
Abstract
The large magnitude of background leakage currents in
current technologies continues to reduce the effectiveness
of conventional IDDQ testing methods. Newer methods
improve defect resolution using self-relative calibration
techniques or correlation analysis of nearest neighbor
data. Our techniques, which correlate multiple supply pad
IDDQs from the same chip, represent the limit in what is
achievable using self-relative and correlation analysis of
data collected “in the neighborhood”. However, the collec-
tion and analysis of multiple IDDQs from the same chip
introduces new challenges not yet encountered in the IDDQ
testing. Many of these new problems are eloquently solved
using a simple on-chip calibration circuit. Defect detection
techniques and calibration methods designed to deal with,
e.g., variations in probe card contact resistance, were
developed in previous work using simulation experiments.
In this paper, these simulation derived methods are verified
in hardware chips fabricated in a 65 nm process. The data
from 12 test chips is analyzed to determine the defect detec-
tion capabilities and limitations of our techniques.

1.0  Introduction
Background leakage current continues to increase as

silicon technology moves forward. This trend reduces the
effectiveness of IDDQ testing methods as traditionally prac-
ticed and is posing a challenge for newer alternative strate-
gies [1]. Alternative methods rely on a self-relative or
differential analysis, in which the average IDDQ of each
chip is factored into the pass/fail threshold. Although the
application of these techniques to low power chips will
continue, these methods are expected to become increas-
ingly less effective for high performance ASICs with high
background leakage currents.

An alternate strategy that may have better scaling prop-
erties is to distribute the total leakage current across a set of
simultaneous measurements. This is accomplished by mea-
suring the individual power port currents. Our method
called Quiescent Signal Analysis (QSA) is designed to
exploit this type of measurement scheme as a means of
increasing the ratio of defect current to leakage current. A
secondary diagnostic benefit of such a technique is
described in [2-5].

In previous works, we developed several statistical

based methods for processing the data collected from the
simultaneous measurements. A linear regression analysis
procedure was developed and applied to simulation data
obtained from a commercial power grid in [6]. A hyperbola
based method is described in [7] that performs defect
detection using transient signal measurements. These tech-
niques analyze multiple simultaneous measurements to
accomplish three goals: 1) to detect the local signal varia-
tions introduced by defects at point sources in the layout, 2)
to reduce the adverse impact of background leakage current
and 3) to diminish the adverse effects of within-die and
between-die process variations.

In this work, we apply linear regression analysis and
ellipse analysis to the data collected from a set of 12 test
chips. The test chips are fabricated in a 65 nm, 10 metal
layer technology. The test chips incorporate an array of test
structures that allow a defect to be emulated in one or more
of 4,000 distinct locations on the chip. The design permits
control over the magnitude of the emulated defect current
and leakage current. The results of our analysis confirm the
localized nature of defect signal variations and demonstrate
that detection sensitivity is strongly correlated with the
position and magnitude of the defect current as well as the
magnitude of the leakage current.

2.0  Background
The single-threshold IDDQ technique relied on the fact

that the steady state current distribution of defect-free chips
is distinct from that of the defective chips. A chip that
draws current that exceeds the defect-free current distribu-
tion by a fixed threshold is deemed defective. In deep
sub-micron technologies, however, the distributions over-
lap, and it is not possible to set an absolute pass/fail thresh-
old that distinguishes defect-free and defective chips. The
increase in subthreshold and gate leakage currents in newer
technologies can result in background leakage currents that
are significantly higher than the defect current. Thus, alter-
native techniques are needed to reduce the adverse effects
of high background leakage currents on defect current reso-
lution.

