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Abstract—In this paper, an Unmanned Aerial Ve-
hicles (UAVs) - enabled human Internet of Things
(IoT) architecture is introduced to enable the rescue
operations in public safety systems (PSSs). Initially,
the first responders select in an autonomous manner
the disaster area that they will support by considering
the dynamic socio-physical changes of the surrounding
environment and following a set of gradient ascent
reinforcement learning algorithms. Then, the victims
create coalitions among each other and the first re-
sponders at each disaster area based on the expected-
maximization approach. Finally, the first responders
select the UAVs that communicate with the Emergency
Control Center (ECC), to which they will report the
collected data from the disaster areas by adopting a
set of log-linear reinforcement learning algorithms. The
overall distributed UAV-enabled human Internet of
Things architecture is evaluated via detailed numerical
results that highlight its key operational features and
the performance benefits of the proposed framework.

Index Terms—Public Safety Systems, Unmanned
Aerial Vehicles, Human Internet of Things, Reinforce-
ment Learning

I. Introduction
Public Safety Systems (PSSs) support the emergency

response and disaster relief services during and after
emergency events, including catastrophic events, which
can be natural or man-made. PSSs consist of special
service personnel, i.e., first responders, such as emer-
gency medical personnel, police officers, firefighters, law
enforcement experts, military personnel, local, national
and non-government organizations and others. Recently,
Unmanned Aerial Vehicles (UAVs) have been used to assist
the rescue operations. Due to the UAVs unique character-
istics, they are able to establish resilient, reliable, scal-
able, and robust communication even during catastrophic
events, where the infrastructure-based communication is
damaged or non-existing [1]. The UAVs’ salient attributes
are their fast, flexible, and effortless deployment, mobility,
maneuverability, line-of-sight (LoS) communication links
due to their ability to hover above a disaster area, adaptive
altitude, adjustable usage, and low-cost [2]. The cooper-
ation of the UAVs with the first responders is of vital
importance for a successful rescue operation. Some of the
research challenges that have attracted the interest of the
industrial and research community are the UAVs path
planning, the UAVs’ positioning and allocation to disaster

The research of Mr. Fragkos and Dr. Tsiropoulou was conducted
as part of the NSF CRII-1849739.

areas, the spectrum sharing among the UAVs and the
ground base stations, the first responders’ autonomous and
distributed data and computation tasks offloading to the
UAVs, and others [3].

A. Related Work & Motivation
UAVs have been extensively used to support the com-

munication in disaster areas, where part of the ground
communication infrastructure is damaged [4], [5]. In [6],
the problem of spectrum sharing among the UAVs and
the licensed terrestrial networks is studied. A distributed
multi-agent reinforcement learning (RL) algorithm is pro-
posed in order to enable the UAVs to decide if they will act
as sensing nodes (i.e., collecting information from the first
responders and the victims) or relaying nodes (i.e., retrans-
mitting the already collected data to the rescue operation
center) based on the spectrum availability. This work has
been extended in [7], where the UAVs are autonomously
allocated in disaster areas based on the priority of the
catastrophic event by following a distributed RL algo-
rithm. The ultimate goal of the UAVs is to maximize their
achievable throughput and prolong their battery lifetime.
In [8], a game-theoretic approach is introduced to create
clusters of victims in a PSS and a reinforcement learning
mechanism is proposed to determine the clusterheads that
communicate directly with the UAVs.

In [9], a UAVs’ data collection from the vehicles scenario
is studied in a disaster area by introducing a blockchain-
based collaborative aerial-ground network architecture.
The authors introduce a credit-based consensus algorithm
to monitor the data transactions from the vehicles in an
energy efficient and secure manner. In [10], the impact of
victims’ behavior on their transmission power investment
to communicate with the UAVs and ground base stations
is studied under the principles of Prospect Theory. In
[11], the problem of UAVs deployment in the disaster
areas towards satisfying the victims’ communication needs
and establishing connections with optimal throughput is
studied via introducing a matching game algorithm among
the UAVs and the groups of victims.

The UAVs have also been considered in wireless pow-
ered communication networks in disaster areas, where
the victims devices harvest energy from the UAVs’ radio
frequency signals [12]. In [13], the authors jointly optimize
the UAVs’ position and the UAVs’, victims’, and first
responders’ transmission power to improve the reliability
of data collection by the UAVs. The concepts of informa-



tion quality and criticality, as well as value of informa-
tion collected by the first responders in a disaster area
are introduced in [14] to quantify each first responder’s
contribution in the rescue operation. In [15], the PSS is
supported by mobile and static UAVs hovering above the
disaster area and the victims’ data offloading and the
corresponding transmission power to the multiple UAVs
are determined following the principles of Prospect Theory
and the theory of the Tragedy of the Commons.

