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Abstract

Ippg Or steadystate current testing has beenextensively
usedin the industry as a mainsteamdefectdetectionand

reliability screen. However, leakage current continuesto

increase significantly with ead technology geneation,

makingit difficult to usesingle thresholdlppq testingto

differentiatebetweerdefectiveand defect-fee chips. Alter-

nativetedniquesthat improve the resolutionof Ippq test-

ing have been proposedto replace the single threshold
detectionscheme All of thesetedhniquesusea singlelppg

measuementper circuit configuation for detectionand

thusthe scalability of thesetechniquesds limited. Quiescent
SignalAnalysis(QSA)is a novel Ippq defectdetectionand

diagnosistechniquethat useslppg measuementsat multi-

ple chip supply pads. The use of multiple measuements
points per chip naturally scalesdown of leakage and can

significantly improve detectionof subtle defects.In this

paper regressionand ellipse analysisof the data collected
froma testchip fabricatedin a 65 nmprocessdemonstate

the defectdetectioncapabilities and limits of this tech-

nigque

1.0 Introduction

Backgroundleakagecurrent continuesto increaseas
silicon technologymoves forward. This trend reducesthe
effectivenessof Ippg testing methods as traditionally

applied and is posing a challengefor newer alternatve
strat@ies[1]. Alternative methodsrely on a self-relative or
differential analysis,in which the averagelppq of each

chip is factoredinto the pass/ail threshold.Although the
application of thesetechniquesto low power chips will
continue,thesemethodsare expectedto becomeincreas-
ingly lesseffective for high performanceASICs with high
background leakage currents.

An alternatestrategyy thatmay have betterscalingprop-
ertiesis to distributethetotal leakagecurrentacrossa setof
simultaneousneasurement.his is accomplishedy mea-
suring the individual power supply port currents. Our
method called Quiescent Signal Analysis (QSA) is
designedto exploit this type of leakagecalibrationas a
meansof increasingdefectdetectionresolution.A second-
ary diagnosticbenefitof sucha techniqueis describedn
[2-5].

In previous works, we developed several statistical
basedmethodsfor processinghe datacollectedfrom the

simultaneousmeasurementsA linear regressionanalysis
procedurewas developedand applied to simulation data
obtainedrom acommerciabower grid in [6]. A hyperbola
basedmethod is describedin [7] that performs defect
detectionusingtransientsignalmeasurement§.hesetech-

niques analyze multiple simultaneousmeasurementso

accomplishthree goals: 1) to detectthe regional signal

variationintroducedby defects,2) to scaledown the mag-

nitudeof the chip’s total currentin theindividual measure-
ments and 3) to diminish or attenuateprocessinduced
signalvariations.Thelatterincludesbothlocal (within die)

and global (between diegasiations in leakage current.

In this work, we apply linear regressionanalysisanda
new techniquecalledellipse analysisto the datacollected
from a setof testchips.Thetestchipsarefabricatedn a65
nm, 10 metallayer technology The testchipsincorporate
an array of test structuresthat allow the insertion of a
defectin ary one of 4,000 locations.The designpermits
control over the magnitudeof the defectcurrentandleak-
agecurrent.Theresultsof ouranalysisconfirmtheregional
nature of defect signal variations and demonstratethat
detectionsensitvity is stronglycorrelatedwith the position
and magnitudeof the defectcurrentaswell asthe magni-
tude of the leakage current.

2.0 Related Wrk

The single-thresholdppg techniquerelied on the fact

thatthe steadystatecurrentdistribution of defect-freechips
is distinctfrom thatof thedefectve ones A chipthatdrans
currentthat exceedsthe defect-freecurrentdistribution by
afixedthresholds deemedisdefectie. With theadwentof
deepsub-microntechnologiesthe overlap in thesedistri-
butionsmalesit difficult to setanabsolutepass/ail thresh-
old. The increasein sub-thresholdand gate leakage
currentsin newer technologiescan result in defect-free
leakagecurrentghataresignificantlyhigherthanthe defect
current. Thus, calibrationmethodsare requiredto reduce
the adwerseeffects of high leakagecurrentson defectcur-
rentresolution.Several techniquesasedon a self-relatve
or differential analysisare proposedas a solution to this
problem.A currentsignaturemethodis proposecby Gat-
tiker et. al. [8], thatlooks for discontinuitiesin the curve
obtainedby sortingl ppg measurements ascendingrder

Deltalppg is adifferentiall ppg methodproposedy Thi-
beault[9] in which differencesbetweensuccessie Ippg



measuremen@recomparedo athreshold Maxwell et. al.

