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Abstract

Transient Sgnal Analysis (TSA) is a parametric device testing
technique based on the analysis of dynamic (transient) current
(ipp7) drawn by the core logic from the power supply padsin a
CMOS digital circuit. In previous work, we develop a test proce-
dure that can be used both to detect signal variations caused by
defects and to obtain delay information in defect free chips. Phase
spectra of transient signals obtained using discrete Fourier trans-
form are shown to track path delays of defect-free chips under a
wide range of process variations. However, in recent work, we
were able to demonstrate through simulation experiments incor-
porating deep submicron transistor models, a circuit design and
path sensitization scenario in which our existing TSA method is
not able to yield accurate predictions of path delays. More specif-
ically, a circuit composed of two inverter chains constructed with
widely varying transistor sizes was shown to produce path delays
that were weakly correlated across a set of worst case process
models. In this paper, an alternative wavelet-based analysis of
ippT Waveforms is shown to improve the accuracy of predicting
multiple path delays under these conditions.

Abbreviations:
ippT: A time varying (ac) signalrepresentinghe dynamiccurrent
sourcedby setof connectedjates(path)underaninputtransition.

1 Introduction

Theuniqueattribute of power supplytransient(ippt) Signals
to capturethe parametriccharacteristicof the underlyinglogic
circuit enablegshedevelopmenif alternatve defect-orientedest-
ing methods.The mostimportantinformation containedin the
ippT Signalsis the functional and delay characteristic®f sensi-
tized logic paths.The useof power supplytransientsignalsasa
meansof estimatingpathdelaycharacteristichasseveral advan-
tages First, thesesignalscanbe usedto detectdelayfaultsintro-
ducedby resistve shortingand opendefectsthataretraditionally
not tametedby stuck fault basedmethods.Second,the global
obsenability provided by the power supplytransientsignalsper-
mits delayto be estimatedwithout the needto sensitizepathsto
obsenationpointssuchasprimary outputsor scan-latchesrhird,
the supplytransientgotentiallyprovide arich sourceof paramet-
ric information about the chip.

TransientSignal Analysis (TSA) is a defectorientedtesting
techniquethat exploits the device information containedin the
power supplytransientsignals.Defectdetectionis accomplished
by analyzing the ippts measuredsimultaneouslyat multiple
power supplyports(Pads)on a chip. Linearregressioranalysisis
appliedto time andfrequeny domainrepresentatioof theippTs
to detectoutliers[1][2]. Fourier phaseanalysisof the ippts pro-

vides a means of estimating path delays in defect-free chips [3].

In recentwork, the TSA techniquewvasevaluatedunderdeep

submicronprocessonditionsusinga circuit designthatincorpo-
ratesgateswith widely varyingtransistorsizes(WI/L ratios)[4]. It
wasdiscoveredthatdeepsubmicrorvariationsin procesgparame-
ters wealen the correlationof delay acrosslogic pathson the
samechip. Given the relationshipbetweenthe delay characteris-
tics of alogic pathandippt is cause-d&ct, thereductionin path
correlation on the samechip reducesthe correlation of ippts
acrosschips. Sinceour delay predictionstrateyy is basedon cor-
relationanalysisof ippts acrosschips, it is not ableto accurately
track all path delaysundertestsequenceshat sensitizemultiple
paths.The limitation of our Fourier phase-basethethodderives
from its focus on the analysisof a single attribute of the ippt

waveform-- its width. However, embeddedvithin theippt wave-

form are other featuresthat can be analyzedas a meansof
improving the accurag of predictingmultiple independenpath
delays. The additional dimensionof signal decompositionpro-
vided by the wavelet transformmales it better suited than the
Fouriertransformfor the extractionandprocessingf thesealter-
native ippt waveform features.

In this paper a setof circuit modelsincorporatingdeepsub-
micron processvariationsandwidely varying transistorsizesare
simulatedto demonstratehe limitations of Fourier analysisfor
estimating multiple path delays. A wavelet-basedanalysis is
shown to overcomethesdimitationsby providing anextradimen-
sionof “time based’information.The objectie of this paperis to
comparethe computationalcompleity and accurag of delay
estimationmethodsbasedon a discreteFourier transform(DFT)
and a vavelet transform (WT).

