
Abstract
IDDQ or steadystatecurrent testinghas beenextensively
usedin the industryas a mainstreamdefectdetectionand
reliability screen. However, leakage current continuesto
increase significantly with each technology generation,
makingit difficult to usesingle thresholdIDDQ testingto
differentiatebetweendefectiveanddefect-freechips.Alter-
nativetechniquesthat improve the resolutionof IDDQ test-
ing have been proposedto replace the single threshold
detectionscheme. All of thesetechniquesusea singleIDDQ
measurementper circuit configuration for detectionand
thusthescalabilityof thesetechniquesis limited.Quiescent
SignalAnalysis(QSA)is a novel IDDQ defectdetectionand
diagnosistechniquethat usesIDDQ measurementsat multi-
ple chip supply pads.The use of multiple measurements
pointsper chip naturally scalesdownof leakage and can
significantly improve detectionof subtle defects.In this
paper, regressionandellipseanalysisof thedatacollected
froma testchip fabricatedin a 65 nmprocessdemonstrate
the defect detectioncapabilities and limits of this tech-
nique.

1.0  Introduction
Backgroundleakagecurrent continuesto increaseas

silicon technologymoves forward. This trend reducesthe
effectiveness of IDDQ testing methods as traditionally
applied and is posing a challengefor newer alternative
strategies[1]. Alternative methodsrely on a self-relative or
differential analysis,in which the averageIDDQ of each
chip is factoredinto the pass/fail threshold.Although the
applicationof thesetechniquesto low power chips will
continue,thesemethodsare expectedto becomeincreas-
ingly lesseffective for high performanceASICs with high
background leakage currents.

An alternatestrategy thatmayhave betterscalingprop-
ertiesis to distributethetotal leakagecurrentacrossasetof
simultaneousmeasurements.This is accomplishedby mea-
suring the individual power supply port currents. Our
method called Quiescent Signal Analysis (QSA) is
designedto exploit this type of leakagecalibration as a
meansof increasingdefectdetectionresolution.A second-
ary diagnosticbenefitof sucha techniqueis describedin
[2-5].

In previous works, we developed several statistical
basedmethodsfor processingthe datacollectedfrom the

simultaneousmeasurements.A linear regressionanalysis
procedurewas developedand applied to simulation data
obtainedfrom acommercialpowergrid in [6]. A hyperbola
basedmethod is describedin [7] that performs defect
detectionusingtransientsignalmeasurements.Thesetech-
niques analyze multiple simultaneousmeasurementsto
accomplishthree goals: 1) to detect the regional signal
variationintroducedby defects,2) to scaledown themag-
nitudeof thechip’s total currentin theindividual measure-
ments and 3) to diminish or attenuateprocessinduced
signalvariations.Thelatterincludesbothlocal (within die)
and global (between die) variations in leakage current.

In this work, we apply linear regressionanalysisanda
new techniquecalledellipseanalysisto the datacollected
from asetof testchips.Thetestchipsarefabricatedin a65
nm, 10 metal layer technology. The testchips incorporate
an array of test structuresthat allow the insertion of a
defect in any one of 4,000 locations.The designpermits
control over the magnitudeof the defectcurrentandleak-
agecurrent.Theresultsof ouranalysisconfirmtheregional
nature of defect signal variations and demonstratethat
detectionsensitivity is stronglycorrelatedwith theposition
andmagnitudeof the defectcurrentaswell asthe magni-
tude of the leakage current.