However, despite the significant advances achieved by
these efforts, the joint problem of first responders’ al-
location in the different disaster areas, the autonomous
organization of the victims in rescue groups, and the
communication-driven association of the first responders
with the UAVs has been neglected or partially studied in
the existing literature. In this paper we aim to address this
research gap by introducing a three layers approach, i.e.,
(i) the distributed association of the first responders to
different disaster areas based on different gradient ascent
reinforcement learning algorithms; (ii) the victims’ coali-
tion formation mechanism to form rescue groups following
the expectation-maximization approach; and (iii) the au-
tonomous association of the first responders with the UAVs
to enable the robust data flow to the Emergency Control
Center (ECC) based on a set of log-linear reinforcement
learning algorithms.

B. Contributions & Outline

The key technical contributions of this research work
are summarized as follows.
• A UAV-enabled human Internet of Things (IoT) pub-

lic safety system is introduced consisting of UAVs,
first responders, and victims interacting among each
other (Section II). The first responders act as au-
tonomous decision makers, making stable decisions
regarding the disaster areas that they will assist by
considering the dynamic socio-physical changes of
the surrounding disaster environment. Their decisions
are supported by a set of different gradient ascent
reinforcement learning algorithms that enable them
to adapt to the dynamically changing needs of the
disaster areas in a real time manner (Section III).

• At each disaster area, the victims create coalitions
among each other, i.e., rescue groups, by being
associated with a first responder that acts as a
coalition-head. A K-means algorithm is introduced to
build the victims coalitions based on the expected-
maximization approach (Section IV).

• Given the first responders allocation to the disaster
areas and the rescue groups coalition formation, each
first responder selects to report the collected infor-
mation from the disaster field to a UAV in a dis-
tributed and autonomous manner by considering the
UAVs’ physical and communication characteristics.
The UAVs selection by the first responders is per-
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Fig. 1: UAV-enabled Human Internet of Things Topology

formed by adopting a set of log-linear reinforcement
learning algorithms (Section V).

• The UAV-enabled human Internet of Things architec-
ture is introduced by combining the three individual
mechanisms into an operational system to support the
rescue operations in PSSs (Section VI).

• A set of detailed numerical results is presented to
evaluate the performance of the proposed framework,
while a comparative study demonstrates its superior-
ity compared to alternative approaches (Section VII).
Finally, Section VIII concludes the paper.

II. System Model

We consider a disaster-struck environment consist-
ing of |A| disaster areas and their set is denoted as
A = {1, ..., a, ..., |A|}. A set of first responders F =
{1, ..., f, ..., |F |}, such as police officers, firefighters, and
medical personnel, is available to support the rescue op-
eration of the Emergency Control Center (ECC). At each
disaster area a, a set of victims Va = {1, ..., v, ..., |Va|}
requests help from the first responders. A set of UAVs U =
{1, ..., u, ..., |U |} enables the communication of the first
responders with the ECC given that the infrastructure-
based communication is limited or non-existing due to the
disaster, e.g., earthquake, wildfire, terrorists attack [16].

Each critical disaster area is characterized by a mini-
mum number of first responders Na needed to cover the
victims’ rescue needs and contributes to a successful rescue
operation. The distance of a first responder f from a
critical disaster area a is denoted as df,a[m]. Moreover,
each first responder f , based on its capabilities and spe-
cialty (e.g., police officer, firefighter, medical personnel)
wants to offer its services to the candidate critical areas
that a specific catastrophic event has occurred. For ex-
ample, a police officer has a higher interest to offer its
services to a disaster area that a shooting has occurred
compared to an area that a wildfire has occurred. The first
responders’ service interest for a disaster area is denoted
as if,a, if,a ∈ [0, 1]. Furthermore, the first responders
tend to collaborate among each other in order to conclude
to a successful rescue operation. Thus, a first responder



has a higher interest to go to a critical area that other
first responders with complementary specialties, expertise,
and capabilities reside in order to complement the rescue
process. The interest of a first responder to go to a critical
disaster area a that another first responder f ′ with com-
plementary specialty already offers its services is denoted
as CSf,f ′ , CSf,f ′ ∈ [0, 1], f, f ′ ∈ Fa where Fa is the set of
first responders that have decided to support disaster area
a. Moreover, each critical disaster area a is characterized
by an importance factor Ia, Ia ∈ [0, 1] depending on the
criticality of the catastrophic event that occurred in it. For
example, a shooting event at a school resulting in multiple
victims has a greater importance factor compared to a
car accident. The overall considered UAV-enabled human
Internet of Things topology in a public safety environment
is presented in Fig.1.