[10], proposeda currentratio methodwherechip specific
thresholdsare derived by using vectorsthat producethe
minimum and maximumlIppg values.A clusteringtech-
niguethat groupsgood chips separatelyfrom bad chipsis

proposedby Jandlyala et. al. [11]. Daaschet. al. [12]

describea methodthatpredictsdevice I ppq usingthe spa-
tial proximity correlations among chips on a wafer.

Variyam[13] proposes linear predictionbasedechnique
in which eachlppg valueamonga setof valuesfor agiven
chip is predictedfrom the remaininglppg valuesin the
set. Singh et. al [14] shaved that Ippg readingsof the
neighboringdie on awafercanbe usedfor variancereduc-
tion andto identify waferlevel spatialoutliers. Sabadeet.

al [15][16] have also developed methods based on

waferlevel spatial correlation analysisin which they

derive a maximum defect-freeIDDQ thresholdfrom the
analysis of neighboring die.

Mary of theseprocess-tolerarppg methodsuserela-
tive pass/éil thresholdsinstead of absolutethresholds.
Also the othermajor similarity of thesetechniquess that
they useasinglelppg measuremerger circuit configura-
tion perdie. As the variancein the Ippq valuesincreases,
it tendsto increasethe thresholdbandsin most of these
techniquesthus decreasingheir defectresolution.QSA
differs from thesemethodsby correlatingindividual sup-
ply Ippgs within eachstatevector Statisticalcharacteriza-
tion of the defect-freechipsin combinationwith outlier
analysisis usedto differentiatedefect-freeand defectve
devices. Therefore, the cross-correlationperformed in
QSA additionallycalibratesfor vectorto-vectorvariations.
This is likely to further improve the processtoleranceof
the method.It is alsonotedthat QSA canbe usedin com-
binationwith ary of the existing vectorto-vectoranalysis
techniques to further impve defect resolution.

Another advantageof QSA is the natural scalability
thatthis type of approachincorporatesThescalabilityfea-
turesof QSAshouldmale it possibléefor it to remaineffec-
tive at detectingdefectsaschipsgetlargerandincorporate
largernumbersof moredenselypacledtransistorsQSAis
designedo exploit designtrendsthat add additionalsup-
ply ports(padsthatinterfaceto the externalsupply)aschip
sizes and current requirementsincrease. However, it
should be noted that this benefitof increasedresolution
comeswith thecostof increasedesttime asmultiple mea-
surements need to be performed pemtor

Perhapsa greaterbenefitof usingmultiple power sup-
ply signalsis that they offer information beyond defect
detectionIn our previouswork, we have demonstratethe
ability of QSA for applicationto defectdiagnosis[2-5].
The procedurepredictsthe (x,y) coordinatesat which a
defectdraws currentfrom the power grid in the layout. To
our knowledge ,no othermethodthatis basedntheanaly-

sisof a chip’s electricalsignalsis ableto provide this type
of information. Such information is extremely useful in
failure analysisprocedureswhich are designedto deter-
mine the root cause of chipilures.
3.0 Test Chip Design

A block diagramof thetestchip designis shavn in Fig-
ure1(a). It consistsof a 80x50arrayof calibrationcircuits
(CCs)shawvnin Figure1(b). EachCC consistsof threeFFs
connectedn a scanchain configuration,a parallel set of
shortinginverters,anda defectenabletransistorconnected
to aglobally routeddefectemulationwire. Two power grids
areinterleavedoverthis array oneconnectedo the FFsand
the secondconnectedo the shortinginvertersand defect
enableransistorsTheVpp tappointsshavn in Figurel(a)
asVog Vo1, VigandV 4, connecto the secondpower grid

andwire out of thechip throughseparatgins. Thearrayis
558 um in width and 377um in height.