Several techniques based on a self-relative or differen-
tial analysis are proposed as a solution to this problem. A
current signature method is proposed by Gattiker et al. [8],
that looks for discontinuities in the curve obtained by sort-
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ing IDDQ measurements in ascending order. Delta IDDQ is a
differential IDDQ method proposed by Thibeault [9] in
which differences between successive IDDQ measurements
are compared to a threshold. Maxwell et al. [10], proposed
a current ratio method where chip specific thresholds are
derived by using vectors that produce the minimum and
maximum IDDQ values. A clustering technique that groups
good chips separately from bad chips is proposed by
Jandhyala et al. [11]. Daasch et al. [12] describe a method
that predicts device IDDQ using the spatial proximity corre-
lations among chips on a wafer. Variyam [13] proposes a
linear prediction based technique in which each IDDQ

value among a set of values for a given chip is predicted
from the remaining IDDQ values in the set. Singh et al. [14]
showed that IDDQ readings of the neighboring die on a
wafer can be used for variance reduction and to identify
wafer-level spatial outliers. Sabade et al. [15][16] have also
developed methods based on wafer-level spatial correlation
analysis in which they derive a maximum defect-free IDDQ

threshold from the analysis of neighboring die.
Many of these process-tolerant IDDQ methods use rela-

tive pass/fail thresholds instead of absolute thresholds, and
all are based on the use of global, i.e., chip-wide, IDDQ

measurements. As the variance in IDDQ increases, it tends
to increase the threshold bands in many of these tech-
niques, thus decreasing their sensitivity to detect defects.
QSA differs from these methods by cross-correlating local,
i.e., within-chip, IDDQ measurements obtained from the
multiple, individual supply ports on the chip. In addition to
the benefits identified in the Introduction, the local IDDQ

measurements eliminate the adverse effects of vec-
tor-to-vector variations inherent in global IDDQ measure-
ment strategies.

3.0  Test Chip Design

A block diagram of the test chip design is shown in

Figure 1(a). It consists of a 80x50 array of test circuits
(TCs) that occupies an area of dimension 558 µm in width
and 380 µm in height. Each TC consists of three FFs con-
nected in a scan chain configuration, a shorting inverter,
and a defect emulation transistor connected to a globally
routed defect emulation wire. A schematic diagram of two
adjacent TCs is shown in Figure 2(b). The shorting invert-
ers and defect emulation transistors within each TC connect
to the same point on the power grid.

The connection of the shorting inverters and the defect
emulation transistors to point sources on the power grid
enable two types of shorts to be introduced within any one
(or more) of the 4,000 TCs. The first type shorts the power
grid to ground through the inverter using FF1 and FF2 and
the second type shorts the power grid to the defect emula-
tion wire using FF3. For the first type, the magnitude of the
shorting current is defined by the external power supply

voltage, labeled PWR supply in Figure 1(b).1 For the sec-
ond type, the magnitude of the shorting current is con-
trolled through an external voltage source, labeled defect
source. Given this configuration, a defect can be emulated
at any point in the array by setting the defect source to a
value less than the PWR supply voltage and scanning a bit
pattern into the scan chain such that exactly one FF3 con-
tains a 0 and the remaining 11,999 FFs contain 1’s.

In addition to controlling the magnitude of the defect
current, the defect source also influences the magnitude of
the background leakage current, as measured through the
PWR supply. The total leakage current can be decomposed
into two types, shown as Ileak_i(nverter) and Ileak_d(efect) in
the right-most TC of Figure 1(b). Given the defect emula-
tion wire connects to the drains of 4,000 defect emulation
transistors, only one of which is enabled in a particular
experiment, the remaining 3,999 transistors will source

1. The PWR supply is held constant in our experi-
ments at 0.9 V.

Figure 1. (a) Block diagram of the test structure and (b) details of the test cells (TC).
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leakage current from the PWR supply proportional to the
magnitude of the defect source voltage. This leakage,
Ileak_d, adds to the leakage current already present through
the shorting inverters, Ileak_i. Therefore, it is possible to
analyze a variety of shorting and leakage current configu-
rations by controlling the states of the defect emulation
transistors and voltage on the defect emulation wire.

The external instrumentation setup is shown in Figure
2. As indicated above, the power ports, labeled V00

through V11 wire out of the chip on separate pins in the
package. The individual power pins are each wired to a low
resistance mechanical switch as shown along the top por-
tion in Figure 2. The switch can be configured in a left or
right position. The left and right outputs across the
switches connect to a common wire that routes to the Glo-
bal Current Source Meter (GCSM) and Local Current
Ammeter (LCA), respectively.