III. Autonomous First Responders Allocation
In this section, the problem of enabling the first respon-

ders to select a disaster area to offer their services in a
distributed and autonomous manner is studied. During
a catastrophic event, the first responders have limited
available information to make their decisions, and little
or even no collaboration exists among the various public
safety agencies (e.g., police department, fire department)
given their rescue operation protocols [17]. Moreover, the
disaster environment changes dynamically and requires
multiple sequential decisions by the first responders, which
makes the problem of allocating the first responders to
the critical disaster areas even more complex. Also, the
problem becomes even more complicated given the partial
available information to the first responders, who may not
even be aware of the presence of other first responders,
thus making the public safety environment seem non-
stationary.

Considering the aforementioned challenges that the
public safety environment imposes to the first responders’
decisions who offer their services to the victims of a
disaster area, the principles of multi-agent reinforcement
learning have been adopted in this research work to ad-
dress the examined problem. The first responders are char-
acterized by strategic interactions among them. In other
words, the first responders act as autonomous entities,
having individual goals and independent decision making
capabilities, while at the same time they experience the
impact of each others’ decisions. Thus, we adopt a set of
gradient ascent reinforcement learning approaches, where
the first responders learn their environment by performing
gradient updates of their perceived reward.

Specifically, we adopt the theory of Learning Automata
(LA), where an action probability vector Pf characterizes
the decisions of each first responder. The first responders
explore their available potential actions, i.e., visit a disas-
ter area, and based on the reward that they receive by this
action, they update the corresponding action probabilities.
The first responders make their final decision to visit a

disaster area, if Pf,a ≥ Pthres,∀f ∈ F,∀a ∈ A, where
Pthres is a threshold value of the action probability. The
set of the first responders’ actions is the number of critical
disaster areas A = {1, ..., a, ..., |A|}, where they can offer
their services to contribute in the rescue operation. Thus,
each first responder’s action probability vector is denoted
as Pf = [Pf,1, ..., Pf,a, ..., Pf,|A|]. The most commonly ap-
plied learning update rule is called Linear Reward-Penalty
(LRP) and each first responder’s action probabilities are
updated as follows:

P
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,

if a
(ite+1) = a

(ite)

(1a)

P
(ite+1)
f,a

= P
(ite)
f,a

− λ1r̂
(ite)
f,a

P
(ite)
f,a

+ λ2(1− r̂(ite)
f,a

)(
1

|A| − 1
− P (ite)

f,a
),
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where Eq. 1a represents the probability that the first
responder f selects the same critical disaster area in the
next iteration of the LRP algorithm, and Eq. 1b captures
the probability to choose a different disaster area. The
iteration of the LRP algorithm is denoted as ite. The
parameter λ1 and λ2, λ1, λ2 ∈ [0, 1] are learning rate
constant parameters, representing the reward and the
penalty that a first responder will experience by exploring
an action. The parameter r̂(ite)

f,a represents the normalized
reward that a first responder experiences by selecting an
action, i.e., a disaster area a(ite). The normalized reward
is defined as follows.

r̂
(ite)
f,a =

r
(ite)
f,a∑

∀a∈A
r

(ite)
f,a

(2)

where r(ite)
f,a is the actual reward that the first responder

experiences by potentially offering its services to the dis-
aster area a, and is defined as follows.

r
(ite)
f,a =

Na∑
∀a∈A

Na
· |Va|∑

∀a∈A

|Va|
· i(ite)
f,a · Ia ·

|Fa|∑
f ′=1,f ′ 6=f

CS
(ite)
f,f ′

df,a∑
∀f∈F

∑
∀a∈A

df,a
· cf,a

(3)
where cf,a ∈ (0, 1] is the personal cost, e.g., commuting
cost to reach the disaster area a, that the first responder
f experiences. The physical notion of the first responders
personalized reward function r(ite)

f,a is that a first responder
prefers to offer its services to a disaster area that: (i) needs
an increased number of first responders Na in order to deal
successfully with the rescue operation; (ii) a large number
of victims reside in this area; (iii) has high service interest
based on the catastrophic event; (iv) the importance and
criticality of the catastrophic event in the disaster area
is high; (v) can perform the rescue operation by collab-
orating with other first responders with complementary
specialties; (vi) has low personal cost to reach that area;
and (vii) is in close proximity to the first responder.



