
HW/SW Codesign VHDL Essentials II ECE 522

ECE UNM 1 (8/20/17)

Concurrent Signal Assignment Statements

From VHDL Essentials I, we discussed the architecture statement as one of the

three components of a VHDL file

architecture arch_name of entity_name is

declarations

begin

concurrent_stmt;

concurrent_stmt;

end arch_name;

So far, we looked at only simple signal assignment statements as an example of a

valid ’concurrent_stmt’ within the architecture body

architecture beh of demo is

signal ab: std_logic;

begin

ab <= a and b;

x <= ab;

y <= not ab;

end ok_arch;

HW/SW Codesign VHDL Essentials II ECE 522

ECE UNM 2 (8/20/17)

Concurrent Signal Assignment Statements

In this lecture, we consider two other types of ’concurrent_stmt’, in particular, con-

ditional signal assignment and selected signal assignment

Remember that all concurrent signal assignment statements describe hardware com-

ponents that operate in parallel

This will be true when we discuss the process statement as well

For example, the following signal assignment is implemented as shown, and continu-

ously re-computes arith_out as values on the wires labeled a, b and c change

arith_out <= a + b + c - 1;

Other signal assignments, if included, would operate in parallel with this circuit

HW/SW Codesign VHDL Essentials II ECE 522

ECE UNM 3 (8/20/17)

Concurrent Signal Assignment Statements

One final note on simple signal assignment

Although it is syntactically correct to use a signal name on both sides of an assign-

ment statement, NEVER do it!

q <= (d and en) or ((not q) and (not en));

This describes a circuit which assigns to q the value of d when en is ’1’, otherwise it

assigns the inverse of itself not q

This statement forms a combinational feedback loop and will not be synthesized and

behave as you expect

You will encounter plenty of instances where you want to do this type of assignment,

however, this is not the correct way to do it

We will discuss how to properly describe a circuit with this type of assignment later

when we discuss D flip-flops

HW/SW Codesign VHDL Essentials II ECE 522

ECE UNM 4 (8/20/17)

Selected Signal Assignment Statements

Selected signal assignment describes a circuit that implements a case statement in a

programming language

with select_expression select

 signal_name <= value_expr_1 when choice_1,

 value_expr_2 when choice_2,

 value_expr_3 when choice_3,

 ...

 value_expr_n when others;

The select_expression is usually of type std_logic or std_logic_vector

choice_x are usually constants such as "00", "01", "10" and "11"

The choices_x must be mutually exclusive and all inclusive, i.e., always use others

as the condition in the last clause to ensure this

The selected signal assignment statement is VERY COMMONLY used to describe a

MUX-based circuit

HW/SW Codesign VHDL Essentials II ECE 522

ECE UNM 5 (8/20/17)

Selected Signal Assignment Statements

architecture sel_arch of mux4 is

 begin

with s select

 x <= a when "00",

 b when "01",

 c when "10",

 d when others;

end sel_arch;

Describing a binary decoder (n-to-2n) is another common usage scenario

architecture sel_arch of decoder4 is

 begin

with s select

 x <= "0001" when "00",

 "0010" when "01",

 "0100" when "10",

 "1000" when others;

end sel_arch;

HW/SW Codesign VHDL Essentials II ECE 522

ECE UNM 6 (8/20/17)

Selected Signal Assignment Statements

Selected signal assignment can also be used to describe a circuit which uses a truth

table as the source

library ieee;

use ieee.std_logic_1164.all;

entity OR_gate_truth_table is

port(

 a, b: in std_logic;

 y: out std_logic

);

end OR_gate_truth_table;

HW/SW Codesign VHDL Essentials II ECE 522

ECE UNM 7 (8/20/17)

Selected Signal Assignment Statements

architecture beh of OR_gate_truth_table is

signal tmp: std_logic_vector(1 downto 0);

 begin

 tmp <= a & b; -- concatenate a and b

with tmp select

 y <= ’0’ when "00", -- rows of the truth table

 ’1’ when "01",

 ’1’ when "10",

 ’1’ when others;

end beh;

