
HW/SW Codesign VHDL Essentials III ECE 522

ECE UNM 1 (10/3/22)

Process Blocks

The last of the ’concurrent_stmts’ that we will consider is the process block

architecture arch_name of entity_name is

declarations

begin

concurrent_stmt;

concurrent_stmt;

end arch_name;

The entire contents of a process block operate in parallel with other concurrent_stmt

The process block itself is a concurrent statement and should be thought of as a sub-

circuit enclosed inside a black box

You will ’read elsewhere’ that the process block is a container for a set of sequential

statements, which ’executes’ from top to bottom

And you will immediately be tempted to cut-and-paste your C code into one

I give you fair warning, there is nothing sequential about a process block nor about it

executing and any attempt to treat it as a ’container’ for C code will fail hard!

HW/SW Codesign VHDL Essentials III ECE 522

ECE UNM 2 (10/3/22)

Process Blocks

The process block provides semantics that allow you to describe a circuit in a recipe-

type fashion

VHDL synthesis tools obey special semantics when interpreting statements

within a process block

The majority of your descriptions of combinational logic and ALL of your descrip-

tions of storage elements (DFFs) will be done inside a process block

VHDL allows a lot of different types of constructs to show up in a process block

We will restrict the components that go into a process block to three components,

NO exceptions!

• signal assignment

• if stmts

• case stmts

There are also two forms accepted by VHDL for a process block

We will ONLY use the version with the sensitivity list (NO wait statements)

HW/SW Codesign VHDL Essentials III ECE 522

ECE UNM 3 (10/3/22)

General Form of the Process Block

Our restricted form of the process block is given as follows

process(sensitivity_list)

begin

 statement;

 ...

end process;

The sensitivity_list lists the input signals to the sub-circuit you are describing

The following shows a simple example of a process block using signal assignment

signal a, b, c, y: std_logic;

process(a, b, c)

begin

 y <= a and b and c;

end process;

Although valid, you should consider signal assignment without the process block as

an alternative, equivalent description of this 3-input AND gate

 y <= a and b and c;

HW/SW Codesign VHDL Essentials III ECE 522

ECE UNM 4 (10/3/22)

Golden Rules of Process Blocks

Before discussing the if stmt and the case stmt, let’s cover my golden rules

NEVER VIOLATE THESE RULES

• Rule 1: All signals that are read with a process block must be included in the sen-

sitivity list

This includes signals that appear on the right side of assignment statements

AND those that appear within Boolean expressions in if and case statements

• Rule 2: The last assignment to an output signal takes precedence over ALL previ-

ous assignments (listed earlier in the process block)

output_signal <= value_expression1;

...

if (x = ’1’) then

 output_signal <= value_expression2;

end if;

If (x = ’1’) evaluates to be true, then output_signal is assigned value_expression2

HW/SW Codesign VHDL Essentials III ECE 522

ECE UNM 5 (10/3/22)

Golden Rules of Process Blocks

NEVER VIOLATE THESE RULES

• Rule 3: All output signals MUST have an UNCONDITIONAL assignment

You MUST include unconditional assignments to ALL output signals as the top-

most set of assignment statements in your process block

• Rule 4: Never use a signal on both sides of an assignment statement (inside or out-

side of a process block)

tmp <= tmp or b;

As was true of signal assignment outside the process block, this results in a

combinational loop with the output connected to one of the inputs

• Rule 5: Never assign to an output signal both inside and outside of a process block

If you use a simple signal, selected signal, or conditional signal assignment to

assign a value to a signal, do NOT assign to it within a process block

Turns out that multiple assignments to an output signal within a process block is

allowed and is mandatory according to Rule 3 above!

HW/SW Codesign VHDL Essentials III ECE 522

ECE UNM 6 (10/3/22)

Case Stmts Within a Process Block

The case stmt is equivalent to the selected signal assignment discussed earlier but is

more general (similar in appearance to programming languages)

case case_expression is

when choice_1 =>

 statements;

 ...

when others =>

 statements;

end case;

As was true for selected signal assignment, choice_x terms must be mutually exclu-

sive and all inclusive

x <= z;

 case s is -- Creates a MUX structure in the

when "00" => -- hardware, similar to selected

 x <= a; -- signal assignment

when "01" =>

 ...