The LRP action probabilities update rule, as presented
in Eq.1a, 1b, allows the first responders to thoroughly ex-
plore the available disaster areas and finally, select the one
that they can constructively and successfully offer their
services. For the LRP algorithm, we consider λ1 = λ2. In
the special case that λ1 >> λ2, the learning algorithm
allows the first responders to explore less other potential
disaster areas to offer their services and it is called Linear
Reward - ε Penalty (LR-εP). Furthermore, in the case
that λ2 = 0, then the first responders probabilistically
select the disaster area that provides them the best reward
with very limited exploration of alternative actions and
the algorithm is called Linear Reward-Inaction (LRI).
Given that the LRP algorithm allows the first responders
to thoroughly explore their available choices compared
to the LR-εP and the LRI algorithms, it is expected to
need increased computational time to converge to a stable
decision. However, the first responders will experience
higher rewards by their well-thought choices following the
LRP learning approach. A detailed comparative analysis of
the three presented decision-making algorithms, i.e., LRP,
LR-εP, and LRI, is provided in Section VII-A, highlighting
their benefits and drawbacks.

IV. Victims Coalition Formation
In this section, given that the first responders have

selected to which disaster area a they will offer their
services, we propose a coalition formation mechanism
among the first responders and the victims in each disaster
area a, ∀a ∈ A. The coalitions among the victims and
the first responders are constructed by adopting the K-
means algorithm [18]. The K-means algorithm gets as
input the number of coalitions that should be created and
follows the expectation-maximization approach to build
the coalitions. In the examined problem in this research
work, the victims want to reach help from the first respon-
ders |Fa| that have arrived in the disaster area. Thus, the
number of coalitions that will be created is |Fa|, and each
first responder acts as coalition-head at the corresponding
created coalition.

Each victim v ∈ Va ideally wants to reach out for
help from a first responder in the closest proximity during
a catastrophic scenario. We consider the coordinates of
each victim (xv, yv),∀v ∈ Va, and each first responder
(xf , yf ),∀f ∈ Fa. Thus the objective function of the K-
means coalition formation algorithm is defined as follows.

I =
|Va|∑
v=1

|Fa|∑
f=1
||(xv, yv)− (xf , yf )||2 (4)

where || · || denotes the Euclidean distance.
The K-means algorithm aims to minimize the objec-

tive function in Eq.4 by assigning the victims to their
closest first responder. Thus, it concludes in creating
homogeneous coalitions among the victims and the first
responders in terms of grouping together victims that

are in the neighborhood (i.e., close proximity) of each
first responder. The outcome of the K-means algorithm
is the set Vf,a of the victims in the disaster area a
that are supported by the first responder f . Indicative
numerical results are presented in Section VII-B, showing
the outcome of creating coalitions among the victims and
the first responders based on the K-means algorithm.

V. UAVs – First Responders Association
In this section, a distributed solution is proposed to

enable the first responders to select a UAV in an au-
tonomous manner in order to report the collected infor-
mation from the disaster area. The UAVs hover in various
positions above the overall disaster environment and act
as relay nodes to retransmit the first responders’ collected
information to the ECC, which oversees and performs
the rescue operation planning. The first responders, given
their limited available information regarding the situation
in the surrounding environment, should be able to make
autonomous communication decisions with the UAVs in a
fast manner by exploiting the UAVs’ physical and commu-
nications characteristics.

Specifically, each UAV is characterized by its normalized
flying time, FTu, FTu ∈ [0, 1], and its normalized flying
cost Cu, Cu ∈ [0, 1] capturing its fuels and cost. Each
UAV u ∈ U can collect (i.e., process and retransmit) an
amount of data Bu [bits] from the disaster field. Also, the
distance of a UAV u from a first responder f is denoted
as du,f [m]. By considering the aforementioned physical
and communication characteristics of the UAVs, the utility
that a first responder f experiences by selecting a UAV u
is defined as follows.

U
[τ+1]
f,u = FT

[τ ]
u ·Bu

d
[τ ]
u,f · Cu

(5)

where τ denotes the time instance of examining the public
safety system. The physical notion of Eq.5 is that a first
responder prefers to select a UAV that: (i) has a long
flying time, thus allowing the first responder to establish
a stable communication link; (ii) is in the first responder’s
close proximity, thus the latter spends low levels of power
to communicate with it; (iii) can handle a large amount
of data; and (iv) has a low flying cost, thus contributing
to a cost-efficient rescue operation. Based on Eq.5, the
normalized utility that each first responder experiences by
selecting to communicate with a UAV is given as follows.