The GCSM is configured to provide 0.9 Volts to the
PWR grid and is also able to measure current with accura-
cies less than 100 nA. The LCA is wired in series with the
GCSM and allows the individual power port (local) cur-
rents, to be measured at the same level of accuracy. As an
example, the configuration of the switches as shown in
Figure 2 allow the local V00 current, I00, as well as the glo-
bal current to be measured. The Defect Emulation Source
Meter (DESM) is used to set the voltage of and measure
the current, Idef, through the defect emulation wire on a
separate pin in the package (not shown).

4.0  Power Grid Characterization Experiments

The first set of experiments is designed to determine
how the grid resistance influences the magnitude of the
local currents. In these experiments, the defect emulation
wire is disconnected and the defect emulation transistors
are disabled. Instead, the shorting inverters are used to pro-
vide the stimulus to the grid.

In these experiments, each of the 4,000 shorting invert-
ers from one of the chips is enabled, one at a time, and the
global and local currents are measured. Given that we are
interested in the characteristics of the grid resistance and its
influence on the local current distributions from point
sources in the layout, the following steps are also per-
formed. After testing each element of the array, the shorting
inverter of the TC under test is disabled and the global and
local leakage currents are measured and subtracted from
the values measured with the shorting inverter enabled.
These difference currents are then normalized by dividing
by the global current. This type of normalization virtually
eliminates the variations in the transistor current magni-
tudes caused by process variations.

Figure 3 shows the current profile derived from the nor-
malized local currents, Inorm_00. Here, the x and y axes rep-
resent the (x, y) plane of the TC array and Inorm_00 is
plotted on the z axis. The local currents are largest near V00

because TCs near this location draw a larger fraction of
their current from V00 (maximum is approximately 31%)
than TCs that are further removed. The degree to which the
grid resistance influences the distribution of currents to the
VDDs is reflected in the range, which is approximately
11%. The smooth monotonically decreasing nature of the
surface from largest to smallest provides the basis on which
defect detection methodologies can be built, as described in
the following sections.

5.0  IDDQ Defect Detection Experiments

These experiments are designed to investigate our
defect detection methodologies and the degree of sensitiv-
ity that they posses with regard to detecting defects that
draw only small amounts of current. These objectives are
better met through the use of the defect emulation transis-
tors and corresponding defect emulation wire because both
the position and magnitude of the emulated defect current

Figure 2. External Instrumentation Setup.
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can be controlled.

5.1  Data Collection Procedure

Unlike the power grid characterization experiments
which tested all 4,000 elements of the TC array, in these
experiments, only a subset of 100 TCs are tested. The set
of randomly selected TCs within the 80x50 array are
shown in Figure 4. The numbered positions are the TCs
under investigation in these experiments.

For each of the 12 chips, a series of measurements were
made for each of the TCs under different voltage configu-
rations of the DESM, i.e., the source meter that drives the
defect emulation wire. The first experiment for each chip is
referred to the defect-free experiment. In this experiment,
the state of all scan chain FFs is set to 1, which disables
both the shorting inverters and the defect emulation tran-
sistors within all TCs in the array. The DESM is then
swept across a sequence of voltages, from 0.9 V to 0.0 V in
50 millivolt intervals, for a total of 19 steps. At each
DESM voltage, a set of 4 local and 4 global currents are
measured. The same sequence of operations is performed
with each of the defect emulation transistors enabled, one
at a time.

5.2  Data Sets and Pairings

For each chip, the data collection procedure produces
1,919 data sets. 19 of these data sets represent data from
the defect-free experiments and 1900 (19 * 100 emulated
defects) represent data from the emulated defect experi-
ments. However, the emulated defect experiment with the
DESM voltage set to 0.9 V is not meaningful because there

is no voltage drop across the defect emulation transistor.
Therefore, only 18 of the 19 data sets are treated as emu-
lated defects. With 12 chips, there is a total of 12*19 = 228
defect-free data sets and 12*1800 = 21,600 emulated defect
data sets.

