LAB Assignment #8 for ECE 443

Assigned: Wed., Oct 28, 2009
Due: Mon., Nov. 11, 2009

Description: Build Instruction Register/Memory and the PC logic and stack of
the microcontroller

The microcontroller we are designing was originally designed by Dhruva Acharyya. The top-level
architecture he derived for the microcontroller is shown below.

Current_PC GOTO/CALL Address
+2+1+0

PC_From_STACK] | | dd 4

/ Branch Select

\ PC Adder / |
: Cond

*sys_RESET v Branch
——*_PC Reg | i
PCy clK, “

CHor» Stack s
¥
b

_ 3

*Programming Signals
*PGM_VERIFY

*PGM_LD
PGM_IN
*PGM_MODE
*PGM_OUT
*PGM_CLK_A
*PGM_CLK_B

fop Level Architecture

—

*Sys_RESET

Control
Signals

sng a1uan, Aoway

CLK,

*sYs RESET |
_BYS.RESET)

sng peax|lows

W (addr0) "
i Special Purpose s
Registers L +auTpg

Data Memory

jeubis jonuon|Aowaw
sng ssalppy|lowspy

|

*sys_cLK_AIB

Red: external signals to control programming the microcontroller
Blue: external signals for runtime communication/operation

You have built the Instruction Decoder and ALU. This lab will focus on building the instruction
memory (labeled Instruction Register above).

For the instruction memory, you will use BRAM (an embedded memory on the FPGA). The
instruction memory is 256 words, where each word is 12-bits wide. So the address bus is 8-bit
wide. The output of the BRAM replaces your IR register -- in other words, you will use the output
bus from the core generator as the instruction register. You will use the Core Generator to generate
a BRAM with these size parameters. You will also indicate that the outputs are to be ‘registered’,
which will create the IR register for you automatically. To create a BRAM memory, follow these
steps:

1) Under ‘programs/ISE xx/accessories’, click on ‘CORE Generator’

2) Select ‘new project’ under the file menu

3) Enter a name and directory

4) In the CGP form, select Virtex2P, xc2vp30, ff896, -7. Click Ok.

5) Expand ‘Memories & Storage’ in the list on the left in CORE Generator, then ‘RAMs &
ROMs’

6) Select ‘Block Memory’ and Click Customize on the right.

7) Block Memory Generator dialog then appears, choose ‘Single Port RAM’ (the default) and
name the component InstrtMem - leave ‘Minimum Area’ selected for the Algorithm, click
‘Next’.

8) Set ‘Memory Size’ params ‘Write Width’ to 12, “Write Depth’ to 256, leave ‘Operating
Mode’ set to ‘Write First’, ‘Enable’ set to ‘Always Enabled’ and ‘Output Reset Value’ at 0,
click next.

9) The next screen allows you to add a register to the output of the BRAM, which will serve as
the IR in your design. Select ‘Register Port A Output of Memory Core’ under ‘Optional
Output Registers’-‘Port A’, leave other options at default and click next.

10) Leave options as is on the last screen and click ‘Finish’

The CORE Generator generates a set of files:

InstrMem.ngc: Binary Xilinx implementation netlist file containing the information required
to implement the module in a Xilinx (R) FPGA.

InstrMem.vhd: VHDL wrapper file provided to support functional simulation. This file con-
tains simulation model customization data that is passed to a parameterized simulation
model for the core.

InstrMem.vho: VHO template file containing code that can be used as a model for instantiat-
ing a CORE Generator module in a VHDL design.

InstrMem.xco: CORE Generator input file containing the parameters used to regenerate a
core.

Plus some other files...

The InstrMem.vho contains an example instantiation to be inserted into your VHDL code as

described below.

component InstrMem
port (
clka: IN std_logic;
dina: IN std_logic_VECTOR (11l downto 0);
addra: IN std_logic_VECTOR(7 downto 0);
wea: IN std_logic_VECTOR(0 downto 0);
douta: OUT std_logic_VECTOR (11l downto 0));

end component;

your_instance_name : InstrMem
port map (clka=>clka, dina=>dina, addra=>addra, wea=>wea, douta=>douta);

InstrMemUnit Module (module 1):
You then need to create a new ISE project that will serve as the instruction memory (InstrMemU-
nit) with the following parameters:
The inputs are as follows:
clk: 1-bit
reset: 1-bit
PC: 8-bits

scan_in: 1-bit
scan_en: 1-bit
load_sig: 1-bit

The outputs are as follows:
IR_reg: 12-bit output
scan_out: 1-bit

Within this module, you should add an instance of the BRAM you created above using the tem-
plate provided. To accomplish this, add the InstrMem.xco file as a source after you create the ISE
project. You also need to connect the proper signals to the actual parameters as described below.
douta of the memory module will serve as the IR register.