The rest of this paperis organized as follows. Section2
describegelatedwork. Section3 presentdetailsof the simula-
tion experiments.Section4 evaluatesthe characteristicof the
ippT Signalsundervariousprocessmodelsand definesthe prob-
lem. Sections5 and 6 describethe path delay estimationproce-
duresandresultsusingFourierandwaveletanalysisrespectiely.
Section 7 analyzesthe computationalcompleity of the two
approaches. Section 8 presents our conclusions.

2 Background

The literature containsa wide rangeof publicationson the
applicationof wavelet transformrangingfrom seismicand bio-
medicalimageprocessindo electronics Papersrelatedto the lat-
ter topic include the following. Santoscel al. [5][6] appliedthe
WT to detectand localize disturbancesn electric power lines.
Sinceelectricpower signalsareideally composedf a singlefre-
queny componentary anomalyin thesesignalscanbe detected
by analyzingthe high frequeng (details)component®f the WT
representatiorBhuniaetal. [7] appliedthe WT on power supply
transientsignals to detect short and open defects. The mean
squaredifferencesdetweenWT coeficientsof a goldenchip and



that of the testchip are usedto identify defectve chips. Defect
localizationis achieved by mappingthe time at which the WT

coeficient of thedefective chip differsfrom thatof thedefect-free
chip into logic depth.

3 Simulation Experiment Design

Figurel showvs thelayoutof thetestcircuit usedin the simu-
lation experimentsThelayoutconsistsof two pathsimplemented
using chainsof inverters.The headsof the two pathsarelabeled
“FastPathInput” and“Slow PathInput” in Figurel. Thefastpath
is composeaf transistorsvith W/L ratiosrangingfrom 2 to 5 for
n-MOS and4 to 10 for p-MOS while the slow pathis composed
of minimumsizedtransistorsvith W/L ratiosof 1.5. Theinverters
alongbothpathsfanoutto asmary asthreeotherinvertersin addi-
tion to the next inverterin the path. The purposeof usingvarious
transistorsizesandloading conditionsis to introducediversity in
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Fig. 1. Layout incorporating dual pathsof 10inverters
with a fast path (upper) and slav path (lower)

Thesupplygrid in this designis routedin 5 metallayers(the
figureshavs only thelower metall andmetal2 layersfor clarity).
The SPICEvoltagesourcerepresentinghe power supplyis con-
nectedto metal5 atthe pointshavn onthe upperleft of Figurel.

Theprocessnodelsarederivedfrom a setof MOSIS specifi-
cationsfor TSMC’s 0.25.m process[8]. Eachof the specifica-
tions include lot-averagedconductor RC parasiticsand BSIM

modeling parametersierived from test structuremeasurements.

We had 14 suchdatasetsavailable. Thesedatasetswereusedto
configurea setof technologyfiles for the SFACE extractiontool
[9] and the corresponding SPICE simulation models were
extractedfrom thelayout. Theseparametewaluesrepresentvorst
casevaluesbecaus¢hey wereobtainedfrom waferlots fabricated
over a period of seeral years.

The test stimulus drives both paths simultaneously as a
meansof representinghe morecommonmulti-pathsignalpropa-
gationmodel.Sincethesupplygrid is unified,theipg signalsgen-
erated by the inverters along both paths superimposein a
composite{pt curve. Figure 2 shavs a simplified logic level
representationof the inverter chains (without the fanout
branches)The ipg curves shovn besideeachinverterrepresents
the spatial distribution of transientcurrentdravn by the corre-
spondinginverter from the Vpp, rail. The curves labeledippry
andipptsp representhe currenttransientsgeneratedy fastand

slow pathsrespectrely, when thesepaths are sensitizedsepa-
rately Thecurwve labeledippt ontherightis thewaveformthatis

generated when both paths are sensitized simultaneously
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Fig. 2. lllustration of composite-ippT formation from
individual gate ipg curves.

