LAB Assignment #1 for ECE 443
Assigned: Mon., Aug. 24, 2016
Due: Wed., Sept. 26, 2016

Description: Write VHDL code for full_adder.vhd with inputs from switches
and outputs to LEDs.

This assignment is intentionally kept simple to allow you to get familiar with the Xilinx FPGA
software tools.

1) Write VHDL code for the following logic expressions for a full adder:

2) Create a block diagram with 1 instance of a GPIO with the first channel connected to the
switches and the second channel set as ‘custom’ and labeled ‘full_adder_inputs’.

3) Connect the inputs of the full adder VHDL code (‘A’, ‘B’ and ‘Cin’) to the low order 3 bits of
the custom GPIO port in the ‘design_wrapper’ file.

4) Create a constaints file that maps the ‘s’ and ‘Cout’ outputs to leds outputs LDO and LD1.

5) Write a simple C program that constantly reads from switches 0, 1 and 2 through the first chan-
nel of the GPIO and writes the values to the second channel of the GPIO. See starter code.

6) Switches can be changed from ‘0’ to ‘1°, with the ‘s’ and ‘Cout’ LEDs representing the sum
and carry out values.

7) Be prepared to demo your project in class.

Laboratory Report Requirements:

Grading:
The grading from this lab will be based entirely on your in-class demo. Bonus points will be given
to any implementation feature that goes above and beyond the requirements.



Create this block diagram as discussed in class.

processing_system7_0_axi_periph labl
J
i 4-S00_AXI
rst_processing_system7_0_100M ACLK
ARESETN[0:0 i_gpi
lowest_sync_clk mb_reset p= S'CID_ACLI[( ! » axi_gpio_0 '
t_reset in bus_struct_reset[0.0) S MOO_AXI 45 | ks AXI i
! u‘ » S 00_ARESETN[0:0] = - f GPIO- sws_8bits
=—aux_reset_in peripheral_reset{0:0] m MO1_AXI<E s_axi_aclk =
MOO_ACLK | 024 FA_inputs
—mb_debug_sys_rsti t_aresetn[0:0] s_axi_aresetn ¥
b—eM00_ARESETN[0:0| < |
—dem_locked peripheral_aresetn[0:0] e —
Processor System Reset f—e= MO 1_ARESETN[0:0]
2
processing_system?7 _0 AXI Interconnect
DDR < ||} DDR
FIXED_10 4 ||} FIXED_IO
ussIND_0 4 [[]
M_AXI_GPO (i
M_AXI_GPO_ACI - MAnceod
RQ_F2P[0-0] Y NO TTCO_WAVED_OUT
3 TTCO_WAVEL_OUT
TTCO_WAVE2_OUT
FCLK_CLKO -
FCLK_RESETO_N

ZYNQ7 Processing System

Create, regenerate layout, validate and save. Click on ‘design_1" in the design sources window
and select ‘Generate HDL wrapper’, choose ‘Copy to allow user edits’ in the pop-up.

Add the master xdc file as ‘constraints’ to your project. Uncomment the lines that refer to the
switches.

Remember to buy a USB-to-microUSB cable and a short twisted pair cable for networking.

Plug your microUSB cables into the ‘PROG’ and ‘UART’ microUSB connectors on the board
(the two closest to the power supply connector).

Remember to set the default language to VHDL in the ‘Project Setting’ menu in vivado immedi-
ately after creating a new project.



SDK:

1) From vivado, File menu, run ‘Export’ and then ‘Export Hardware’, click ‘Ok’ with defaults.
2) From vivado, File menu, run ‘Launch SDK’, click ‘Ok’ with defaults.

3) SDK should run and create ‘design_1_wrapper_hw_platform_0’ component automatically.