Û
[τ+1]
f,u =

U
[τ+1]
f,u∑

∀u∈U
U

[τ+1]
f,u

(6)

Towards enabling the first responders to select a UAV
to report their data and maximize their perceived utility,
the log-linear reinforcement learning algorithms have been
adopted. The log-linear reinforcement learning algorithms
enable the first responders, who may have competing
interests in terms of selecting UAVs, to converge to a



stable decision with high probability and no information
exchange among each other. The main characteristic of
this set of learning algorithms is that they allow the
decision-makers, i.e., first responders, to ”make mistakes”,
i.e., select suboptimal actions, in order to thoroughly
explore their actions space, i.e., UAVs choices [19].

Two log-linear reinforcement learning algorithms are
studied in this research work, namely Binary Log-Linear
Learning (BLLL) and Max Log-Linear Learning (MLLL)
algorithms. Each first responder’s action space is the set of
UAVs U = {1, ..., u, ..., |U |} and initially selects randomly
a UAV with equal probability, i.e., P (τ=0)

f,u = 1
|U | . At each

iteration τ of the BLLL and MLLL algorithms, one first
responder is randomly selected and performs exploration
and learning. Specifically, the first responder f explores
an alternative choice of UAV ũ

(τ)
f as its new strategy with

equal probability 1
|U | and receives its corresponding util-

ity Ũ
(τ)
f,ũ

(τ)
f

(exploration phase). Then, the first responder
updates its strategy based on the probabilistic rules of
Eq.7a, 7b regarding the BLLL algorithm and the Eq.8a,
8b regarding the MLLL algorithm (learning phase) [14].
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(τ)
f

·β
, e
U

(τ)

f,u
(τ)
f

·β
}

(8a)

P
(τ+1)
f,u [u(τ+1)

f = u
(τ)
f ] = e

U
(τ)

f,u
(τ)
f

·β

max {e
Ũ
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It is noted that Eq. 7a and Eq. 8a capture the probabil-
ity that a first responder f explores the communication
with an alternative UAV ũ

(τ)
f in the iteration τ + 1,

while the Eq. 7b and Eq. 8b represent the probability
of selecting the same UAV in the next iteration τ + 1,
regarding the BLLL and MLLL algorithms, respectively.
Moreover, the learning parameter β, β ∈ R+ captures the
allowance of the first responder to explore alternative ac-
tions. Specifically, for large values of β, the first responder
is allowed to explore more thoroughly its communications
choices with the UAVs and converge to a more beneficial
choice, however, by spending more time to converge to its
best decision. The BLLL and MLLL algorithms converge
when the system’s social welfare remains approximately
the same for a small number of consecutive iterations of
the algorithms. Detailed numerical results regarding the
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Fig. 2: UAV-enabled Human Internet of Things Architec-
ture

drawbacks and benefits of the BLLL and MLLL algorithms
are presented in Section VII-C.

VI. UAV-enabled Human Internet of Things
Architecture

In this section, the overall architecture of the pro-
posed UAV-enabled human Internet of Things (IoT) is
introduced by combining the three individual mechanisms
presented in Sections III - V into an operational system
that can support the rescue operations during and after
disaster scenarios. The overall UAV-enabled human IoT
architecture is presented in Fig. 2 and consists of three
layers that are periodically executed over the time.

Initially, the first responders in the time t select which
disaster area to visit and offer their services following
one of the three introduced gradient ascent learning al-
gorithms. Then, the victims at each disaster area create
coalitions among them and the first responders that have
arrived, by implementing the K-means algorithm. Finally,
the first responders select in an autonomous manner to
which UAV they will report their collected data from
the disaster area by exploiting the UAVs physical and
communication characteristics and following one of the
proposed log-linear learning algorithms.