4 Multiple Path Sensitization Challenges

In orderto determinethe relationshipbetweenpath delays
andthe correspondindpp7s underthe differentprocesamodels,
it is first necessaryo evaluatethe signalpropagtion characteris-
tics alongeachof thetwo pathsacrosshe processnodels.Figure
3 shaws the outputwaveformsfrom the last invertersof the two
pathssuperimposeéh eachrow. Onepairingis shavn for eachof
the 14 processmodels. Even though the transistormodelsare
identicalfor all transistorsn eachcircuit model, it is clearacross
mary of thesepairingsthatthe delaysbetweenthe fastandslow
pathsarenot well correlated(The vertical dottedline providesa
referencepointfor comparison.Yhisis particularlynoticeableor
the pairings labeled h, j and I. Here, significant speed-upis
obseredin thefastpathdelaywhile the slow pathdelayremains
relatively constantand consistentwith other slow path delays
from other runs, e.gg.
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Fig. 3. Path outputs under 14 TSMC'’ s processnodels
with varying BSIM parameters.

The low level of correlationin the delaysacrossthe output
waveform pairingsis largely dueto the V; dependengon transis-
tor width (W) in the BSIM modelingequationsThe variationsin
other “passve” elementsof the simulation modelshave only a
small impact on the delay characteristics, as illustratesvbelo

Figure4 plotstherelative delaysof the slow pathversusthe
fast path. The relative delaysare computedby subtractingthe
absoluteslow andfastpathdelaysundereachof the modelsfrom
the correspondin@bsolutepathdelaysof first (and slovest) pro-
cessmodel,a (givenat (0,0) in the figure). It is clearin Figure4
thatcorrelationsbetweerthetwo pathsacrosshe processnodels
is poor. For example,the datapointsspanningthe region labeled
“Actual BSIM Parameters’arepoorly approximatedy a straight
line. In contrastthe datapointsspanningheregion labeled‘Con-
stantBSIM Parameters'aretherelative delaysobtainedwhenthe



“actual” BSIM modelsare replacedwith the BSIM modelfrom
processa. Thesedatapointsspana muchsmallerregion andare
nearly co-linear
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Since our methodanalyzesippt as a meansof predicting

delay it is importantto understandhow “weakly correlated’mul-
tiple pathdelaysaffect the ippt featuresThe waveformslabeled

ippTip andipprsp N Figure5 representhe transientsignalsgen-
eratedundersingle pathsensitizatiorusingprocessmnodeli. The
top-mostsignal representshe composite,pt generatedunder
dual pathsensitizationThe ipprsp Waveform hasa larger width
butis smallerin amplitudein comparisorto theipprs, waveform.

This resultsfrom the smallerW/L ratio usedfor the transistorsn
the qates of this path.
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Fig. 5. ippt waveforms of fast and slow path (bottom)
and the composite (top)

The width of ipptsp denotedby w-ipprs), in Figure 5, is
similar to the compositewidth w-ippT. (The widths are shavn

measuredabove the zero baselinein the figure). This indicates
thatthe width of the composite4pt is definedby the slow path

delay However, the larger amplitudeippry, introducesa sharp
changen the compositehpy onits falling transition.Theippryp
alsodecaysheforethe ipprsy andleavesa “PosteriorBump” (or
PoB) in the composite{pT. The time of occurrenceof the PoB
coincideswith the endof ipprr, andis afeaturethatcanbe used
to obtain W-pprp.

The above analysissuggestghat a time domainanalysisof
the compositept is sufficient to estimatebothw-ippf, andw-

ippTsp andthe correspondindastand slow path delays.How-

ever, theenvironmentalnoise(andEMI) andthe parasiticpresent
in a productiontestequipmenimale it difficult to obtaintheippt

waveform in its pure, core logic generatedorm. The ability to
selectand analyzespecificfrequeny bandsusing the frequeny
domainrepresentationf ippt makesit attractve asa meansof

overcoming the test @ironment limitations.

