
LAB Assignment #5 for ECE 443

Assigned: Wed., Sept 30, 2009

Due: Mon., Oct 7, 2009

Description: Implement the remaining components of the ALU for the micro-

controllers.

You built the adder portion of the ALU last lab. This lab will focus on building the remaining

components of the ALU, including a Boolean function unit and shifter. The input/output signals to

the entire ALU are given as follows:

Input:

• A, B: input buses (12 bits wide)

• inv_ins: Invert B bits

• and_ins: AND A and B bits

• or_ins: OR A and B bits

• xor_ins: XOR A and B bits

• add_ins: Add A and B

• sub_ins: Subtract B from A (A-B)

• shltf_ins: Shift B left by 1 bit

• shrtf_ins: Shift B right by 1 bit

• skwlf_ins: set skw_success to 1 if register W is less than register F

• skwgf_ins: set skw_success to 1 if register W is greater than register F

• skwnf_ins: set skw_success to 1 if register W is NOT equal to register F

• skwef_ins: set ske_success to 1 if register W is equal to register F

• movf_ins: pass the B operand to the output unchanged

• movlw_ins: pass the B operand to the output unchanged

Output:

• DEST_OUT: output bus (12 bits wide)

• skw_success: Boolean (carry-out bit of adder)

Last week, you wrote the AddUnit which took parameters (parameter skw1 is explained below):

ADD_OUT, A, B, skw1, skwlf_ins, skwgf_ins, sub_ins, add_ins

For this lab, you will need to build the Boolean function unit and Shifter unit and a parent (ALU)

that combines all three modules. The Boolean function unit uses the following parameters (first

two are output parameters, others are input):

BOOL_OUT, skw2, A, B, and_ins, or_ins, inv_ins, xor_ins, skwnf_ins, skwef_ins

The operation of the Boolean function unit is straightforward for the and_ins, or_ins, inv_ins, and

xor_ins instructions -- simply carry out the logic operation on the A and B operands in a bitwise

fashion. Note that operands A and B are used for the binary logical instructions while ONLY

operand B is used for the inv_ins instruction. Use a tri-state to select the logical operation that

drives the output bus BOOL_OUT. For the skwnf_ins (not equal) and skwef_ins (equal), you

should XOR the A and B operands and use a reduction OR or NOR (or both) to decide if any of

the 12 bits are zero or if they are all zero (dependent on the operation). You can assume that only

one of the xxx_ins will be 1 and the others will be 0.



The parameters of the Shifter Unit are (only the first parameter is an output -- others parameters

are inputs):

SHIFT_OUT, B, shltf_ins, shrtf_ins, movf_ins, movlw_ins

Only operand B is needed as input. SHIFT_OUT is the output bus. If shlft_ins is 1, then left shift

operand B by 1 bit (shifting a ‘0’ in as the new rightmost bit). If shrtf_ins is 1, then right shift

operand B preserving the sign bit. If either movf_ins or movlw_ins are 1, then pass the B operand

through with NO shifting. Use a tri-state to select the appropriate operation that drives the output

bus SHIFT_OUT. You can assume that only one of the xxx_ins will be 1 and the others will be 0.

In the main module (ALU), you should tri-state the appropriate bus, either ADD_OUT,

BOOL_OUT or SHIFT_OUT, to the output bus DEST_OUT based on the xxx_ins that is set to 1.

You can assume that only one of the xxx_ins will be 1 and the others will be 0. You should OR

skw1 and skw2 to create skw_success.

Laboratory Report Requirements:

1) Turn in a commented copy of your VHDL code along with a schematic.

2) Write a test bench and run simulation(s) that shows the inputs and output behavior of the circuit

(be sure to include a set of ‘sample’ waveforms in your report).

3) Be prepared to give a demonstration in class on Wed. I will provide the UART driver code to

enable you to type values into hyperterminal that will be delivered to the FGPA and converted into

numbers. You will enter a decimal number for operand A, hit return, and enter a second number of

operand B, hit return, and then you will press one of the pushbutton (or combinations of puttons)

to carry out an operation using your ALU. The result of the operation will be automatically dis-

played in the hyperterminal screen. I will include comments in the code on how to use the driver..

Grading:

Your lab grade will consist of two parts. The first part is associated with the in-class demo, and is

worth 50% of the total grade (50 pts). Successful demonstration of the lab’s stated requirements is

worth 50 pts. Partial implementations will be given only partial credit. The second portion of the

lab grade is derived from your lab report. Correct implementation counts for 15 pts (of the 50 pts).

Well documented simulation results are also worth 15 pts. The remaining 20 pts will be given

according to how well the VHDL code is written and documented (comments). Bonus points will

be given to any implementation feature that goes above and beyond the requirements.