VII. Numerical Results
In this section, we provide a set of detailed numerical

results to illustrate the performance of the proposed UAV-
enabled human Internet of Things architecture to support
the public safety systems in terms of the following aspects:
autonomous first responders allocation based on the gra-
dient ascent learning algorithms (Section VII-A), victims
coalition formation based on the K-means algorithm (Sec-
tion VII-B), and the first responders’ association with the
UAVs based on the log-linear learning algorithms (Section
VII-C). Additional comparative results of the various ex-
amined learning algorithms are presented to study their
drawbacks and benefits in terms of applying them in the
rescue operation planning in public safety scenarios.
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We considered a disaster-struck environment consist-
ing of |A| = 4 disaster areas and each area a ∈ A
has Va ∈ [800, 3500] victims, who need at least Na ∈
[5, 35] first respondres. Moreover, we assume that there
are |F | = 140 first responders available, where each
first responder’s distance df,a from each disaster area
is randomly and uniformly distributed in the interval
[80m, 250m]. Furthermore, regarding the coordinates of
both the victims and first responders we consider that
xu, yu, xf , yf ∈ [10m, 800m]. The available UAVs in our
scenario are |U | = 7, with the following characteristics:
Bu ∈ [50, 100]MBytes and du,f ∈ [100m, 300m]. Finally,
for all the gradient ascent learning algorithms, we consider
λ1 = 0.7, whereas for the LRI approach λ2 = 0, for the
LR-εP approach λ2 = 0.001 and for the LRP approach
λ2 = 0.7. The proposed framework’s evaluation was
conducted via modeling and simulation and executed in
a MacBook Pro Laptop, 2.5GHz Intel Core i7, with 16GB
LPDDR3 available RAM.

A. Autonomous First Responders Allocation based on Gra-
dient Ascent Learning

In this subsection, we initially study and analyze the
convergence of the three alternative gradient ascent re-
inforcement learning algorithms, i.e., LRI, LR-εP, and
LRP as they were introduced in Section III, to the first
responders’ autonomous and stable decision to visit a
disaster area and offer their services to the victims. Fig.
3a - 3c present the convergence of one indicative first
responder’s action probabilities to its stable decision to
offer its services to a specific critical disaster area. Also,

Fig. 4a shows the average reward achieved by all the
first responders in the examined public safety system as a
function of the iterations for the three examined gradient
ascent learning algorithms. Fig. 4b illustrates the conver-
gence time of the three gradient ascent learning algorithms
in order all the first responders in the examined setup to
converge to their stable solutions. The results reveal that
the LRI algorithm allows the first responders to make a
fast decision (Fig. 3a), i.e., 180 iterations cooresponding
on average to 0.55 seconds (Fig. 4b) compared to the
LR-εP algorithm (Fig. 3b) that needs approximately 800
iterations, i.e., 1.4 seconds on average (Fig. 4b), and the
LRP algorithm (Fig. 3c), where almost 7,000 iterations
are needed to converge, i.e., 5.7 seconds on average (Fig.
4b). This behavior of the three gradient ascent learning
algorithms stems from the fact that the LRI algorithm
increases the probability of a selected action that resulted
in a good reward value (Eq. 3), while decreases the
probability of selecting any other disaster area. Thus,
the LRI algorithm provides limited freedom to the first
responders to explore their strategy space and concludes
to low achieved rewards for the first responders (Fig. 4a).
On the other hand, the LR-εP algorithm allows the first
responders to slightly explore alternative actions other
than that one which provides them the highest reward, by
setting λ1 >> λ2 (Eq. 1a, 1b). Thus, the first responders
explore slightly more their alternative choices compared
to the LRI algorithm and need more time to converge
to their stable decision (Fig. 4b), however, they achieve
higher reward (Fig. 4a). The greatest exploration freedom
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is provided by the LRP algorithm to the first responders
by setting λ1 = λ2. Thus, the LRP algorithm presents
the slowest convergence to the first responders’ stable
decisions (Fig. 4b), while they achieve the highest reward
(Fig. 4a) by thoroughly learning their surrounding disaster
areas.

Moreover, Fig. 4c presents the execution time and the
corresponding first responders’ average reward as a func-
tion of the learning parameter λ1 considering the LRI al-
gorithm. The results reveal that as the learning parameter
λ1 increases, the first responders converge faster to their
stable decisions, however, they achieve lower reward, as
they perform very limited exploration of their available
choices. Also, for an indicative value of the learning pa-
rameter λ1 = 0.7, we observe that the LR-εP and the LRP
algorithms contribute to 16.2% and 25.3% improvement of
the first responders’ average normalized reward compared
to the LRI algorithm, respectively.