5 Path Delay Estimation using Fourier Analysis

TheFouriertransformdecomposea signalinto alinearsum
of sinusoidsor cosinusoidsith differentfrequencieskq. 1 gives
the expressionfor a discreteFourier transform(DFT) of a signal
x(t). Herew andt arediscretevariablesthat represenfrequeng
and time respecitely.

N

2 _j2mtk

X(w) = ﬁz X(t)e

t=0
where k denotes a discrete frequefic=0,1,2.....N/2]
and t denotes a discrete time sample [t=0,1,2.....N

Eq. 1.

We have obsenedthatprocessariationsintroducetwo main
typesof variationsin theippt signal,shift andscaling.The Fou-
rier phasecomponenbf the frequeny domainrepresentationf
ippt haturally trackstime shift and scalingandis thereforethe
basis of our delay estimation technique.

The Fourier shift propertystateghatatime shift (delay)of d
units causesa phaseshift of w*d in the frequeng domain.This
propertyis expressedormally by Eg. 2 for a signalx(t) with the

X(t) = X(w)  or  x(t) = M(w)06(w) Eq. 2.

X(t-d) = X((Jo)e_I('od or X(t—d) = M(w)O(6(w)—wd)

whereM(w) represents magnitude response and
B(w) represents phase response

frequeny representatiorgiven by X(w). An alternatve magni-
tude and phaserepresentationf this relationshipis given on the
right side.The Fouriertime scaling propertystateghatif asignal
is scaledn time by afactora, its frequeny spectrumboth Mag-
nitude and Phase)s scaledby a factor 1/a, proportionalto fre-

queng, as gven by Eq. 3.

x(at) < ‘é‘x%’% or x(at) = ‘%‘ME%E]G%)B Eq. 3.

This expressionindicatesthat irrespectve of the shapeand
starttime of the signal,ary variation(scaling)in the ippt width
canbetrackedexactly by its phasespectrumTSAs delayestima-
tion procedurdakes adwantageof thesepropertieshy computing
PhaseSignaturéNaveforms(PSWs)from the Fourierphasespec-
traof ippts. A PSWrepresentshe differencewaveformobtained
by subtractinghe Phasespectrumof the ippt measuredn a test
chip from thatof areferencechip. Figure6 shavsthe PSWsof 13
simulatedchips, representingprocessmodelsb throughn, com-
puted with respect to reference model
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Fig. 6. Phase SWsfrom 14 process simulations under
slow path sensitization.



Theareaunderthe PSWsis computedwithin the desiredfre-
gueny band(300-900MHzin Figure 6) to obtaina singlequan-
tity, referredto asPSWA. Figure7 shaws the crosscorrelationof
PSWAs againsttherelative slow pathdelay The correlationcoef-
ficient (CC) of 99.6%indicatesthat the relationshipbetweenthe
PSWA of ipptspand the corresponding path delay is linear
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Fig. 7. Phase SWA vs. relative slow path delays.

The linearity of this relationshipis basedon the propertyof
the Phasespectrunto uniquelytrackthefeaturesn theippysthat
aremostsensitve to delay variations,suchastheir widths. This
resultindicatesthat underthe constraintof single pathsensitiza-
tion (or correlatedmultiple path sensitizations)Fourier analysis
of ippT is capableof trackinga limited numberof global events,
suchasrising andfalling edgesin theippt waveform. However,
the ippTs generatedrom chipswith multiple, weakly correlated
path delaysrequirethe tracking of several featuresasdiscussed
above in referenceo Figure5. In this case the accuray of esti-
mating both pathdelaysusing Fourier analysisis degradedsince
our procedureproducesone quantity a PSWA, wheretwo are
needed.

