
LAB Assignment #7 for ECE 443

Assigned: Wed., Oct 21, 2009

Due: Mon., Oct 28, 2009

Description: Build a (temporary) Instruction Register and Instruction Decoder

of the microcontroller

We need to start talking about the big picture in this lab so you know where we are going. The

microcontroller we are designing was originally designed by Dhruva Acharyya. The top-level

architecture he derived for the microcontroller is shown below.

Features:
• Separate instruction and data memory

• Only 19 instructions

• 6 clk cycles / instruction cycle

• 8 special purpose registers

• 24 General purpose registers

• 1 output port (12-bits)

• 1 input port (12-bits)

• 1 counter (implemented as 2 registers)

Top Level Architecture

Red: external signals to control programming the microcontroller
Blue: external signals for runtime communication/operation



• All registers are memory mapped

• Hardware stack (6 deep)

• Instructions and datapath are 12 bit wide

• Hybrid of pre-programmed ROM and read/write memory

Instruction Set

You have built the ALU in previous labs which takes 12 instructions as inputs (only one or
zero are ever ‘1’ simultaneously). The datapath operations that you have implemented include
the 8 ALU instructions and the 4 SKWCF instructions. The remaining 6 instructions are given
above as MOVF (move value between registers), CALL (call subroutine), MOVLW (move lit-
eral), GOTO (unconditional jump), RETN (return from subroutine) and NOP (no operation).

ALU and MOVF instruction format

D



SKWCF instruction format and general instruction field definitions

Instruction decoder

The inputs to your instruction decoder are as follows:

opcode: 3-bits
subcode: 3-bits
d_bit: 1-bit
prog_mode: 1-bit

The outputs of your decoder and their function are as follows (all are 1 bit signals):



If prog_mode is asserted, the opcode is FORCED to NOP (110), otherwise opcode remains
unchanged.

One of aluwf_ins, movf_ins, call_ins, movlw_ins, goto_ins, retn_ins, noop_ins or skwcf_ins is
asserted when the opcode indicates either an ALUWF, MOVF, CALL, MOVLW, GOTO,
RETN, NOP or SKWCF instruction.

One of add_ins, sub_ins, and_ins, or_ins, xor_ins, inv_ins, shltf_ins or shrtf_ins is asserted
when the opcode indicates an ALUWF instruction and the subcode is one of ADD, SUB,
AND, OR, XOR, INV, SHLTF, SHLRF (see table above).

One of skwgf_ins, skwlf_ins, skwef_ins or skwnf_ins is asserted when the opcode indicates a
SKWCF instruction and the middle 2 bits ofthe subcode field are decoded as shown above.

One of movwf_ins or movfw_ins is asserted when the opcode indicates a MOVF instruction
and the d_bit is a 0 or 1 respectively.

The signal read_ctrl is asserted when the opcode indicates an ALUWF, MOVF or SKWCF
instruction.
The signal write_ctrl is asserted when the opcode indicates an ALUWF, MOVF or MOVLW
instruction.

You should start with lab #6 and add an instruction register that is 12-bits wide. To load the

instruction register using the UART, you will specify an instruction by entering a third value using

the keyboard (the first two values are the A and B operands as in lab #6). You will need to modify

the state machine that I’ve given you to add a third (instruction) register. The instruction register

replaces the pushbuttons you used in lab #6 (you can eliminate these statements) and are used to

control the ALU. When you press the enter button on the FPGA, the output of the ALU will be

displayed in the hyperterminal.

Connect the prog_mode signal to the up_button_level signal.

Note, some of the output signals above are unused at this point, so ignore warning from the syn-

thesis tool. In particular, aluwf_ins, call_ins, goto_ins, retn_ins, noop_ins, skwcf_ins, movwf_ins,

movfw_ins, read_ctrl and write_ctrl should not be connected.

Laboratory Report Requirements:

NOTE: NEW POLICY: You will loose 10 pts/day every day the lab report is late. If you miss the

demo, then the earliest you can do it is the next class period. For each class period that you are

late, you will loose 20 pts.

1) Turn in a commented copy of your VHDL code along with a schematic.

2) Write a test bench and run simulation(s) that shows the inputs and output behavior of the circuit

(be sure to include a set of ‘sample’ waveforms in your report).

3) Be prepared to give a demonstration in class on Wed using my UART driver code as described

above.



Grading:

Your lab grade will consist of two parts. The first part is associated with the in-class demo, and is

worth 50% of the total grade (50 pts). Successful demonstration of the lab’s stated requirements is

worth 50 pts. Partial implementations will be given only partial credit. The second portion of the

lab grade is derived from your lab report. Correct implementation counts for 15 pts (of the 50 pts).

Well documented simulation results are also worth 15 pts. The remaining 20 pts will be given

according to how well the VHDL code is written and documented (comments). Bonus points will

be given to any implementation feature that goes above and beyond the requirements.