2.0  Related Work

The single-thresholdIDDQ techniquerelied on the fact
thatthesteadystatecurrentdistributionof defect-freechips
is distinctfrom thatof thedefectiveones.A chip thatdraws
currentthat exceedsthe defect-freecurrentdistribution by
afixedthresholdis deemedasdefective.With theadventof
deepsub-microntechnologies,the overlap in thesedistri-
butionsmakesit difficult to setanabsolutepass/fail thresh-
old. The increase in sub-thresholdand gate leakage
currents in newer technologiescan result in defect-free
leakagecurrentsthataresignificantlyhigherthanthedefect
current.Thus, calibrationmethodsare requiredto reduce
the adverseeffectsof high leakagecurrentson defectcur-
rent resolution.Several techniquesbasedon a self-relative
or differential analysisare proposedas a solution to this
problem.A currentsignaturemethodis proposedby Gat-
tiker et. al. [8], that looks for discontinuitiesin the curve
obtainedby sortingIDDQ measurementsin ascendingorder.
DeltaIDDQ is a differentialIDDQ methodproposedby Thi-
beault [9] in which differencesbetweensuccessive IDDQ
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measurementsarecomparedto a threshold.Maxwell et.al.
[10], proposeda currentratio methodwherechip specific
thresholdsare derived by using vectorsthat producethe
minimum and maximumIDDQ values.A clusteringtech-
niquethatgroupsgoodchipsseparatelyfrom badchipsis
proposedby Jandhyala et. al. [11]. Daaschet. al. [12]
describea methodthatpredictsdevice IDDQ usingthespa-
tial proximity correlations among chips on a wafer.
Variyam[13] proposesa linearpredictionbasedtechnique
in whicheachIDDQ valueamongasetof valuesfor agiven
chip is predictedfrom the remainingIDDQ valuesin the
set. Singh et. al [14] showed that IDDQ readingsof the
neighboringdie on a wafercanbeusedfor variancereduc-
tion andto identify wafer-level spatialoutliers.Sabadeet.
al [15][16] have also developed methods based on
wafer-level spatial correlation analysis in which they
derive a maximum defect-freeIDDQ thresholdfrom the
analysis of neighboring die.

Many of theseprocess-tolerantIDDQ methodsuserela-
tive pass/fail thresholdsinstead of absolutethresholds.
Also the othermajor similarity of thesetechniquesis that
they usea singleIDDQ measurementpercircuit configura-
tion perdie. As thevariancein the IDDQ valuesincreases,
it tendsto increasethe thresholdbandsin most of these
techniques,thus decreasingtheir defect resolution.QSA
differs from thesemethodsby correlatingindividual sup-
ply IDDQs within eachstatevector. Statisticalcharacteriza-
tion of the defect-freechips in combinationwith outlier
analysisis usedto differentiatedefect-freeand defective
devices. Therefore, the cross-correlationperformed in
QSAadditionallycalibratesfor vector-to-vectorvariations.
This is likely to further improve the processtoleranceof
themethod.It is alsonotedthatQSA canbeusedin com-
binationwith any of the existing vector-to-vectoranalysis
techniques to further improve defect resolution.

Another advantageof QSA is the natural scalability
thatthis typeof approachincorporates.Thescalabilityfea-
turesof QSAshouldmake it possiblefor it to remaineffec-
tive at detectingdefectsaschipsget largerandincorporate
largernumbersof moredenselypackedtransistors.QSA is
designedto exploit designtrendsthat addadditionalsup-
ply ports(padsthatinterfaceto theexternalsupply)aschip
sizes and current requirementsincrease. However, it
should be noted that this benefit of increasedresolution
comeswith thecostof increasedtesttimeasmultiplemea-
surements need to be performed per vector.

Perhapsa greaterbenefitof usingmultiple power sup-
ply signals is that they offer information beyond defect
detection.In our previouswork, we have demonstratedthe
ability of QSA for applicationto defectdiagnosis[2-5].
The procedurepredictsthe (x,y) coordinatesat which a
defectdraws currentfrom thepower grid in the layout.To
ourknowledge,noothermethodthatis basedon theanaly-

sisof a chip’s electricalsignalsis ableto provide this type
of information. Such information is extremely useful in
failure analysisprocedures,which are designedto deter-
mine the root cause of chip failures.
3.0  Test Chip Design

A blockdiagramof thetestchipdesignis shown in Fig-
ure1(a). It consistsof a 80x50arrayof calibrationcircuits
(CCs)shown in Figure1(b).EachCC consistsof threeFFs
connectedin a scanchain configuration,a parallel set of
shortinginverters,anda defectenabletransistorconnected
to aglobally routeddefectemulationwire. Two powergrids
areinterleavedover thisarray, oneconnectedto theFFsand
the secondconnectedto the shorting invertersand defect
enabletransistors.TheVDD tappointsshown in Figure1(a)
asV00, V01, V10 andV11 connectto thesecondpower grid
andwire out of thechip throughseparatepins.Thearrayis
558µm in width and 377µm in height.