For example, Figure 8 plots the PSWAs of the composite-
ippT adainstthe delay of the fast (top) and slow (bottom) paths
underdual path sensitizationThe markingson the y axis corre-
spondto thefastpathPSWAs; the slow pathdatapointshave been
shifteddown to male it easierto distinguishbetweerthe two sets
of points. The CC for eachanalysisare given as 98.8% and
68.2%,respectrely. (The quantitiesinside the parenthesisepre-
sentthe “ideal” CCs obtainedfrom simulation experimentsin
which eachof the pathsare sensitizedndividually.) The single-
pathtrackinglimitation of Fourier analysisis clearly reflectedin
this analysis,which shavs that the PSWAs track the fast path
delay more accurately than thewlpath delay
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relative path delays.

Thehigherdegreeof correlationbetweerthe PSWAs andthe
fastpathdelaycanbe attributedto the “weighted average”prop-
erty of Fourier phase given by Eq. 4 andEq. 5. Eq. 4 indicates

ACos(wt + ®) = Alcos(oot + ¢1) + AZCos(cot + ¢2)
N
= Z A;Cos(wt + ®;) Eq. 4.
i=1

that the superpositiorof cosinusoidawaveformswith the same
frequeny w but with differentamplitudesA; andphase-angle®;,

generates cosinusoicbf the samefrequeng w with amplitudeA
andphase-angleb. Eq. 5 indicatesthat the resultantphaseangle
@ canbe approximatedas a weightedaverageof the individual

phaseangles®;. Sincethe amplitudeof ipprs, is much higher

2

than that of ipptsp the compositefhpt phase spectrumis

weighedtowardsthe phasespectrumof the fastpath, yielding a
better estimation of its delay

) Eq. 5.

In summary Fourier analysisis capableof providing accu-
rate estimatesof path delaysfor casesin which the path delays
remaincorrelatedacrossegionsof thechip (or whenit is possible
to sensitizeonepathat a time) [3]. If transistordimensionsvary
widely, thenthe accurag of estimatingmultiple path delaysis
reducedunder Fourier analysisbecauseof its inability to track
multiple featuresof a signal simultaneouslyUnder such condi-
tions, a wavelet transform(WT) canbe usedto improve predic-
tion accurag.

6 Path Delay Estimation using Wavelets

Time-frequeng analysis,unlike Fourier analysis,partitions
the time domainsignalinto smallersectionsusinglocalizedwin-
dow functions.Eachsectionis decomposeéhto analternaterep-
resentation using Fourier basis functions (sine/cosines)or
wavelets.

The adwantagesof time-frequeng analysis over Fourier
analysisaretwo fold. First, the ability to analyzefrequeng com-
ponentdn aspecifictime interval makesit aneffective methodfor
decomposingnon-stationary signals whose frequeng content
changeover time. However, the frequeng contentof the gateipg
waveformsvary over a narrov frequeng band,which suggests
thatippt waveformsarewell characterizeds stationary There-
fore this advantageof time-frequeng analysiscannotbe lever-
agedfor delay estimationpurposesin defect-freechips. (It is
notedthatthefrequeng contentof a defectve gatesipg typically
occupiesa lower and/orwider frequeng bandandconsequently
this featureof time-frequeng analysismay be useful for defect
detectiorpurposes)A secondadwantageof time-frequeng analy-
sisis the ability to localizeeventsin time. This meanst canpro-
vide frequeny information localized to correspondingtime
intervals in a signal. The ability of time-frequeng analysisto
localize more than one featurein a signal makesit suitablefor
tracking multiple independendelaysin ippt waveforms. This
capabilitycomesat the costof increasedcomputationatomplex-
ity, havever, as described in Section 7.

Time-frequeng analysis basedon the wavelet transform
(WT) useswaveletbasisfunctionsderivedfrom amotherwavelet.
Waveletsarefinite in lengthandhave a characteristishapethat
dictatethe distribution of their frequeng content.The frequengy
andtime resolutionof waveletsis variedby applyingshifting and
scalingoperationgo the motherwavelet. Eq. 6 givesthe expres-



W(s 1) = IX(t)‘PST(t)dt Eq. 6.