The connectionof the shortinginvertersandthe defect
enabletransistorgo point sourceson the power grid allow
for a power-ground short or a connectionbetweenthe
power grid anddefectemulationwire, respectiely. Eachof
theseis controlledby the FFs.For example,FF; in Figure

1(b) is usedto control the defectenabletransistoy which
enablesa connectiorbetweerthe power grid andthe defect
emulationwire. In thisway, adefectcanbeemulatedatary
pointin thearrayby driving the defectemulationwire with
a voltagesource labeleddefectsource in Figure 1(b), and
scanningheappropriatebit patterninto thescanchain.The
voltagesetinto the defectsourcecontrolsthe magnitudeof
the shorting current,where lower voltages(belowv 0.9 V)
introduce more significant currents.Lower voltagesalso
increasdheleakagecurrentthroughthe off p-channetran-
sistorsat other positionsin the array (which addsto the
leakagecurrentalreadypresentin the shortinginverters).
Thereforejt is possibleto analyzea variety of shortingand
leakagecurrentconfigurationsby controlling the connec-
tion position and eltage on the defect emulation wire.
FF, andFF3; control the gatesof the shortinginverters.

A power-groundshortis introducedby scanninga 1-0 bit
patterninto the two FFs,respectiely. Individual control of
eachtransistoiin theinvertersalsopermitsalternatve leak-
agedistributionsto be configuredin the array by scanning
in a patternthatleavesoneor both of the transistorsn the
off state(usingoneof thethreeremainingbit patterns0-0,
1-0 or 1-1).
4.0 Test Chip Experiments

Two setsof experimentswere conductedon threecop-
ies of the testchip. In both sets,individual currentswere
measuredt eachof the four Vpp tap points. The first set
made use of the shorting inverters (the defectemulation
wire was disconnected)Here, the scanchain was config-
uredto causeoneof the CC shortinginvertersto shortand
the four currentsat eachVpp tap point were measured.
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Figure 1. (a) Test CUT of CCs, (b) CC cicuit.
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Figure 2. Vg normalized current profile.

This experimentwas repeated4,000times, oncefor each
CC in the array

The currentprofile for Vg is shovn in Figure2. Here,
the x & y axis representhe (x,y) spaceof the CC array
given in microns. The z axis representghe normalized
shortingcurrents(leakageis subtractedmeasuredn Vg
aseachof the4,000CCsareindividually enabledTheVgq
currentsarenormalizedby dividing the measuredialueby
the sumof the currentsat all Vpp tap points.The z values
arelargestnearV o becaus€CCsnearthis locationdrav a
larger fraction of their current(approximately31%) from
Vg thanCCsthatarefurtherremoved. The otherextreme,
i.e., the smallestvaluesof z, occur at locationsnearthe
remainingthree Vpp tap points. The smoothmonotoni-
cally decreasinghatureof the curve from largestto small-
est clearly shavs the regional behaior induced by the
power grid resistance characteristics.

The datapointsof interestfrom this analysisarethose
currentvaluesassociatedvith the CCsnearthe Vpp tap

points. Figure 1(a) identifies four CC circuits, CCy o,
CCy,79 CCyg pandCCyg 7gpositionedunderneatitheVpp
tap points. The currentsmeasuredwith thesefour CCs
enabledneat atime canbe usedto calibratefor resistance
variationsin the connectiongrom the external power sup-
ply sourceto theVpp tappoints.Differencesn theseresis-

tancesacrosschips adwersely affects our defectdetection
techniquesThe calibrationprocedurghatwe developedis
described in [17].

The secondset of experimentsinvolve the use of the
defectemulationwire (the shortinginvertersare disabled).
A setof 100 locationsin the arraywasrandomlyselected
andrepresenthe CCsunderinvestigation in theseexperi-
ments.The currentsthroughthe four Vpp tap pointswere
measuredor eachof the 100 experimentsunder19 differ-
entvaluesof the defectsourcevoltage.Therefore for each
chip, 1,900 gperiments were conducted.