The connectionof the shortinginvertersandthe defect
enabletransistorsto point sourceson thepower grid allow
for a power-ground short or a connectionbetweenthe
powergrid anddefectemulationwire, respectively. Eachof
theseis controlledby the FFs.For example,FF1 in Figure
1(b) is usedto control the defectenabletransistor, which
enablesaconnectionbetweenthepowergrid andthedefect
emulationwire. In thisway, adefectcanbeemulatedatany
point in thearrayby driving thedefectemulationwire with
a voltagesource,labeleddefectsource in Figure1(b), and
scanningtheappropriatebit patterninto thescanchain.The
voltagesetinto thedefectsourcecontrolsthemagnitudeof
the shortingcurrent,where lower voltages(below 0.9 V)
introducemore significant currents.Lower voltagesalso
increasetheleakagecurrentthroughtheoff p-channeltran-
sistorsat other positionsin the array (which addsto the
leakagecurrentalreadypresentin the shorting inverters).
Therefore,it is possibleto analyzeavarietyof shortingand
leakagecurrentconfigurationsby controlling the connec-
tion position and voltage on the defect emulation wire.

FF2 andFF3 control thegatesof theshortinginverters.
A power-groundshort is introducedby scanninga 1-0 bit
patterninto thetwo FFs,respectively. Individual controlof
eachtransistorin theinvertersalsopermitsalternative leak-
agedistributionsto be configuredin the arrayby scanning
in a patternthat leavesoneor bothof the transistorsin the
off state(usingoneof thethreeremainingbit patterns,0-0,
1-0 or 1-1).
4.0  Test Chip Experiments

Two setsof experimentswereconductedon threecop-
ies of the test chip. In both sets,individual currentswere
measuredat eachof the four VDD tap points.The first set
madeuse of the shorting inverters(the defect emulation
wire wasdisconnected).Here, the scanchainwasconfig-
uredto causeoneof theCC shortinginvertersto shortand
the four currentsat eachVDD tap point were measured.



This experimentwasrepeated4,000times,oncefor each
CC in the array.

Thecurrentprofile for V00 is shown in Figure2. Here,
the x & y axis representthe (x,y) spaceof the CC array
given in microns. The z axis representsthe normalized
shortingcurrents(leakageis subtracted)measuredin V00

aseachof the4,000CCsareindividually enabled.TheV00

currentsarenormalizedby dividing themeasuredvalueby
thesumof thecurrentsat all VDD tappoints.Thez values
arelargestnearV00 becauseCCsnearthis locationdraw a
larger fraction of their current(approximately31%) from
V00 thanCCsthatarefurtherremoved.Theotherextreme,
i.e., the smallestvaluesof z, occur at locationsnear the
remainingthree VDD tap points. The smoothmonotoni-
cally decreasingnatureof thecurve from largestto small-
est clearly shows the regional behavior induced by the
power grid resistance characteristics.

Thedatapointsof interestfrom this analysisarethose
currentvaluesassociatedwith the CCs nearthe VDD tap

points. Figure 1(a) identifies four CC circuits, CC0,0,
CC0,79, CC49,0andCC49,79positionedunderneaththeVDD

tap points. The currentsmeasuredwith thesefour CCs
enabledoneat a time canbeusedto calibratefor resistance
variationsin the connectionsfrom the externalpower sup-
ply sourceto theVDD tappoints.Differencesin theseresis-
tancesacrosschips adverselyaffects our defectdetection
techniques.Thecalibrationprocedurethatwe developedis
described in [17].

The secondset of experimentsinvolve the useof the
defectemulationwire (theshortinginvertersaredisabled).
A setof 100 locationsin the arraywasrandomlyselected
andrepresentthe CCsunderinvestigation in theseexperi-
ments.The currentsthroughthe four VDD tap pointswere
measuredfor eachof the100experimentsunder19 differ-
entvaluesof thedefectsourcevoltage.Therefore,for each
chip, 1,900 experiments were conducted.

In eachexperiment,the currentsweremeasuredunder
two state configurations. The first state configuration
allowed leakagecurrent to be measuredwith the defect
sourcesetto a specificvalue.In this case,all defectenable
transistorswereturnedoff. The secondstateconfiguration
enabledthe defect enabletransistor. This causeda short
betweenthepower grid anddefectemulationwire at a spe-
cific point in the array. The currentsmeasuredunderthis
configurationincludea componentintroducedby theemu-
lated defect.