Within the InstrMemUnit module, you also need to implement a scan register and connect it as
shown below:

IR _reg
—>

clk *** *

——P scan_out >

scan_in

— i

scan_en

T ! !

dina

clk
~—»

load_sig wea Instruction Memory
> q (BRAM module)

addra
Sy

douta
I

A scan register is a special register that has two input paths, the standard (parallel) path that
drives the D inputs as shown above with the IR bus and a serial input path given by scan_in. The
scan register operates as a regular register when scan_en is low. When scan_en is asserted, it
shifts the value present on scan_in into the MSB and all other bits are shifted to the right, i.e., it
effectively becomes a shift register. The scan_out port will not be used in this laboratory but needs
to be present in the module.

ScanEmulation Module (module 2):

You need to implement a state machine in this module that will scan an instruction into the scan
register using the scan_in path as described below. The basic idea is that we are going to use the
scan register to load up the instruction memory. As instructions are entered into hyperterminal,
they are converted into a binary value (using a UART driver that I will provide) and passed to the
ScanEmulation module. The state machine in ScanEmulation module will serially scan the
instruction into the scan register located in the InstrMemUnit module.

The instruction will be saved in instruction memory at the address given by scan_PC_reg -- a reg-
ister created and maintained within the ScanEmulation module. Therefore, during the instruction

load operation, your state machine will update scan_PC_reg so that it generates a sequence of
addresses in order from O to n, where n < 256. To write the instruction memory, you need to place
the address and data on the appropriate inputs of the BRAM memory and then enable the write
operation by asserting load_sig for one cycle. NOTE: Although you will NOT be reading instruc-
tions out of instruction memory in this assignment, you will need to do this eventually. In order to
read, you need to place the address on the BRAM address inputs and wait for TWO clock cycles
before the data will be available.

We call the second module ScanEmulation because for a normal implementation of the microcon-
troller, the signals scan_in, scan_out, scan_enable and load_sig would be connected to external
pins (they would not be driven by internal logic as described above). Since wiring the board in this
fashion is not practical, in your implementation, you will instead write a FSM that emulates the
external (off-chip control) of these signals. By emulation, I mean your state machine will toggle
these signals in the same manner they would be toggled by external instrumentation such as a pat-
tern generator.

As I indicated, I will provide a driver called UART _InstrRead that is designed to read a sequence
of instructions, converts them into binary and asserts a signal when it is ready to be processed by
your ScanEmulation module. The asserted signal is called go_scan_emulation -- it will be pulsed
for one clock cycle when the binary version of the instruction entered by the user is available. This
event should trigger your state machine to carry out the following sequence of operations. First,
the scan_enable signal is asserted and held high during the scan operation given as follows. For
each bit of the instruction, starting with the low order bit, you need to drive the scan_in signal
with that bit for one clock cycle. After the last bit is scanned in, you need to assert the load_sig
signal for one clock cycle to save the instruction into instruction memory. After you save it, you
should increment scan_PC_reg by 1 and go back to the initial state and wait for the next instruc-
tion. Note that you need to declare and implement scan_PC_reg as a register in your module, sim-
ilar to way you handled the IR register from lab #7.

The inputs to ScanEmulation are as follows:
clk: 1-bit
reset: 1-bit
Instr_In_Reg: 12-bit output (connected to ScanlRIn_reg in UART _InstrRead driver)
go_scan_emulation: 1-bit
The outputs are as follows:
scan_in: 1-bit
scan_en: 1-bit
load_sig: 1-bit
scan_PC_reg: 8-bits

Although the ALU and decoder and not the focus of this lab, you must leave them in the VHDL
code. You should add two modules to the driver code that I provide, InstrMemUnit and ScanEmu-
lation. See the comments in the driver code. IMPORTANT: Be sure to connect the PC port in
InstrMemUnit to PC in my driver and NOT to the output of the ScanEmulation module’s
scan_PC_reg. For example, in the port map statement, you should have ...PC=>PC... in the
InstrMemUnit instantiation.

For the demonstration, you will use hyperterminal and enter a series of instructions (one per line).
I have developed the driver so that the contents of your instruction memory module will be
dumped to hyperterminal once the “enter pushbutton” is pressed on the FPGA.

Laboratory Report Requirements:

NOTE: You will loose 10 pts/day every day the lab report is late. If you miss the demo, then the
earliest you can do it is the next class period. For each class period that you are late, you will loose
20 pts.

1) Turn in a commented copy of your VHDL code along with a schematic.

2) Write a test bench and run simulation(s) that shows the inputs and output behavior of the circuit
(be sure to include a set of ‘sample’ waveforms in your report).

3) Be prepared to give a demonstration in class on Wed using my UART driver code as described
above.

Grading:

Your lab grade will consist of two parts. The first part is associated with the in-class demo, and is
worth 50% of the total grade (50 pts). Successful demonstration of the lab’s stated requirements is
worth 50 pts. Partial implementations will be given only partial credit. The second portion of the
lab grade is derived from your lab report. Correct implementation counts for 15 pts (of the 50 pts).
Well documented simulation results are also worth 15 pts. The remaining 20 pts will be given
according to how well the VHDL code is written and documented (comments). Bonus points will
be given to any implementation feature that goes above and beyond the requirements.