The analysis is performed on pairs of local currents
within each data set. Figure 5 displays the VDD ports and
lists the pairings possible as two subsets, orthogonal neigh-
bors subset and a cross neighbors subset.The analysis is
performed on the entire set (all pairings) and compared
with the results obtained for the subset identified as orthog-
onal neighbors to determine the impact of this parameter
on defect detection sensitivity.

5.3  Correlation Analysis for Variation

The primary purpose of sweeping the DESM across 19
different values is to enable a sensitivity analysis that is
designed to answer questions such as: “at what DESM volt-
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age levels can the emulated defects be detected?”, and
“how high is the confidence level of each positive detec-
tion?” A secondary purpose is related to problems associ-
ated with applying statistical methods to small data sets,
i.e., the 12 chips. Here, we make use of the 19 defect-free
data sets obtained from each chip under different DESM
voltages to increase sample size. In order to remove any
concerns that this may unfairly bias the results, we also
give the results of an analysis that uses only one set of
defect-free data from each chip.

A third purpose is related to the analysis of variance in
the data. By using the defect-free data sets obtained from a
single chip, it is possible to decompose several sources of
variation that impact the results, e.g., variations introduced
by parameters related to the test apparatus and power grid.
Through a comparative analysis using the data sets from
other chips, it is possible to identify the relative magnitude
and significance of these sources of variations.

5.4 Correlation Analysis of Defect-free Data from
a Single Chip

Perhaps the most challenging aspect of hardware
experiments in comparison to simulation experiments is
understanding and accounting for the various sources of
signal variations. The measured parameter, IDDQ, in our
experiments is analog in nature and is subject to variations
related to the measurement instrumentation and test appa-
ratus, i.e., noise and series parasitic resistances, as well as
those related to the chip itself, such as pin and routing par-
asitics and within-die and between-die process variations.
It is important to understand the relative impact of these
signal variation sources as well as have a means of cali-
brating for them.

In the context of our test methods, the most meaningful
approach to decompose the sources of signal variations is
through the analysis of variance in scatterplots. There are
two types of scatterplots that are of interest in our analysis.

The first type is constructed using absolute local currents
while the second type is constructed using normalized local
currents. For example, Figure 6(a) plots the absolute local
currents, I00, along the x axis against the corresponding I01

on the y axis for chip C1. The plot includes 19 pairs of val-
ues, one pair for each of the DESM voltages. In contrast,
the scatterplot of Figure 6(b) shows the same data except
that each of the local currents is first divided by the global
values that were measured simultaneously, as described in
Section 5.1. The effect of the normalization operation is to
remove the magnitude of the absolute current from consid-
eration. In other words, the dispersion of the data points
along the line as portrayed in Figure 6(a) is eliminated, and
the data points are effectively clustered together in a blob as
shown in Figure 6(b).

Standard methods for the analysis of variance are
applied to these types of scatterplots. For the data shown in
Figure 6(a), linear regression analysis is applied by com-
puting a best fit line through the data points and a set of 3 σ
prediction limits. The analysis of variance of the data in
Figure 6(b) is accomplished using a prediction ellipse
method. The elliptical bound around the data points is com-
puted from the eigen values of their covariance matrix and

a 3 σ Χ2 (chi-square) distribution statistic.

The data points in Figure 6(a) are nearly co-linear,
yielding prediction limits that are very narrow. This is
expected since the data is derived from a single chip, and
therefore, several important parameters that introduce dis-
persion of the data points are held constant, such as the
series resistance between the power supply and the VDD

ports, and on-chip parameters related to process variations.
The sources of variation that remain are those related to
environmental changes such as temperature and noise.
Temperature variations are minimized by collecting both
data points in each pair close together in time as described
earlier. Therefore, most of the variation is due to noise. The
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noise floor under the existing test setup is approximately
300 nA.

Similar conclusions can be drawn from the data dis-
played in Figure 6(b) except that the dispersion is more
pronounced. This is due, in part, to the difference in scal-
ing factors used to plot the data. However, the dispersion is
actually larger than that present in the scatterplot of Figure
6(a). In this case, the normalization operation is responsi-
ble for increasing the dispersion because the divisor, i.e.,
the global current measurement, is also subject to noise.
Moreover, the global context of the measurement, i.e. the
entire array, is subject to a wider range of process varia-
tions than the regional context associated with two local
measurements. As will become evident in the defect sensi-
tivity analysis given in the following sections, these ele-
ments can reduce detection sensitivity of small defect
currents.