Table 1 specifiesthe voltagedrop betweenthe defect
sourceandpower grid in the first columnandthe average
valueof theratio of defectcurrentto leakagecurrentin the
remainingcolumnsfor eachof thethreechips.Thenumer-
atorin theratio is computedby subtractingtheleakagecur-
rentthroughthedefectsourcewith defectenabletransistors
off from thevaluemeasuredwhenoneof thedefectenable
transistorsis turnedon.Thedenominatoris computedfrom
thesumof theVDD tappoint leakages(with defectenable
transistorsturnedoff). Sincethereare100defectsites,the

Figure 1. (a) Test CUT of CCs, (b) CC circuit.
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Figure 2. V00 normalized current profile.
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averageis computedover 100measurementsfor eachchip
(columns) and each voltage drop (rows).

The ratio expressesthe relative magnitudeof total
defectcurrentto leakage,andis thebasisof our sensitivity
analysis.For example,the rangeof the ratioschangesby
over an orderof magnitudefrom 0.12 (hard to detect)to
3.38(easierto detect).Theratiosfor C1 andC2 arelower
thanthosefor C3 becauseC3 is a “low leakage”chip.The
smallervalueof leakagein thedenominatorcreateslarger
ratios for this chip. Also notableis the trend in the ratios
for any given chip acrossthe Vdrop values.For example,
thelargestratiosfor all threechipsoccurwith Vdropat0.45
volts. The ratiosthenbegin to decreasefor larger voltage
drops. This occurs becausethe defect enabletransistor
begins to saturateat 0.45volts, andtherefore,thenumera-
tor doesnot increasemuchbeyond this voltagedrop.The
leakagecurrent,on the other hand,continuesto increase
for larger voltagedrops,and this causesthe ratio to get
smaller.
5.0  Detection Procedures

The datausedas input to the statisticalproceduresis
first calibratedfor probing resistancevariationsusing a
proceduredescribedin previous work [17]. Due to space
limitations,theprobecardcalibrationprocedureis not dis-
cussedin this paper. We alsodescribeanddemonstratea
statistical defect detection procedure based on linear
regressionanalysisin previous works [6]. The featuresof
thatprocedureaswell asanew statisticalprocedure,called
ellipse analysis, are outlined in this section.

Vdrop

(V)
C1 Inorm

(ratio)
C2 Inorm

(ratio)
C3 Inorm

(ratio)

0.05 0.16 0.12 0.88

0.10 0.29 0.22 1.61

0.15 0.41 0.31 2.23

0.20 0.51 0.39 2.73

0.25 0.58 0.43 3.09

0.30 0.63 0.47 3.36

0.35 0.67 0.49 3.42

0.40 0.69 0.50 3.54

0.45 0.74 0.56 3.56

0.50 0.69 0.50 3.38

0.55 0.67 0.48 3.16

0.60 0.64 0.46 2.94

0.65 0.60 0.42 2.61

0.70 0.67 0.51 2.45

0.75 0.50 0.35 2.00

0.80 0.45 0.31 1.72

0.85 0.39 0.27 1.47

0.90 0.34 0.24 1.25

Table 1: Normalized defect currents.

5.1  Linear Regression Analysis
Thechip-to-chipvariationin IDDQ is well characterized

usinga regressionmodelwhichanalyzesthemeasuredcur-
rentsfrom pairingsof VDD tap points.Regressingthe val-
uesfrom oneVDD tap point to thosemeasuredat another
VDD tap point producesa near linear relationshipacross
chips.Figure3 plots a setof the measuredIDDQs for VDD

tap point pairing V00 (x-axis) and V10 (y-axis). The data
points labeleddefect-free were collectedwith the defect
enabletransistorsturnedoff. For example,the datapoints
labeledC3defect-freedatapointsrepresenttheIDDQsmea-
suredat thesetwo VDD tappointson chip C3,eachundera
different Vdrop values,as listed row-wise in Table 1. The
sameis true for the points labeled C2 defect-free data
points(note,only thelower left region of thescatterplot is
shown). The line labeledLSEregressionline representsa
leastsquaresestimateof theregressionline throughthe57
defect-freedata points in the scatterplot. The parabolic
curveslabeled3 σ predictionlimits representthethreshold
between the defect-free space and the defective space.