In eachexperiment,the currentswere measuredinder
two state configurations. The first state configuration
allowed leakagecurrentto be measuredwith the defect
sourcesetto a specificvalue.In this caseall defectenable
transistoravereturnedoff. The secondstateconfiguration
enabledthe defect enabletransistor This causeda short
betweerthe power grid anddefectemulationwire ata spe-
cific point in the array The currentsmeasuredinderthis
configurationincludea componentntroducedby the emu-
lated defect.

Table 1 specifiesthe voltage drop betweenthe defect
sourceand power grid in the first columnandthe average
valueof theratio of defectcurrentto leakagecurrentin the
remainingcolumnsfor eachof thethreechips.The numer-
atorin theratiois computedby subtractinghe leakagecur-
rentthroughthe defectsourcewith defectenableransistors
off from the valuemeasuredvhenoneof the defectenable
transistorgs turnedon. Thedenominatois computedrom
the sumof the Vp tap point leakagegwith defectenable

transistorgurnedoff). Sincethereare 100 defectsites,the



averageis computedover 100 measurement®r eachchip
(columns) and eactoitage drop (revs).

Vdrop Cl Inorm CZ |n0rm C3 |norm
V) (ratio) (ratio) (ratio)
0.05 0.16 0.12 0.88
0.10 0.29 0.22 1.61
0.15 0.41 0.31 2.23
0.20 0.51 0.39 2.73
0.25 0.58 0.43 3.09
0.30 0.63 0.47 3.36
0.35 0.67 0.49 3.42
0.40 0.69 0.50 3.54
0.45 0.74 0.56 3.56
0.50 0.69 0.50 3.38
0.55 0.67 0.48 3.16
0.60 0.64 0.46 2.94
0.65 0.60 0.42 2.61
0.70 0.67 0.51 2.45
0.75 0.50 0.35 2.00
0.80 0.45 0.31 1.72
0.85 0.39 0.27 1.47
0.90 0.34 0.24 1.25

Table 1: Normalized defect curents.

The ratio expressesthe relatve magnitude of total
defectcurrentto leakageandis the basisof our sensitvity
analysis.For example,the rangeof the ratios changedy
over an order of magnitudefrom 0.12 (hardto detect)to
3.38(easierto detect).Theratiosfor C1 andC2 arelower
thanthosefor C3 becauseC3is a“low leakage chip. The
smallervalueof leakagein the denominatorcreatedarger
ratiosfor this chip. Also notableis the trendin the ratios
for ary given chip acrossthe V gq, values.For example,

thelargestratiosfor all threechipsoccurwith Vg,o,at0.45

volts. The ratiosthenbegin to deceasefor larger voltage
drops. This occurs becausethe defect enabletransistor
beginsto saturateat 0.45volts, andtherefore the numera-
tor doesnot increasemuchbeyond this voltagedrop. The
leakagecurrent,on the other hand, continuesto increase
for larger voltage drops, and this causesthe ratio to get
smaller
5.0 Detection Pocedures

The datausedasinput to the statisticalproceduress
first calibratedfor probing resistancevariationsusing a
proceduredescribedn previous work [17]. Due to space
limitations, the probecardcalibrationprocedurés not dis-
cussedn this paper We also describeand demonstratex
statistical defect detection procedure based on linear
regressionanalysisin previous works [6]. The featuresof
thatprocedureaswell asanew statisticalprocedurecalled
ellipse analysis, are outlined in this section.
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Figure 3. VgV, regression analysis.

5.1 Linear Regmession Analysis

Thechip-to-chipvariationin Ippg is well characterized
usingaregressiormodelwhich analyzegshe measuredaur-
rentsfrom pairingsof Vpp tap points. Regressingthe val-
uesfrom oneVpp tap point to thosemeasuredat another
Vpp tap point producesa nearlinear relationshipacross
chips.Figure 3 plots a setof the measuredppgs for Vpp
tap point pairing Vg (x-axis) and V 1q (y-axis). The data
points labeled defect-fee were collected with the defect
enabletransistorgurnedoff. For example,the datapoints
labeledC3 defect-feedatapointsrepresenthelppgs mea-
suredatthesetwo Vpp tap pointson chip C3, eachundera
differentVyyop values,as listed row-wise in Table 1. The
sameis true for the points labeled C2 defect-fee data
points(note,only thelower left region of the scatterplot is
shawvn). The line labeledLSE regressionline representa
leastsquaresestimateof the regressiorline throughthe 57
defect-freedata points in the scatterplot. The parabolic
curveslabeled3 ¢ predictionlimits representhethreshold
between the defect-free space and the detespace.