The conceptual implementation of a selected signal assignment is simply a MUX

HW/SW Codesign VHDL Essentials II ECE 522

ECE UNM 8 (8/20/17)

Selected Signal Assignment Statements

When synthesized, a 4-to-1 MUX can be mapped into logic gates

This circuit selects either i0, i1, i2 or i3 depending on the values of sel(0) and sel(1)

HW/SW Codesign VHDL Essentials II ECE 522

ECE UNM 9 (8/20/17)

Selected Signal Assignment Statements

More complex MUX-based multi-bit arithmetic circuits can also be described

signal a, b, r: unsigned(7 downto 0);

signal s: std_logic_vector(1 downto 0);

...

with s select

 r <= a+1 when "11",

 a-b-1 when "10",

 a+b when others;

HW/SW Codesign VHDL Essentials II ECE 522

ECE UNM 10 (8/20/17)

Conditional Signal Assignment Statements

Conditional signal assignment describes a circuit that implements an if stmt in a pro-

gramming language

sig_name <=

value_expr_1 when boolean_expr_1 else

value_expr_2 when boolean_expr_2 else

value_expr_3 when boolean_expr_3 else

...

value_expr_n

Similar to if stmts, each of the boolean_expr_x generate 1 or 0 with the first one that

generates a 1 causing the value_expr_x to be assigned to the sig_name signal

Only use conditional signal assignment when it is NOT possible to use selected sig-

nal assignment

The synthesis tool will generally use more logic gates to implement conditional

signal assignment because of the priority that exists among the choices

boolean_expr_1 takes priority over boolean_expr_2

HW/SW Codesign VHDL Essentials II ECE 522

ECE UNM 11 (8/20/17)

Conditional Signal Assignment Statements

A priority encoder is a good example of when you should use conditional signal

assignment

A priority encoder checks the input requests and generates the code for the request of

highest priority

Here, r(3) has the highest priority, i.e., when asserted, the other three requests are

ignored and the code signal becomes "11"

When r(3) is not asserted, the second highest request, r(2) is given priority

The active signal is used to distinguish between the cases when r(0) is asserted and

the case in which NO request is asserted

There are four input requests, r(3), ..., r(0)

The outputs include a 2-bit signal (code), which

is the binary code of the highest priority request
and a 1-bit signal active that indicates if there is
an active request

HW/SW Codesign VHDL Essentials II ECE 522

ECE UNM 12 (8/20/17)

Conditional Signal Assignment Statements

library ieee;

use ieee.std_logic_1164.all;

entity prio_encoder42 is

port(

r: in std_logic_vector(3 downto 0);

code: out std_logic_vector(1 downto 0);

active: out std_logic);

end prio_encoder42;

architecture beh of prio_encoder42 is

 begin

 code <= "11" when (r(3)=’1’) else

 "10" when (r(2)=’1’) else

 "01" when (r(1)=’1’) else

 "00";

 active <= r(3) or r(2) or r(1) or r(0);

end beh;

HW/SW Codesign VHDL Essentials II ECE 522

ECE UNM 13 (8/20/17)

Conditional Signal Assignment Statements

The conditional signal assignment statement implements a priority structure and

requires additional logic to implement the priority routing network

Selected signal assignment requires the first two of the following circuits to be imple-

mented while conditional signal assignment requires all three

• Value expression circuits

• Boolean expression circuits

• Priority routing network

A layered sequence the MUXes are used to implement the priority routing network

which determines which value expression circuit is connected to the output

The outputs of circuits that implement the Boolean expressions are used to drive the

select inputs to the layered sequence of MUXes

HW/SW Codesign VHDL Essentials II ECE 522

ECE UNM 14 (8/20/17)

Conditional Signal Assignment Statements

sig <= value_expr_1 when boolean_expr_1 else

 value_expr_2 when boolean_expr_2 else

 value_expr_3 when boolean_expr_3 else

 value_expr_4;

Adding when clauses increases the overall combinational delay of the circuit, so you

will be limited in how many when clauses you can use