5.5 Correlation Analysis of Defect-free Data from
Two Chips

The data shown in Figures 6(a) and (b) is drawn from a
single chip, and therefore is not representative of an actual
testing environment, in which the data that defines the
defect-free behavior of the chip would be drawn from a
much larger sample of chips. When this is done, the other
sources of variations that are not present in the single chip
analysis will impact the level of dispersion of the data
points in the scatterplots.

This is more clearly illustrated using ellipse analysis
than regression analysis. Figure 7 plot normalized leakage
currents from two chips, C1 and C2, for all 6 pairings of
VDDs. The clusters of data points around the periphery of
the plot represent the data as measured. For example, two
of the uncalibrated data clusters are labeled C1:V00-V01

and C2:V00-V01 and represent data from the same pairing in
the two chips. Although the ellipse needed to enclose both
clusters of data points for this pairing is not shown, it is
clear that its size would increase significantly over that
shown for C1 in Figure 6(b).

The displacement of the clusters from each other is
caused primarily by variations in the series resistance
between the power supply and each of the attachment
points to the power grid. Variations in series resistance can
occur in either of the wire segments that define these paths,
namely, the segment between the PWR supply and the VDD

ports on the packaged chips, and the segment between the
VDD ports and the power grid within the package and chip.
Since the same test apparatus is used to collect data from
both of these chips, the resistance variations along the first
segment are nearly zero. Therefore, the differences in series
resistances must occur along the second segment, i.e.,
within the package and chip or as contact resistance varia-
tions in the clam-shell style ZIF socket on the test board.

As indicated, the area enclosed by the ellipse would
increase significantly if this type of variation is not cor-
rected for. In previous work, we developed and demon-
strated a “probe card calibration” (PCC) technique
designed to reduce this type of variation [7]. The heads of
the dashed arrows show the result of applying PCC to the
data clusters shown around the periphery in Figure 7. The
clusters from both chips have been linearly displaced to the
center of the figure. The 3 σ prediction ellipses shown in
the figure are derived using the combined data sets. Mini-
mizing their size is desirable because, as we will show,
defect detection sensitivity is strongly correlated to the
level of dispersion in the defect-free data clusters.

5.6  Defect Current and Background Leakage in
the Test Chips

One important advantage of measuring local currents at
each of the supply ports is the increased level of observabil-
ity afforded by such methods. Here, observability refers to
the ability to distinguish between the current drawn by a
defect and normal background leakage current. For exam-
ple, if a chip contains 100 power ports, then the leakage
current through any one VDD port will be approximately
100 times smaller, on average, than the leakage current
measured globally. Therefore, the probability of detecting a
defect can be much higher by measuring the local currents,
particularly in large chips which incorporate large numbers
of VDD ports.

The chips used in this research contain 4 VDD ports.
Although it is not possible to reveal the actual magnitudes
of the defect and leakage currents, the ratio of defect cur-
rent to leakage current is reported and serves to demon-
strate the claim that defect observability is enhanced.

Table 1 lists mean values of the ratios of total defect
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current to global background leakage in columns two and
three, respectively, for 18 DESM voltage levels given in
column 1. The defect currents used in the numerator of the
ratios are measured through the DESM as follows. First,
all defect emulation transistors are turned off and the
DESM current is recorded. This represents the leakage
current through the defect emulation transistors at this par-
ticular DESM voltage. Second, the DESM current is mea-
sured as each of the defect emulation transistors in the 100
TCs is enabled, one at a time, and the leakage value is sub-
tracted. The difference yields only that portion of the
DESM current that passes through the enabled defect emu-
lation transistor, which is the value we are interested in.
The mean value used in the numerator is the average across
the 100 TCs and the 12 chips. The denominator in each
ratio is the average global leakage value (all defect emula-
tion transistors turned off) as measured through the GSM
across the 12 chips.