1 =10 - . .
lpr,s(t) = ——S\IJ[| s O s=scaleT = shift (or translation)

7

sion for a continuous wavelet transform (CWT) of a signal x(t).
The s parameter is the scaling factor and the T parameter is the
translation factor (shift) that are applied to the mother wavelet,

W; t). The factor sY2 normalizes energy across the different

scales. As s changes, the wavelet covers different frequency
ranges, with larger values corresponding to small frequencies.
The time localization center of the wavelet in the signa is
changed through parameter 1.

Proper selection of the mother wavelet plays an important
rolein the ability of aWT to extract signal features. Wavelets are
generally categorized based on their compactness in the time and
frequency domain and their smoothness. Wavelets that are charac-
terized by sharp changes (Iess smooth) are more capable of track-
ing discontinuities or abrupt changes in a signal, wheress,
wavel ets with smooth curves are more capable of tracking the glo-
bal features of the signal.

In this paper, we determine the ippT feature extraction capa-

bilities of two mother wavelets, Haar and Mexican-Hat, shown in
Figure 9. The Haar wavelet, denoted by h(t), is characterized by a
sharp change in its shape. In contrast, the Mexican-Hat wavelet,
denoted as m(t), isfairly smooth. The Haar wavelet inherently has
good time localization, which suggests that it is better at locating
sharp changes in a signal, such as the starting and ending transi-
tions of the ippT¢p in the composite-ippt shown in Figure 5.

h(t) 1 1 m gl

0.6+
0.4+
0t i 024
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05 86 -4-202 46 8
Fig. 9. Haar (left) and Mexican-Hat wavelets (right).

Figure 10(b) showsthe CWT of theippt waveform shownin
Figure 10(a), obtained using the Haar mother wavelet. Figure
10(b) is essentialy a 3D-plot, showing the absolute values of the
wavel et coefficients as a grayscal e gradient, with scales (s) plotted
along the y-axis and time-shift (t) along the x-axis. The darker
regionsin the plot represent coefficients with larger absolute mag-
nitudes. The lower portion of this figure shows the coefficient val-
ues at finer scales (high frequencies) for al possible time-shifts.
The ability of the Haar CWT to locate sharp changesin the ippt
waveform is exemplified by the inward tapering of the two funnel-
shaped dark regions towards the bottom of the plot. These time
positions correspond to the starting and ending transitions of the
fast path in the composite-ippT (Figure 10(a)). At higher scales,
the dark region starts to broaden, and begins to track the more
slowly changing featuresin the ippt waveform. Figure 10(c) plots
the coefficients for s = 64, illustrating that the dark regionsin the
CWT actual correspond to the both local minima and maximain
the coefficients.

From these observations, it follows that the time interval
between the minima and maxima at lower scales, denoted as .

min in Figure 10(c), should be well correlated with the fast path
delay. Bear in mind that very low scale values correspond to fre-
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Fig. 10. CWT (b) of process model ippt waveform (a)
using Haar wavelet. (c) givesthe wavelet coefficientcurve
at scale s=64.

quencies that cannot be measured (at any significant amplitude) in
the testing environment. For example, s=20 corresponds to a fre-
quency band centered at 5GHz. Therefore, any practical applica-
tion must restrict scales to s>=50 (~2GHz). In spite of this
restriction, the s=82 scale yields the highest level of correlation
(99.37%) with the fast path delays across the 14 process models.
Figure 11 shows the scatterplot of t,5.min Versus the relative fast
path delay. The scale s=82 corresponds to a frequency band cen-
tered around 1.2GHz, derived using Eq. 7.
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simulations under simultaneous dual path sensitization.

F
f=_C Eq.7.

T Aes
where F is the center frequency of the wavelet spectrum (Hz)
A isthe sampling period and sisascale

The Haar wavelet a so tracks the slow path delay, but does so
at higher scales. The scale s=234 (~437MHZz) gives the highest
CC inthis case. Figure 12 shows the scatterplot of t,a.min VS. fast
path delay at this scale. The computed CC of 95.4% is signifi-
cantly larger than corresponding value of 68.7% obtained using
Fourier analysis.