ThepointslabeledC3 emulateddefect#1 representthe
IDDQswhenmeasuredwith oneof thedefectenabletransis-
torsturnedon.The3 datapointsin thelower left portionof
thescatterplot areassociatedwith Vdrops of 0.05,0.10and
0.15V. They arewithin thepredictionlimits andtherefore
are not detectedfor this VDD tap point pairing. Positive
detections,however, do occur for the other(larger) values
of Vdrop since the data points are positionedoutsidethe
prediction limits.
5.2  Ellipse Analysis

Theellipseanalysisprocedurethatwe useis similar to
the linear regressionanalysisprocedure.In both cases,the
IDDQs from adjacentVDD tappointsareplottedin 2 dimen-

Figure 3. V00-V01 regression analysis.
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sional scatter plots. However, for ellipse analysis, the
IDDQs are first normalizedby dividing eachvalue by the
sum of the IDDQs measuredat the four VDD tap points.
This operation significantly reduces the effects of
non-regionalprocessvariationsacrossthechipsandeffec-
tively compressesthe data points distributed along the
regression line in Figure 3 into a cluster.

Figure 4 shows the cluster that results for VDD tap
points,V00 andV10 acrossthethreechips.Also shown is a
4.5σ predictionellipsegeneratedfrom theeigenvaluesof

thecovariancematrix andΧ2 (chi-square)distribution sta-
tistic. Equation1 gives the formula for the length of the
principleaxis,a, for theellipse,giveneigenvalueλ0 and

the valueof the Χ2 statisticof seconddegreeevalu-
atedat 0.99999(4.5σ). Theb axisis definedin a similar

fashion.The eigen vectorsdefine the orientationof the
ellipse in 2 dimensional space.

The prediction ellipse defines the limits in which
defect-freechipsareexpectedto generatedatapoints.The
datapointslabeledCx emulateddefect#1: Vdrop = 0.05-
0.90 are producedunder the teststhat enablethe defect
enabletransistorin chip x = 1, 2 and3. Someof thesedata
pointsappearinsidetheellipseandthereforeareclassified
under this VDD tap point pairing as belonging to a
defect-freechip. Similar to the regressionanalysiscase
discussedin relationto Figure3, thesedatapointsareasso-
ciated with small values of Vdrop. Conversely, positive
defectdetectiondecisionsoccur for the datapoints posi-
tioned outside the ellipse.

5.3  Details of the Statistical Analysis Procedure
The defectdetectionproceduresareformulatedon the

a sqr t 23.026 λ0×( )= (1)

analysisof scatterplots, suchasthoseshown in Figures3
and4. Four scatterplotswereanalyzedfor eachdefectand
Vdrop value, one for each adjacentpairing of VDD tap
pointsshown in Figure1. A defectis countedasdetectedif
one or more of its datapoints falls outsidethe prediction
limits (for regressionanalysis)or thepredictionellipse(for
ellipse analysis).

As indicated,100emulateddefectpositionwerechosen
at randomamongthesetof 4,000within thearray. For each
defect, 18 tests were performed,each using a different
Vdrop value.Therefore,1,800emulateddefectswereevalu-
ated for each chip, yielding a total of 5,400 emulated
defects (3 chips * 1,800 emulated defects/chip).

The statisticallimits were set suchthat all defect-free
points fell within the limits. This requireda 3 σ limit for
regressionanalysisand 4.5 σ for ellipse analysis.These
limits are different becausethe division operation per-
formed for ellipse analysis amplifies the measurement
noisein thedata,causingthedefect-freepointsto bemore
widely distributed.Theeffect is particularlyevidentfor the
low leakagechip C3, where our signal-to-noiseratio is
smallest.On-goingwork is refiningourmeasurementappa-
ratus in hopesof raising the signal-to-noiseratio by an
orderof magnitude.Underthepresentsetup,it wasneces-
saryto bothwidenthelimits undertheellipseanalysispro-
cedureto 4.5 σ and remove defect-freevalues below a
certainabsolutecurrentthreshold.This is evident in Figure
4 which shows only 3 of the 19 defect-freedatapointsfor
chip C3. In contrast,all 19*3= 57 defect-freedatapoints
were usedin regressionanalysis.A lessonlearnedfrom
theseexperimentsis thatregressionanalysisis morerobust
to measurement noise.