The range of the mean ratios varies from 0.72 (harder
to detect) to 2.94 (easier to detect). At first glance, it may
appear that the larger mean ratios should be easy to detect
using traditional IDDQ methods, e.g., the ratio 2.94 is
nearly 3-to-1 defect current to leakage current. However, in
the context of a larger chip, this would not be the case. In
order to illustrate this, column four of Table 1 lists the pro-

jected ratios for a chip approximately 1 cm2 in size.

The 1 cm2 hypothetical chip contains 468 copies of the

DESM
(V)

MEAN
Idef/Ileak

PROJECTED
1 cm2 chip

0.85 0.72 0.006
0.80 1.33 0.011
0.75 1.83 0.016
0.70 2.24 0.019
0.65 2.55 0.022
0.60 2.75 0.024
0.55 2.89 0.025
0.50 2.94 0.025
0.45 2.93 0.025
0.40 2.85 0.024
0.35 2.72 0.023
0.30 2.55 0.022
0.25 2.34 0.020
0.20 2.11 0.018
0.15 1.87 0.016
0.10 1.64 0.014
0.05 1.42 0.012
0.00 1.21 0.010

Table 1: Defect current to leakage current ratios in the
test chips.

TC array and contains a 27x19 area array of power ports.
As a conservative estimate, the ratios given in column two
are scaled in column four by 468/4 = 117. The factor of 4
provides an allowance for re-distribution of defect and
leakage current in the larger array that adversely impacts

detection sensitivity1. Using these assumptions, the small-
est projected ratio is 0.006, as given in the first row of the
table for the DESM voltage of 0.85 V. This indicates that
the defect current measured in our experiments would be
over 160 times smaller than the leakage current in the
hypothetical chip. In specific cases in our experiments, it
was possible to detect defect current in ratios smaller than
the values shown in the table by a factor of 4, and we
believe this factor could be as large as 10 if signal-to-noise
ratios are improved.

6.0  Emulated Defect Detection Results

6.1  Data Analysis

The defect detection procedures are formulated on the
analysis of scatter plots, such as those shown in Figures
8(a) and (b) for regression and ellipse analysis, respec-
tively. The local currents from any one chip and experiment
can be paired in 6 distinct combinations, given as V00-V01,
V00-V11, etc. as described in Section 5.2.

The scatterplots shown in Figures 8(a) and (b) are
derived from experiments that investigate defect #0, as
shown at position (x, y) = (5, 21) in Figure 4. The
defect-free data used to compute the prediction limits in
Figure 8(a) and the prediction ellipses in Figure 8(b) is
drawn from 12 chips at each of the 19 DESM voltages for a
total of 228 data points. The emulated defect data is also
drawn from the 12 chips at each of the 18 DESM voltages

for a total of 216 data points2. Samples of defect-free data
and emulated defect data are labeled in each of the figures.

The scatterplots for each of the 6 pairings in Figures
8(a) and (b) have been offset along the x and y axes to assist
with the visual presentation of the data. The regression pre-
diction limits in Figure 8(a) are extremely narrow and
appear as a single line in the figure. A closer inspection
would reveal that the two hyperbolas representing the pre-
diction limits are finite in width. Although it is difficult to
discern in the figure, all but 2 of the defect-free data points
fall within the limits and most of the emulated defect data
points fall outside the limits.

1. The value of 4 is chosen assuming re-distribu-
tion causes defect current to be reduced by 1/2
and leakage current to double over that mea-
sured in a chip with one copy of the array, as is
done here.

2. The same defect-free data and limits are used
in the analysis of all 100 emulated defects.



The ellipse prediction limits for the data clusters in Fig-
ure 8(b) are much more apparent. As shown for pairing
V00-V01, several of the defect-free data points fall outside
the 3 σ prediction ellipse, labeled defect-free outliers in the
figure. The chips represented by these data points corre-
spond to yield loss, as discussed below. Similar to the
regression analysis, most of the emulated defect data
points fall outside of the prediction ellipses.