The CWT analysis of the 14 composite-ippt waveforms
using the Mexican-Hat wavelet yields similar results for the fast
path analysis but slightly worse results for the slow path analysis.
Figure 13(b) shows the CWT of the process model | composite-
ippT Waveform. The signal decomposition is noticeably different
under the Mexican-Hat and Haar wavelet functions. For example,
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the coeficient curve shown in Figure 13(c) resembles sggment
of a cosinusoidcurve. The dark region enclosedbetweenthe
bright-whitelinesin Figure 13(b) representshe local maximaof
the coeficient curves.For scaledower thans~16,the darkregion
bifurcatesinto two portions(two maxima)thattaperto time loca-
tions correspondingo the sharptransitionsof theippt waveform
showvn in Figure 13(a). This shavs the basic capability of the
CWT to track sharpfeaturesat lower scalesThe occurrenceof a
single maximaat higher scalesreflectsits ability to track global
features of the signal.
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Fig. 13. CWT (b) of process mode! | ippt waveform (a)
using Mexican-Hat wavelet. (c) gives the wavelet
coefficient curve at scale s=64.

The time intenval t,¢q-crossShavn in Figure 13(c) delimits
the time intenal betweerthe pointsdefinedwhenthe coeficient
curve becomegero. The scalegthatyield the highestCCsin the
correspondind,ero-crossVS- fastpathandt,grq croseVs. Slow path
delay plots (not shawn) are s=22 (CC=99.3%) and s=61
(CC=90.0%), respectiely. For the Mexican-Hat CWT, these
scalescorrespondo a frequengy bandcenteredaround1l.16GHz
and 420MHz respectly.

7 Complexity Analysis

An analysisof thecomputationatompleity of theDFT and
CWT-basedbrocedurezompletegheir comparisonThe compu-
tationof X(w) definedby Eq. 1 for agivenw requires2N multipli-
cations and 2N additions. There are N/2 frequenciesin the
completespectrunyielding acompleity of O(N2). However, our
DFT-baseddelay estimationprocedureanalyzesonly a constant
bandof C frequenciegwith C in the rangeof 5-10)andtherefore

the compleity reduces to O(N).

The computationof the CWT definedby Eq. 8 entails N?
multiplicationsandN? additions yielding a compleity of O(N?).
Note thata continuouswavelet transformis required(asopposed
to adiscretewavelettransform(DWT)) becausell time positions
must be analyzedin order to adequatelylocalize time events.
Alternative, moreefficientalgorithmsfor computingthe DWT are
not usefulbecauseur analysisshavs thatthe bestdelay estima-
tion is obtainedat scaleshatarenot dyadic.Moreover, the delay
estimationaccurag is sensitve to the incrementalshift in the
wavelet (1). Therefore,the compleity of wavelet transformfor
this procedurecannotbe further reducedusing efficient filtering
algorithms applicable to\D'T.

N-1
_ t-10
C(1,9) = z X(NWE—F
n=0
Where s denotes a scalue [s=1,2.....N-1]

n denotes a discrete time sample [n=0,1,2.....N-1] ¢
t denotes a incremental time shift [t=0,1,2.....N-1]

Eq. 8.

8 Conclusions

This papercompareghe predictionaccurag andcompleity
of Fourierandwaveletanalysistechniquegor pathdelayestima-
tion. Waveletanalysisof ippt is moreaccurateghanFourier anal-
ysis for predicting multiple delays in custom circuits that
incorporatepathsconstructedwith transistorsof widely varying
widths. The costof increasedccurag is increasedtomputational

compleity, O(NZ) vs.O(N), respectrely. Two wavelets,Haarand
Mexican-Hatare investigated. Both waveletstrack the fast path
delays more accuratelyusing lower scales (correspondingto
~1GHz), while higher scales(~400MHz) more accuratelytrack
slower path delays. The Haar performsslightly betterthan the
Mexican-Hat for slav path delay predictions.
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