The pointslabeledC3 emulateddefect#1 representhe
Ippgs whenmeasureavith oneof thedefectenabletransis-
torsturnedon. The 3 datapointsin thelower left portion of
the scatterplot areassociateavith V ;s 0f 0.05,0.10and
0.15V. They arewithin the predictionlimits andtherefore
are not detectedfor this Vpp tap point pairing. Positive
detectionshowever, do occurfor the other (larger) values
of Vyrop since the data points are positionedoutsidethe
prediction limits.
5.2 Ellipse Analysis

The ellipseanalysisprocedurehatwe useis similar to
the linear regressionanalysisprocedureln both casesthe
Ippgs from adjacend pp tappointsareplottedin 2 dimen-
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sional scatter plots. However, for ellipse analysis, the
Ippgs arefirst normalizedby dividing eachvalue by the

sum of the Ippgs measuredat the four Vpp tap points.
This operation significantly reduces the effects of
non-regional processvariationsacrosshe chipsandeffec-
tively compressedhe data points distributed along the
regression line in Figure 3 into a cluster

Figure 4 shaws the cluster that resultsfor Vpp tap
points,VygandVgacrosghethreechips.Also shovnis a
4.5 o predictionellipsegeneratedrom the eigenvaluesof
the covariancematrix and X (chi-squareistribution sta-
tistic. Equationl givesthe formula for the length of the
principle axis, a, for the ellipse,given eigenvalue Ay and

Vg normalized current

Figure 4. VgV, ellipse analysis.

the value of the X2 statisticof seconddegreeevalu-
atedat 0.99999(4.50). Theb axisis definedin a similar

a = sgrt(23.026x )\0) @)
fashion. The eigen vectors define the orientation of the
ellipse in 2 dimensional space.

The prediction ellipse defines the limits in which
defect-freechipsareexpectedto generatadatapoints.The
datapointslabeledCx emulateddefect#1: Vg, = 0.05-
0.90 are producedunder the teststhat enablethe defect
enabletransistorin chipx = 1, 2 and3. Someof thesedata
pointsappeaiinsidethe ellipseandthereforeareclassified
under this Vpp tap point pairing as belonging to a
defect-freechip. Similar to the regressionanalysiscase
discussedh relationto Figure3, thesedatapointsareasso-
ciated with small values of Vg, Cornversely positve
defectdetectiondecisionsoccur for the datapoints posi-
tioned outside the ellipse.

5.3 Details of the Statistical Analysis Rycedure
The defectdetectionproceduresreformulatedon the

analysisof scatterplots, suchasthoseshowvn in Figures3
and4. Four scattemlotswereanalyzedor eachdefectand
Varop Value, one for each adjacentpairing of Vpp tap
pointsshovn in Figurel. A defectis countedasdetectedf
one or more of its datapointsfalls outsidethe prediction

#l_Jimits (for regressioranalysis)or the predictionellipse (for
Vgrop = 0.05 - 0.90 ellipse analysis).

As indicated,100emulateddefectpositionwerechosen
atrandomamongthe setof 4,000within thearray For each
defect, 18 tests were performed, each using a different
Vdrop Value.Therefore 1,800emulateddefectswereevalu-
ated for each chip, yielding a total of 5,400 emulated
defects (3 chips * 1,800 emulated defects/chip).

The statisticallimits were setsuchthat all defect-free
points fell within the limits. This requireda 3 o limit for
regressionanalysisand 4.5 o for ellipse analysis.These
limits are different becausethe division operation per-
formed for ellipse analysis amplifies the measurement
noisein the data,causingthe defect-freepointsto be more
widely distributed. The effect is particularlyevidentfor the
low leakagechip C3, where our signal-to-noiseratio is
smallestOn-goingwork is refiningour measuremerdppa-
ratus in hopesof raising the signal-to-noiseratio by an
orderof magnitude Underthe presentsetup,it wasneces-
saryto bothwidenthelimits underthe ellipseanalysispro-
cedureto 4.5 o and remove defect-freevaluesbelov a
certainabsolutecurrentthreshold.This is evidentin Figure
4 which shavs only 3 of the 19 defect-freedatapointsfor
chip C3. In contrast,all 19*3= 57 defect-freedatapoints
were usedin regressionanalysis.A lessonlearnedfrom
theseexperimentds thatregressioranalysisis morerobust
to measurement noise.