6.2  Detection Criteria
The criteria used to decide whether an emulated defect

is detected is the same for either regression or ellipse anal-
ysis and is given as follows. The defect-free data points are
used to derive 3 σ prediction limits and prediction ellipses
for each pairing considered in the analysis. A defect is con-
sidered detected if one or more of its data points within any
pairing falls outside the prediction limits (for regression
analysis) or the prediction ellipse (for ellipse analysis). It
follows that an emulated defect is missed, i.e., is a test
escape, if all of its data points fall within the limits across
all pairings. Under this criteria, it seems straightforward to
conclude that increasing the number of pairings increases
the chances of detecting the emulated defect. However,
increasing the number of pairings also increases the
chances that defect-free data points fall outside of the 3 σ
limits, and contribute to yield loss.

In order to evaluate the impact of the number of pair-
ings, the analysis is performed over two pairing sets. As
described in Section 5.2, the analysis is performed over all
pairings and the subset identified as orthogonal neighbors.

6.3  Test Escape and Yield Loss Analysis using all
Defect-free Data

Regression and ellipse analysis are performed using the
defect-free and emulated defect data sets from 12 chips. As
discussed in Section 5.2, we can “artificially” increase the

sample size of the defect-free data sets by considering the
tests performed at each of the 19 distinct DESM voltages as
a separate chip. Under these conditions, the number of
defect-free data sets increases from 12 to 228.

For regression analysis, the inclusion of the additional
data sets improves defect sensitivity, because the wider
range of leakage currents produced across the different
DESM voltages increases the spread of data points along
the x axis in the scatterplots. As long as the dispersion is
small around the regression line, this characteristic tends to
keep the prediction limits small along the entire length of
the regression line.

In contrast, for ellipse analysis, the inclusion of the
additional defect-free data sets weakens the defect sensitiv-
ity of the method, particularly when the data sets associated
with lower signal-to-noise ratios are included, i.e., those
associated with the larger DESM voltages. This is true
because the dispersion captured by the ellipse is defined by
the worst case dispersion across the entire range of values
measured. The larger dispersion added by the lower
defect-free currents adversely affects the detection sensitiv-
ity of defects that produce larger currents. This does not
happen with regression because separate limits are defined
and preserved along the x axis for each current level in the
defect-free data.

Table 2 gives the results of regression and ellipse analy-
sis using the pairing subsets described in the previous sec-
tion. The pair of numbers reported in each cell of the table
corresponds to the number of emulated defects that are not
detected (test escapes) and number of defect-free chips that
fail the test (yield loss), respectively. As indicated previ-
ously, 21,600 emulated defects and 228 defect-free chips
are tested. The ideal result is 0/0, no test escapes and no
yield loss.The regression analysis results are clearly supe-
rior to the results of ellipse analysis, and overall, regression
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performs very well, e.g., missing less than 1% of the emu-
lated defects and having less than 1% yield loss. Figure 9
graphically portrays the distribution of test escapes in a 3D
plot in which the (x, y) plane represents the TC array, as
shown in Figure 4. The height of the bars represent the
number of times the emulated defect at that position is
missed. It is clear that the bars are zero in all cases except
for the emulated defects in the center portion of the grid.
The defect number identifiers (as defined in Figure 4)
given above five of the bars are the emulated defects most

often missed1. Moreover, these are the only defects that are
missed at DESM voltages smaller than 0.85 V.

All of the emulated defects that are missed under either
regression or ellipse analysis are located in the center por-
tion of the power grid. This region of the grid distributes
the emulated defect’s current nearly equally among the
surrounding VDD ports. The lack of an anomalous local
current variation cannot be distinguished from global
changes in background leakage current. However, in larger
chips that incorporate more VDD ports, the center portion
of this grid would be asymmetric to VDD ports outside this
region. Therefore, the defects missed here may be detect-
able in pairings involving VDDs outside this region in
larger grids.