In the following analysis, we adopt the LRI algorithm,
i.e., worst case scenario given that it allows the first
responders to perform the most limited exploration of
their actions and converges fast to a stable decision, to
study the performance of the proposed autonomous first
responders allocation to the disaster areas. Fig. 5a, 5b
present the number of victims |Va| and the minimum
number of first responders that are needed per disaster
area, respectively. Fig. 5c, 5d illustrate the first respon-
ders’ average service interest if,a and personal cost cf,a,
respectively, as a function of the LRI algorithms iterations.
Also, Fig. 5e shows the number of first responders that
selected to offer their services to each disaster area after
the LRI algorithm has converged. The results reveal that
even with the simplest selected gradient ascent learning
algorithm (i.e., LRI algorithm – worst case scenario), the
first responders successfully learn during the algorithm’s
iterations to select the disaster areas that have higher
interest to serve (Fig. 5c) and lower personal cost to reach
them (Fig. 5d). Also, the proposed approach achieves to
successfully allocate more first responders (Fig. 5e) to the
disaster areas that are in greater need of support, i.e.,
they have more victims (Fig. 5a) and they need a greater
minimum number of first responders (Fig. 5b).

B. Victims Coalition Formation Evaluation
In this section, we present the operation of the victims’

coalition formation mechanism in an indicative sub-area
of a disaster area. Fig. 6 presents the topology of the sub-
area, where three first responders are offering their services
to the victims, who are presented with the multicolored
dots. Each created coalition is presented with a different
color. Indeed, the results reveal that the victims tend to
create coalitions among each other and the first responder
in the closest proximity to them. Thus, homogeneous
coalitions are created, where their members are close to
each other and can help each other during the rescue
operation process.

C. UAVs – First Responders Association based on Log-
Linear Learning

In this section, we evaluate the proposed distributed
decision framework based on the introduced log-linear
algorithms, i.e., BLLL and MLLL algorithms, that enable
the first responders to select a UAV in order to report
their collected data from the disaster field to the ECC. Fig.
7a, 7b present the first responders’ average utility (Eq.5)
as a function of the iterations regarding the BLLL and
MLLL algorithms, respectively, for different values of the
learning parameter β. The results reveal that for greater
values of the learning parameter β, both the BLLL and
MLLL algorithms allow the first responders to thoroughly
explore their communication choices with the UAVs by
spending more iterations in order to converge to their
stable decisions that conclude to greater average utility.
Also, it is confirmed that the MLLL algorithm converges
faster to a stable decision for all the first responders
compared to the BLLL algorithm given the form of its
probability updating rule, i.e., Eq. 8a, 8b. A detailed
Monte Carlo simulation analysis is illustrated in Fig. 7c, 7d
for 10,000 executions of the BLLL and MLLL algorithms.
Specifically, Fig. 7c and 7d present the first responders’
average utility after the algorithms’ convergence and the
corresponding real execution time, respectively. The re-
sults confirm that the MLLL algorithm achieves better
utility for the first responders in a shorter execution time,
thus, it outperforms compared to the BLLL algorithm.

Fig. 8 presents the operation of the first responders’ au-
tonomous selection of the UAVs to report their information
to the ECC based on the UAV’s physical and communica-
tion characteristics by adopting the MLLL algorithm. Fig.
8a-8d present the UAVs normalized flying cost Cu, amount
of data that they can collect Bu, normalized flying time
FTu, and averaged distance from the first responders in
the examined public safety system, respectively. Also, Fig.
8e and Fig. 8f show the first responders’ average exploring
probability (Eq. 8a, 8b) and the number of first responders
that selected each UAV after the MLLL algorithm has
converged. The results reveal that more first responders
(Fig. 8f) select with higher average probability (Fig. 8e)
the UAVs that are characterized by low flying cost (Fig.
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8a), high flying time (Fig. 8c), small average distance from
them (Fig. 8d), and they are robust in terms of collecting
a large amount of data (Fig. 8b).

VIII. Conclusions

In this paper, a distributed UAV-enabled human In-
ternet of Things architecture is introduced, to support
the rescue operations during and after catastrophic events
in public safety systems. The first responders select the
disaster area that they will provide their services in a
distributed manner by adopting various gradient ascent
learning algorithms and sensing the dynamic changes of
the disaster environment. Then, the victims at each dis-
aster area create coalitions among each other and the
first responders that have arrived based on the K-means
algorithm. Also, the first responders choose the UAVs to
which they will report the collected information from the
disaster field in an autonomous manner following the log-
linear learning approach. A set of detailed numerical and
comparative results are presented. Part of our current
and future work examines the rescue operations in public
safety systems by adopting concepts from the labor eco-
nomics and contract theory to create stable relationships
among the first responders and the victims.

References

[1] C. Wu, B. Ju, Y. Wu, X. Lin, N. Xiong, G. Xu, H. Li, and
X. Liang, “Uav autonomous target search based on deep re-
inforcement learning in complex disaster scene,” IEEE Access,
vol. 7, pp. 117 227–117 245, 2019.