HW/SW Codesign VHDL Essentials III ECE 522

ECE UNM 7 (10/3/22)

If Stmts Within a Process Block

The if stmt is equivalent to the conditional signal assignment discussed earlier but is

more general (also similar in appearance to programming languages)

if boolean_expr_1 then

 statements;

elsif boolean_expr_2 then

 statements;

...

else

 statements;

end if;

You can use the if stmt to describe the 4-to-2 priority encoder discussed earlier

entity prio_encoder42 is

 port (

r: in std_logic_vector(3 downto 0);

code: out std_logic_vector(1 downto 0);

active: out std_logic);

end prio_encoder42;

HW/SW Codesign VHDL Essentials III ECE 522

ECE UNM 8 (10/3/22)

If Stmts Within a Process Block

architecture if_arch of prio_encoder42 is

begin

process(r)

begin

 code <= "00";

if (r(3)=’1’) then

 code <= "11";

elsif (r(2)=’1’)then

 code <= "10";

elsif (r(1)=’1’)then

 code <= "01";

else

 code <= "00";

end if;

end process;

 active <= r(3) or r(2) or r(1) or r(0);

end if_arch;

HW/SW Codesign VHDL Essentials III ECE 522

ECE UNM 9 (10/3/22)

If Stmts Within a Process Block

if stmts can be nested, as shown here when finding the max of a, b and c

process(a, b, c) -- NOTE: if stmts create a priority

begin -- network, i.e., a layered sequence

 max <= a; -- of MUXes as shown earlier

if (a > b) then

if (a > c) then

 max <= a;

else

 max <= c;

end if;

else

if (b > c) then

 max <= b;

else

 max <= c;

end if;

end if;

end process;

HW/SW Codesign VHDL Essentials III ECE 522

ECE UNM 10 (10/3/22)

Consequences of Violating the Golden Rules of Process Blocks

• Violating Rule 1: Failing to include a signal that is read in the sensitivity list usu-

ally results in a ’WARNING’ from the synthesis tool

But can (technically) result in the tool adding a memory element for the output signal

process(a)

begin

 y <= a and b and c;

end process;

Signals b and c are not listed as inputs to this circuit, which means that y needs to

maintains its value (FF) until a changes (a is treated as a clock that samples b and c)

• Violating Rule 2: There is no way to violate this rule regarding multiple assign-

ments to an output signal within a process block

• Violating Rule 3: Failing to assign an output signal a default value causes real

problems for students, with only an ’inferred xxx’ warning from the tool

A storage element is added to preserve the output signal value when none of the

Boolean expressions are true (no assignment is made to the output signal)

HW/SW Codesign VHDL Essentials III ECE 522

ECE UNM 11 (10/3/22)

Consequences of Violating the Golden Rules of Process Blocks

• Violating Rule 3:

The following ’instructs’ the synthesis tool to add a storage element for eq

process(a, b)

begin

if (a = b) then

 eq <= ’1’;

end if;

end process;

No assignment is made when a does not equal b -- the synthesis tool infers this as:

process(a, b)

begin

if (a = b) then

 eq <= ’1’;

else

 eq <= eq;

end if;

end process;

HW/SW Codesign VHDL Essentials III ECE 522

ECE UNM 12 (10/3/22)

Consequences of Violating the Golden Rules of Process Blocks

• Violating Rule 3:

The synthesis tool issues ’inferred xxx’ warning, and happily creates a storage

element to store eq until the Boolean condition (a = b) is true again!

In fact, a variation of this syntax is used to describe valid FFs so it commonly

used (as we will soon see)

THIS IS A COMMON BUG so beware!!!!

process(a, b) -- THIS VIOLATES GOLDEN RULE 3!

begin -- MUST INCLUDE DEFAULT ASSIGNMENTS HERE

if (a > b) then

 gt <= ’1’;

elsif (a = b) then

 eq <= ’1’;

else

 lt <= ’1’;

end if;

end process;

HW/SW Codesign VHDL Essentials III ECE 522

ECE UNM 13 (10/3/22)

Consequences of Violating the Golden Rules of Process Blocks

• Violating Rule 4: Creating combinational loops generally cause the synthesis tool

to generate a ’WARNING’, but beware!

• Violating Rule 5: Assigning to an output signal more than once outside a process

block, or both inside and outside a process block generates a syntax error