% CIC++- design_1 wrapper_hw_platform_0/system.hdf - Xilinx SDK [ BNCIES]
Fle Edit Source Refactor Navigate Search Run Project Xilinx Tools Window Help |

TE T ¥ -0 Q - &EEE S| &5
e S :esign_l wral :e:‘i;:i:l;tform;o Hardware Platform §pecification A :" °:"‘"e Enotavakable.
i
“ program FPGA button
full_adder application
XMD console

[2. Problems & Tasks & Console 2 [ Properties | $ Terminal r$ - =0 [E]sDKLog [ XMD Console 22 % Y =0

No consoles to display at ths time. X0 P

48 Target Connections %2 =@

4 Local [default]

4) From SDK, File menu, ‘New’, ‘Application Project’, type ‘full_adder’ in ‘Project name:’ field,
change ‘OS platform’ to ‘linux’, click ‘Next’, choose ‘Empty application’.

5) On left, ‘full_adder’ should show up, right click and choose ‘import’. In dialog, expand ‘Gen-
eral’ tab and click ‘File System’, click ‘next’. Select the ‘full_adder_starter.c’ file after choosing
the proper directory.

6) To force compilation, right click ‘full_adder’, click ‘Clean Project.

7) Binary is written to vivado/lab1.sdk/full_adder/Debug/full_adder.elf. This is the file you need
to transfer using ‘scp’ (see below) to the Zybo.

8) Program the FPGA with your bitstream that you synthesized in vivado using the button at the
top (see figure above).
9) Run the following 3 commands in the ‘XMD console’ if the serial port terminal (see figure
above) appears to be locked up. If the XMD console is not visible, click ‘Xilinx tools’ in the menu
along top and choose ‘XMD console’

connect arm hw

target 64

con
10) The serial terminal should again respond to your input commands.



Setting up the network:
Under linux, do the following:
1) Connect a twisted pair cable between ethernet ports on your laptop and Zybo. Be sure to dis-
able the wireless network. Also be sure the serial terminal is NOT locked up (see previous page).
2) Type ‘ifconfig’ to make sure ‘ethQ’ shows up.
3) OPTIONAL: do this ONLY if ‘ifconfig’ does NOT show ethO above. In an xterm on your lap-
top, type

insmod /lib/modules/2.6.xx-xx.elf6.x86_64/kernel/drivers/net/xxx

Substitute xx-xx with the linux kernel you are using and xxx with the driver for your card.

4) In the minicom window (which connects to the Zybo through a serial channel), type
ifconfig ethO 192.168.1.10 netmask 255.255.255.0 (NOT NECESSARY for Zybo)
Then type ‘ifconfig’ by itself to make sure ‘ethQ’ is configured with the IP you just specified.

5) On your laptop, type
ifconfig eth0 192.168.1.20 netmask 255.255.255.0

6) On your laptop, type ‘route’ to make sure 192.168.1.0 shows up. If not, repeat 5) above.

7) On your laptop, type
route add default gw 192.168.1.1 eth0

8) On your laptop, type ‘route’ again to make sure ‘default 192.168.1.1° shows up as a second
entry in the routing table.

9) At this point, you should be able to type
ssh root@192.168.1.20
To logon to the linux system running on the Zybo. Use ‘root’ as the password.

10) cd into ‘vivado/labl.sdk/full_adder/Debug/’ identified on the previous page and type
scp full_adder.elf root@192.168.1.20:/
After type ‘root’ for the password, the binary is transferred to the Zybo from your laptop.

11) In the serial channel, type ‘cd /°, and then ‘chmod a+x full_adder.elf’ as two separate com-
mands.

12) Run the full_adder.elf binary in the background by typing:
full_adder.elf&

13) If everything is working, you should be able to change switches 0, 1 and 2 and have the output
of the full adder (sum and Cout) be displayed on LED 0 and 1.



Conceptual model:

PCB .
2| Zyng chip PS cortex A9 | DDR »| DDR
o AXI microproc. | Fixed
= /O | ] :
interconnect —1 » —» Sggal
Switches v - P
— GPIO
L port E
L 4 port 1 o
-
] full adder VHDL code =
LDO| [ |
LDI | | PL

1/0 pads