The standardstatisticalmethodof analyzingdeviation
fromthemeanin scatterplotsis throughresiduals. A resid-
ual is definedto betheshortestdistancefrom adatapoint to
theregressionline, for regressionanalysis,andto thecenter
of the ellipse,for ellipseanalysis.This distanceis usually
converted into a standardizedresidualusing Equation2.

Here, MSE representsthe meansquare error or the
variance of the defect-freedata points from their
respective means.For regression,themeanfor a par-
ticular value of x is the regressionline y value.For
ellipse analysis,the meanis the (x,y) centerof the
ellipse.

In this paper, we report two quantitiesthat reflect the
detectionsensitivity of thesestatisticalprocedures.Thefirst
is the number of detectionsfor each defect (maximum
value is 4) and the secondis the maximumstandardized
residual(ZRES).For misseddetectionsin which the data
pointsfor theemulateddefectfell within the limits in all 4
scatterplots, the numberof detectionsand the maximum

ZRES
residual

MSE
-------------------= (2)
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Figure 4. V00-V01 ellipse analysis.
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ZRESarebothgivenas0. Bothof thesemetricsconvey the
level of confidencepresentin apositivedetectiondecision,
with higher numbers yielding higher confidence.

6.0  Experimental Results
6.1  Regression Analysis

The resultsof applyingregressionanalysisto the data
areshown in aseriesof histogramsin Figure5. Eachhisto-
gramdisplaystheresultsof thenumberof detections(left)
or the maximumZRES(right) for eachof the threechips
(rows). As indicatedabove, an emulateddefectis consid-
ereddetectedwhenthenumberof detectionsandthemaxi-
mum ZRES are greater than 0.

Thedatawithin eachhistogramis organizedasfollows.
The x axis representsthe emulateddefects where the
defectsarelabeledaccordingto their distanceto thenear-
est VDD tap point. The y axis representsthe Vdrop value
betweenthe power grid anddefectemulationwire. The z
axis representseither the numberof detectionsor maxi-
mumZRESvalue.Therefore,eachhistogramhas100ele-
mentsalongthex axisand18elementsalongthey axis,for
a total of 1,800 emulated defects per chip.

Themostnoticeabletrendin thehistogramsis thegrad-
ual reductionof the valuesfrom right to left along the x

axis.As indicatedabove, thedefectsareorderedin thehis-
togramaccordingto their distanceto a VDD tappoint. The
elementson thefar right in thehistogramhave thesmallest
valuesand thereforeare closestto a VDD tap point. This
trend clearly indicatesthat better detectionsensitivity is
obtainedfor defectscloserto themeasurementpoints.This
is true becausethe resistancecharacteristicsof the power
grid enhancethe regional disturbanceintroducedby the
defectat points closer to the VDD tap points. This holds
true independentof the ratio of defectcurrent to leakage
current,that is conveyed in the Vdrop value plotted along
they axis.

Most of the misseddetectionsoccur in the left portion
of the histograms.The emulateddefectsin thesecasesare
nearthe centerof the power grid. We call this region the
resistivemiddle. Emulateddefectsin this region arediffi-
cult to distinguishfrom processvariation effects because
the defectcurrentdistributeswith moreuniformly to the 4
VDD tap points. It is important to note that the resistive
middleholdstrueonly with respectto theneighboringVDD

tappoints.Most commercialgridshave morethan4 supply
ports and therefore,it is likely that many of the missed
detectionsin thisanalysiswill bedetectedby theotherVDD

Figure 5. Regression Analysis Histogram Results
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tappointpairingsoutsidethisquad. Thedesignof thischip
actually includestwo additional VDD tap points located
midway betweenthevertical pairs,V00-V01 andV10-V11.
Wewill reporttheresultsof a two quad(6 VDD tappoints)
analysisin a futurework to verify thishypothesis(which is
validated in previous work through simulation experi-
ments).