[2] P. Vamvakas, E. E. Tsiropoulou, and S. Papavassiliou, “Ex-
ploiting prospect theory and risk-awareness to protect uav-
assisted network operation,” EURASIP Journal on Wireless
Communications and Networking, vol. 2019, no. 1, p. 286, 2019.

[3] M. Erdelj and E. Natalizio, “Drones, smartphones and sensors
to face natural disasters,” in Proc. of the 4th ACM Workshop on
Micro Aerial Vehicle Net., Systems, and Appl., 2018, pp. 75–86.

[4] B. Wang, Y. Sun, N. Zhao, and G. Gui, “Learn to coloring:
Fast response to perturbation in uav-assisted disaster relief
networks,” IEEE Transactions on Vehicular Technology, 2020.

[5] G. Fragkos, P. A. Apostolopoulos, and E. E. Tsiropoulou, “Es-
cape: Evacuation strategy through clustering and autonomous
operation in public safety systems,” Future Internet, vol. 11,
no. 1, p. 20, 2019.

[6] A. Shamsoshoara, M. Khaledi, F. Afghah, A. Razi, and J. Ash-
down, “Distributed cooperative spectrum sharing in uav net-
works using multi-agent reinforcement learning,” in 16th IEEE
Annual Consumer Comm. & Net. Conf. IEEE, 2019, pp. 1–6.

[7] A. Shamsoshoara, F. Afghah, A. Razi, S. Mousavi, J. Ashdown,
and K. Turk, “An autonomous spectrum management scheme
for unmanned aerial vehicle networks in disaster relief opera-
tions,” preprint arXiv:1911.11343, 2019.

[8] D. Sikeridis, E. EleniTsiropoulou, M. Devetsikiotis, and S. Pa-
pavassiliou, “Self-adaptive energy efficient operation in uav-
assisted public safety networks,” in IEEE SPAWC, 2018, pp.
1–5.

[9] Z. Su, Y. Wang, Q. Xu, and N. Zhang, “Lvbs: Lightweight
vehicular blockchain for secure data sharing in disaster rescue,”
IEEE Trans. on Dependable and Secure Comput., pp. 1–1, 2020.

[10] P. Vamvakas, E. E. Tsiropoulou, and S. Papavassiliou, “On the
prospect of uav-assisted communications paradigm in public
safety networks,” in IEEE INFOCOM WKP, 2019, pp. 762–767.

[11] K. Ali, H. X. Nguyen, Q.-T. Vien, P. Shah, and M. Raza,
“Deployment of drone based small cells for public safety com-
munication system,” IEEE Systems Journal, 2019.

[12] D. Sikeridis, E. E. Tsiropoulou, M. Devetsikiotis, and S. Pa-
pavassiliou, “Wireless powered public safety iot: A uav-assisted
adaptive-learning approach towards energy efficiency,” Journal
of Network and Computer Appl., vol. 123, pp. 69–79, 2018.

[13] Z. Huang, C. Chen, and M. Pan, “Multi-objective uav path plan-
ning for emergency information collection and transmission,”
IEEE Internet of Things Journal, pp. 1–1, 2020.

[14] G. Fragkos, E. E. Tsiropoulou, and S. Papavassiliou, “Disaster
management and information transmission decision-making in
public safety systems,” in IEEE GLOBECOM, 2019, pp. 1–6.

[15] P. Vamvakas, E. E. Tsiropoulou, and S. Papavassiliou, “Risk-
aware resource management in public safety networks,” Sensors,
vol. 19, no. 18, p. 3853, 2019.

[16] E. Tsiropoulou, K. Koukas, and S. Papavassiliou, “A socio-
physical and mobility-aware coalition formation mechanism in
public safety networks,” EAI Endorsed Trans. Future Internet,
vol. 4, p. 154176, 2018.

[17] L. E. Miller, “Wireless technologies and the safecom sor for
public safety communications,” NIST, pp. 1–68, 2005.

[18] M. Filippone, F. Camastra, F. Masulli, and S. Rovetta, “A
survey of kernel and spectral methods for clustering,” Pattern
recognition, vol. 41, no. 1, pp. 176–190, 2008.

[19] J. R. Marden and J. S. Shamma, “Revisiting log-linear learning:
Asynchrony, completeness and payoff-based implementation,”
Games and Economic Behav., vol. 75, no. 2, pp. 788–808, 2012.