The standardstatisticalmethodof analyzingdeviation
fromthemeanin scattemplotsis throughresiduals A resid-
ualis definedto betheshortestistancdrom adatapointto
theregressiorline, for regressioranalysisandto thecenter
of the ellipse, for ellipse analysis.This distanceis usually
converted into a standardizedesidualusing Equation2.

ZRES = residual 2)
~MSE

Here, MSE representgshe meansquake error or the
variance of the defect-freedata points from their
respectie meansFor regressionthe meanfor a par-
ticular value of x is the regressionline y value. For
ellipse analysis,the meanis the (x,y) centerof the
ellipse.

In this paper we reporttwo quantitiesthat reflectthe
detectiorsensitvity of thesestatisticalproceduresThefirst
is the number of detectionsfor each defect (maximum
value is 4) and the secondis the maximum standardized
residual(ZRES). For misseddetectionsn which the data
pointsfor the emulateddefectfell within thelimits in all 4
scatterplots, the numberof detectionsand the maximum
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Figure 5. Regression Analysis Histogram Results

ZRESarebothgivenas0. Both of thesemetricscorvey the
level of confidencepresentin a positive detectiondecision,
with higher numbers yielding higher confidence.

6.0 Experimental Results
6.1 Regession Analysis

The resultsof applyingregressionanalysisto the data
areshowvnin aseriesof histogramsn Figure5. Eachhisto-
gramdisplaysthe resultsof the numberof detectiongleft)
or the maximumZRES (right) for eachof the threechips
(rows). As indicatedabove, an emulateddefectis consid-
ereddetectedvhenthe numberof detectionsandthe maxi-
mum ZRES are greater than 0.

Thedatawithin eachhistogramis organizedasfollows.
The x axis representsthe emulated defects where the
defectsarelabeledaccordingto their distanceto the near-
estVpp tap point. The y axis representshe Vg, value
betweenthe power grid and defectemulationwire. The z
axis representsither the numberof detectionsor maxi-
mum ZRESvalue.Therefore eachhistogramhas100ele-
mentsalongthex axisand18 elementalongthey axis, for
a total of 1,800 emulated defects per chip.

Themostnoticeablgrendin thehistogramss thegrad-
ual reductionof the valuesfrom right to left alongthe x

axis.As indicatedabove, the defectsareorderedin the his-

togramaccordingto their distanceto a Vpp tap point. The

elementsonthefarrightin the histogramhave the smallest
valuesand thereforeare closestto a Vpp tap point. This

trend clearly indicatesthat better detectionsensitvity is

obtainedfor defectscloserto the measuremerpoints. This

is true becausehe resistancecharacteristicof the powver

grid enhancethe regional disturbanceintroducedby the

defectat points closerto the Vpp tap points. This holds
true independendf the ratio of defectcurrentto leakage
current,thatis corveyed in the Vo, value plotted along
they axis.

Most of the misseddetectionsoccurin the left portion
of the histogramsThe emulateddefectsin thesecasesare
nearthe centerof the power grid. We call this region the
resistivemiddle Emulateddefectsin this region are diffi-
cult to distinguishfrom processvariation effects because
the defectcurrentdistributeswith more uniformly to the 4
Vpp tap points. It is importantto note that the resistive
middleholdstrue only with respecto theneighboringV pp
tap points.Most commercialgrids have morethan4 supply
ports and therefore,it is likely that mary of the missed
detectionsn this analysiswill bedetectedy theotherVpp
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tappoint pairingsoutsidethis quad Thedesignof this chip
actually includestwo additional Vpp tap points located
midway betweenthe vertical pairs,V Vg, andVg-Vi1.

We will reporttheresultsof atwo quad(6 Vpp tappoints)
analysisn afuturework to verify this hypothesigwhichis

validated in previous work through simulation experi-
ments).