The second,somewhat lessevident, trendin the histo-
gramdatais the nearmonotonicnatureof the dataalong
the y axis. This is particularly evident in the maximum
ZREShistogramsin which thelargestvaluesoccurfor the
Vdrop y slice associatedwith 0.90. The ratios given in
Table 1 indicate that the easiestdetectionsshouldoccur
alongthey sliceassociatedwith 0.45Vdrop. It is herethat
the ratio of defect current to leakagecurrent is largest.
However, thisexpectedparabolictrendis notevidentin the
histograms.

6.2  Ellipse Analysis
The ellipse analysisresultsare shown by the histo-

gramsin Figure6. Theformatof thesehistogramsis iden-
tical to thosegivenin Figure5 for easeof comparison.The
trendalongthex axisdescribedabovefor regressionanaly-
sis alsoholdstrue here.The mostnotabledifferenceis in

the# detectionhistogramsshown for C2 andC3, i.e., Fig-
ures 6(c) and (e). Unlike the regressionanalysisresults,
which portraya strongerdegreeof uniformity with regard
to defectdetectionsacrossall threechips,theellipseanaly-
sisresultsfor chip C2 show a largernumberof missesrela-
tive to C1 while chip C3 shows fewer numbersof misses.
As indicatedin Section5.3, thedifferencesin leakagecur-
rentsamongthechipsandtheexisting signal-to-noiseratio
of the instrumentationsetupcombineto createanomalies
that are more evident here becauseof the normalization
operation.

In contrastto the regressionanalysisdata, the trend
alongthey axis,particularlyin themaximumZREShisto-
grams,is parabolicin shape.This trendcorrelateswell with
the ratios given in Table 1. The peakvaluesin the maxi-
mum ZREShistogramsappearto occurtoward the center,
i.e., for the y slice associatedwith Vdrop of 0.45 V. The
numericalanalysisgiven in the next sectionconfirmsthis
visually-derived conclusion.

6.3  Summary
Table 2 summarizesthe numberof emulateddefects

thatweredetectedin thethreechipsfor bothanalysis,bro-
ken down by Vdrop. The maximumvaluefor eachentry is

C1: # detections C1: max. ZRES

C2: # detections C2: max. ZRES

C3: # detections C3: max. ZRES

Figure 6. Ellipse Analysis Histogram Results

(a)

(c)

(e)

(b)

(d)

(f)

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z



300(100emulateddefects* 3 chips).Thetotal numberof
detections(sumof the two columns)is 4020and3775for
regressionandellipseanalysisrespectively. This indicates
that regressionis only slightly superiorto ellipseanalysis
with regard to detectioncapability. However, the distribu-
tionsaresignificantlydifferent.For example,regressionis
able to detectonly 28 of the emulateddefectswith small
defectcurrentswhile theellipseanalysisdoesfairly well at
116 detections.On the other hand, regressionis clearly
superiorfor higher defect and leakagecurrent combina-
tions(bottomof thetable).For example,atVdropat0.90V,
regression detects 285 of the emulated defects while
ellipse analysisdetectsonly 180. The monotonicverses
parabolicnatureof themaximumZREScurvesreferenced
in theprecedingsectionsis reflectedin thesetabulatedval-
ues.

7.0  Conclusions
The defectsensitivity of QuiescentSignalAnalysis is

investigatedin this paper. The datafrom threetest chips
fabricatedin a 65 nm, 10 metal layer technologyareana-
lyzed using two statisticalmethods,onebasedon regres-
sion analysis and one based on ellipse analysis. The
experimentaldesignpermitsdefectsto be emulatedin a
4,000 elementarray of test circuits. External control of
both the emulateddefect current and leakagecurrent is
provided througha globally routeddefectemulationwire
and external power source.The resultsof analyzingthe
datafrom 100emulateddefectsindicatesthat theapplica-
tion of our simulation derived methodsare capableof

Vdrop Regression Ellipse

0.05 28 116

0.10 95 156

0.15 150 195

0.20 188 210

0.25 211 225

0.30 227 227

0.35 236 241

0.40 240 232

0.45 245 234

0.50 255 238

0.55 255 234

0.60 262 232

0.65 260 232

0.70 270 219

0.75 265 210

0.80 277 201

0.85 271 193

0.90 285 180

Total of 5400 4020 3775

Table 2: Number of defects detected

detectingapproximately70% of the emulateddefectsover
a wide range of defect and leakage current combinations.
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