From the data in Table 2, it is clear that larger subsets
of pairings reduces the number of test escapes at the
expense of increasing yield loss. For example, under
regression, test escapes reduce from 141 for the orthogonal
neighbors subset to 131 for the all pairings set and yield
loss increases correspondingly from 1 to 2. The decrease in
test escapes is expected as more pairings are included in
the analysis, given the detection criteria. The increase in
yield loss is caused by the larger magnitude of within-chip
process variations in pairings that are more widely sepa-
rated in the layout. The cross-correlation profile of

1. Since each defect is tested at 18 DESM volt-
ages on 12 chips, the maximum z value for any
defect is 216.

test escapes
(max 21,600)

vs.
yield loss
(max 228)

orthogonal
neighbors

(4 pairings)

all pairings
(6 pairings)

Regression 141 vs. 1 131 vs. 2

Ellipse 1143 vs. 10 1139 vs. 11

Table 2: Test Escape and Yield Loss Results

defect-free data from non-neighboring VDD ports has a
higher level of dispersion, which increases the chances that
defect-free data points will become outliers.

6.4  Test Escape and Yield Loss Analysis using a
Subset of Defect-free Data

The analysis given in Section 6.3 indicates that regres-
sion analysis is superior in terms of reducing the test
escapes and yield loss. However, ellipse analysis performed
under special conditions does nearly as well with 208 test
escapes and no yield loss. The special condition involves
restricting the number of defect-free samples used to derive
the prediction ellipses to those collected with the highest
background leakage, i.e., with the DESM voltage set to 0.0
V. Although this type of constraint is difficult to realize in
production test, it serves to demonstrate the value of ellipse
analysis in situations in which it is possible to obtain good
signal-to-noise ratios.

As discussed in previous sections, ellipse analysis is
more sensitive to noise than regression because the local
and global current measurements that defines the position
of the data point both posses a noise element. Under the
assumption that the noise floor is independent of the magni-
tude of the current, it follows that the adverse impact of
noise is smaller for larger magnitude currents. Therefore,
prediction ellipses derived using defect-free currents of
larger magnitude would be smaller.

These features are illustrated in the analysis shown in
Figure 10. The defect-free data is partitioned into 19 groups
of 12 data sets. Each group consists of the currents mea-
sured on the 12 chips at one particular DESM voltage. The
prediction limits and ellipses are derived independently for
each of the 12 point data sets and regression and ellipse
analysis are performed. The results shown in Figure 10 are
derived using the data from the all pairings set. The DESM
voltage that was applied during the collection of the
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Figure 9. Location of test escapes for regression, all
pairings set.
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defect-free data is plotted along the x axis. The y axis gives
the number of test escapes out of 21,600 emulated defects.
Yield loss is zero in all cases.

In most cases, detection sensitivity increases for both
regression and ellipse analysis as the background leakage
current increases in the defect-free data sets. However, the
best result for regression is obtained when all defect-free
data is used to derive the prediction limits, as shown by the
horizontal line labeled 131, i.e., the value listed in the last
column of Table 2. In contrast, the number of test escapes
for ellipse analysis are fewer than 1139 (see Table 2) for all
cases with DESM at 0.4 V or lower. Interestingly, the num-
ber of test escapes for ellipse analysis becomes less than
those shown for regression for DESM voltages less than
0.65. The best result is shown at DESM voltage 0.05 as
208.

7.0  Conclusions

The defect sensitivity of Quiescent Signal Analysis is
investigated in this paper. The data from 12 test chips fab-
ricated in a 65 nm, 10 metal layer technology are analyzed
using two statistical methods, one based on regression
analysis and the other based on ellipse analysis. Regres-
sion analysis applied to the data from 21,600 emulated
defects is able to detect 99.4% of the emulated defects with
less than 0.9% yield loss.

For the test structure under investigation in this work,
regression analysis out performs ellipse analysis. Regres-
sion preserves the magnitude of the defect and leakage cur-
rents in the analysis and constructs separate bounds for
different magnitudes. This feature allows regression to
remain sensitive to defect currents across a wide range of
defect and leakage current combinations. In contrast, the
bounds for ellipse analysis are defined by the worst case

variation in the defect-free leakage currents.
The results of both analysis indicate that detection sen-

sitivity is correlated to the ratio of defect current to leakage
current and is related inversely to the distance between the
emulated defect and the nearest neighboring VDD.
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