The secondsomavhat lessevident, trendin the histo-
gramdatais the nearmonotonicnatureof the dataalong
the y axis. This is particularly evident in the maximum
ZREShistogramsn which the largestvaluesoccurfor the
Varop Y Slice associatedwith 0.90. The ratios given in
Table 1 indicate that the easiestdetectionsshould occur
alongthey slice associateavith 0.45V o, It is herethat
the ratio of defectcurrentto leakagecurrentis largest.
However, this expectedparabolictrendis notevidentin the
histograms.

6.2 Ellipse Analysis

The ellipse analysisresultsare shavn by the histo-
gramsin Figure6. Theformatof thesehistogramds iden-
tical to thosegivenin Figure5 for easeof comparisonThe
trendalongthex axisdescribedabove for regressioranaly-
sis alsoholdstrue here.The mostnotabledifferenceis in

the # detectionhistogramsshovn for C2 andC3, i.e., Fig-

ures 6(c) and (e). Unlike the regressionanalysisresults,
which portray a strongerdegreeof uniformity with regard

to defectdetectionsacrossall threechips,theellipseanaly-
sisresultsfor chip C2 shawv alargernumberof missegela-

tive to C1 while chip C3 shaws fewer numbersof misses.
As indicatedin Section5.3, the differencesn leakagecur-

rentsamongthe chipsandthe existing signal-to-noiseatio

of the instrumentatiorsetupcombineto createanomalies
that are more evident here becauseof the normalization
operation.

In contrastto the regressionanalysisdata, the trend
alongthey axis, particularlyin the maximumzZREShisto-
gramsjs parabolicin shapeThistrendcorrelatesvell with
the ratios given in Table 1. The peakvaluesin the maxi-
mum ZRES histogramsappearto occurtoward the centey
i.e., for the y slice associatedvith Vg, of 0.45V. The
numericalanalysisgiven in the next sectionconfirmsthis
visually-derived conclusion.

6.3 Summary

Table 2 summarizesghe numberof emulateddefects
thatweredetectedn thethreechipsfor both analysisbro-
kendown by V4o The maximumvaluefor eachentryis



300(100emulateddefects*t 3 chips).Thetotal numberof
detectiongsumof the two columns)is 4020and3775for
regressionandellipse analysisrespectiely. This indicates
that regressionis only slightly superiorto ellipse analysis
with regard to detectioncapability However, the distribu-
tions aresignificantlydifferent.For example,regressionis
ableto detectonly 28 of the emulateddefectswith small
defectcurrentswhile the ellipseanalysisdoesfairly well at
116 detections.On the other hand, regressionis clearly
superiorfor higher defectand leakagecurrentcombina-
tions (bottomof thetable).For example atV o, at0.90V,
regression detects 285 of the emulated defects while
ellipse analysisdetectsonly 180. The monotonicverses
parabolicnatureof the maximumZREScurvesreferenced
in the precedingsectionds reflectedn thesetabulatedval-
ues.

Vdrop Regression Ellipse
0.05 28 116
0.10 95 156
0.15 150 195
0.20 188 210
0.25 211 225
0.30 227 227
0.35 236 241
0.40 240 232
0.45 245 234
0.50 255 238
0.55 255 234
0.60 262 232
0.65 260 232
0.70 270 219
0.75 265 210
0.80 277 201
0.85 271 193
0.90 285 180

Total of 540Q 4020 3775

Table 2: Number of defects detected

7.0 Conclusions

The defectsensitvity of QuiescentSignal Analysisis
investigatedin this paper The datafrom threetestchips
fabricatedn a 65 nm, 10 metallayer technologyare ana-
lyzed usingtwo statisticalmethods,one basedon regres-
sion analysis and one basedon ellipse analysis. The
experimentaldesignpermits defectsto be emulatedin a
4,000 elementarray of test circuits. External control of
both the emulateddefect currentand leakagecurrentis
provided througha globally routeddefectemulationwire
and external power source.The resultsof analyzingthe
datafrom 100 emulateddefectsindicatesthat the applica-
tion of our simulation derved methodsare capableof

detectingapproximately70% of the emulateddefectsover
a wide range of defect and leakage current combinations.
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