and Trust(HOST 2008), pp. 51-57, 2008.
[12] D. D. Wackerly, W. Mendenhall III and R. L. Scheaffer, “Mathematical

Statistics with Application, 7th edition” Thomson Learning, Inc., 2008.

[13] X. Wang, H. Salmani, M. Tehranipoor and J. Plusquellic, “Hardware
Trojan Detection and Isolation Using Current Integration and Localized
Current Analysis,” in Proc. of the International Symposium on Fault and

Defect Tolerance in VLSI Systems (DFT08), pp. 87-95, 2008.

[14] M. Bushnell and V. Agrawal, “Essentials of Electronics Testing,” Kluwer
Publishers, 2000.

[15] S. Jha and S. K. Jha, “Randomization Based Probabilistic Approach to
Detect Trojan Circuits,” in Proc. of the IEEE High Assurance Systems

Engineering Symposium(HASE08), pp. 117-124, 2008.

[16] M. Potkonjak, A. Nahapetian, M. Nelson, T. Massey, “Hardware Trojan
Horse Detection Using Gate-Level Characterization,” in Proc. of the
IEEE International Design Automation Conference (DAC), 2009

[17] Y. Alkabani, F. Koushanfar, “Consistency-Based Characterization for
IC Trojan Detection,” in Proc. of the International Conference on

Computer-Aided Design (ICCAD09), 2009.
[18] F. Wolff, C. Papachristou, S. Bhunia and R.S. Chakraborty, “Towards

Trojan-Free Trusted ICs: Problem Analysis and Detection Scheme,” in
Proc. of the Design, Automation and Test in Europe(DATE ’08), pp.
1362-1365, 2008.

[19] R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou and S. Bhunia,
“MERO: A Statistical Approach for Hardware Trojan Detection,” in
Proc. of the Workshop on Cryptographic Hardware and Embedded

Systems (CHES), 2009.
[20] R. Sankaralingam, R. R. Oruganti and N. A. Touba, “Static Compaction

Techniques to Control Scan Vector Power Dissipation,” in Proc. of the
IEEE VLSI Test Symposium (VTS’00), pp. 35-40, 2000.

12

