
HW/SW Codesign VHDL Essentials IV ECE 522

ECE UNM 1 (10/11/22)

FFs and Registers

In this lecture, we show how the process block is used to create FFs and registers

Flip-flops (FFs) and registers are both derived using our standard data types,

std_logic, std_logic_vector, signed and unsigned

Storage elements are critical to emulating variables in programming languages

They play a central role in allowing C programs to be converted into hardware

implementations

VHDL (and verilog) allow complex hardware to be described in either single-seg-

ment style to two-segment style

Proponents of single-segment style argue that such descriptions are

• More efficient from a simulation perspective (the sensitivity list consists of clk only)

• More concise, i.e., requiring fewer VHDL statements to describe the circuit

Neither of these are compelling reasons, and neither offset the benefits of two-seg-

ment style (in my opinion)

HW/SW Codesign VHDL Essentials IV ECE 522

ECE UNM 2 (10/11/22)

One-Segment vs. Two-Segment Style

We will use two-segment style exclusively throughout the rest of this lecture series

for several reasons:

• Two-segment provides a conceptual advantage by cleanly separating storage ele-

ments from the combinational logic portion of the design

After many years of experience, the biggest challenge of writing VHDL is being

able to quickly craft a description that has the fewest bugs

The advantage afforded by partitioning the circuit into combinational and

sequential components is difficult to over-state

• Two-segment style will provide opportunities to guide the synthesis tool to produce

a more efficient hardware implementation (in my opinion)

Two-segment style provides easy access to both the inputs and outputs of FFs

and registers

Two-segment style will also allow the designer to easily specify signals (wires)

in combinational circuit descriptions, without being forced to create FFs

HW/SW Codesign VHDL Essentials IV ECE 522

ECE UNM 3 (10/11/22)

FFs and Finite State Machines

We will focus on creating designs with a single-clock domain and a globally distrib-

uted clk signal (globally synchronous)

The end goal of our learning will be to create a finite state machine (FSM)

From previous courses, you probably remember the following about FSM operation:

• At the rising edge of the clock, state_next is sampled and stored into the register

(and becomes the new value of state_reg)

• The external inputs and state_reg signals propagate through next-state and output

logic to determine the new values of the state_next and output signals

• This sequence of operations repeats indefinitely

State registers (state_reg)
represent the storage
elements

Next state logic
represent the combinational
circuit that determines
state_next

HW/SW Codesign VHDL Essentials IV ECE 522

ECE UNM 4 (10/11/22)

FFs

DFFs are the workhorse of modern digital circuit design, and they play a central role

in FSM and datapath implementations

The truth table of a DFF specifies that the state of the FF remains unchanged until a

rising edge of the clock arrives

This type of FF is referred to a rising-edge-triggered DFF, or FF for short (we will

NEVER use falling-edge-triggered FFs)

Most FFs that you will create will also have a set or reset signal

HW/SW Codesign VHDL Essentials IV ECE 522

ECE UNM 5 (10/11/22)

FFs

It is important to have a solid understanding of the timing diagram for a FF

Sooner or later, you will encounter timing violations in your design and will

need to either 1) fix them or 2) slow the clock down

Every storage element has setup and hold time requirements

• Setup time is the amount of time a signal (driving the d input) needs to be stable

before the rising edge of the clk

• Hold time is the amount of time this signal needs to be maintained on d after the

rising edge of the clk

Thold

Tsetup

Tcq

HW/SW Codesign VHDL Essentials IV ECE 522

ECE UNM 6 (10/11/22)

FFs

Timing violations are almost always setup-time violations

When this happens, the length of the path through the combinational circuit is

TOO long

This can happen if you have too many when-else clauses in a conditional signal

assignment, which creates a critical path that is longer than the clk cycle time

When you set the clk frequency during synthesis to, say, 50 MHz, ALL combina-

tional paths in your design MUST be less than (20 ns - setup-time)

The synthesis tool will work very hard to create implementations from your VHDL

descriptions that meet the timing requirements

If it fails, the onus is on you to fix the timing violations

We will discuss simple strategies that you can use to deal with timing violations

when we get to FSM design

HW/SW Codesign VHDL Essentials IV ECE 522

ECE UNM 7 (10/11/22)

FFs

Use the following process block construct to create a FF with an asynchronous reset

architecture beh of example_design is

 signal x_reg, x_next: std_logic;

 begin

process(clk, reset)

begin

if (reset = ’1’) then

 x_reg <= ’0’;

elsif (rising_edge(clk)) then

 x_reg <= x_next;

end if;

end process;

 ...

end beh;

Memorize this syntax! You will use this same structure over-and-over again, in every

VHDL module you create

HW/SW Codesign VHDL Essentials IV ECE 522

ECE UNM 8 (10/11/22)

FFs

The FF has two names, which specify the input, x_next and the output, x_reg

The synthesis tool creates a FF as follows from this process block description:

If you attempt to synthesize this by itself, the synthesis tool will delete the FF b/c the

input and output are not connected to anything (they float)

In most design scenarios, you will want to ’control’ updates to your FFs

In other words, your FFs will maintain their contents most of the time, and only

occasionally will be updated with new values (on one of the rising clk edges)

There are two ways of doing this:

• Add a MUX before the input x_next

• Gate the clock, i.e., add an AND gate in series with the clk connection

clk

D Q
x_next x_reg

clk

reset FF

HW/SW Codesign VHDL Essentials IV ECE 522

ECE UNM 9 (10/11/22)

FFs

Golden Rule of Digital Design: Never insert any logic in series with the clk

Doing so makes it difficult for the synthesis tool to do a proper timing analysis

Experienced circuit designers will violate this rule to reduce the switching frequency

of the FFs and save energy

So unless you have a really good excuse, DON’T DO IT.

The alternative of using a MUX is by far the most common method

This is easily specified using a with-select or when-else statement

with en select

 x_next <= new_val when en =’1’,

 x_reg when others;

OR

x_next <= new_val when en =’1’ else

 x_reg;

As we discussed, with-select is a better match since we are describing a MUX, but

many times the Boolean expression may be more complex, with multiple signals

HW/SW Codesign VHDL Essentials IV ECE 522

ECE UNM 10 (10/11/22)

FFs

In either case, the following schematic is created by the synthesis tool

Note that I’ve separated the design into combinational and sequential components,

and placed the MUX in the combinational component

As I mentioned, two-segment style creates this conceptual representation where:

• Combo: _reg signals are INPUTS and _next signals are OUTPUTS

• Seq: _reg signals are OUTPUTS and _next signals are INPUTS

The other combo logic portion must be specified, otherwise the synthesis tool will

eliminate the FF and MUX -- more on this soon...

clk

D Q
x_next x_reg

clk

reset FF

sequentialcombinational

en

new_valother combo
logic

HW/SW Codesign VHDL Essentials IV ECE 522

ECE UNM 11 (10/11/22)

Golden Rules of FF Process Blocks

We will ’close the loop’ and create a valid design soon, but let’s first cover my golden

rules on process blocks which describe FFs

NEVER VIOLATE THESE RULES

• Rule 1: Never include anything except clk and reset in the sensitivity list of FF pro-

cess blocks

process(clk, reset)

begin

if (reset = ’1’) then

 x_reg <= ’0’;

elsif (rising_edge(clk)) then

 x_reg <= x_next;

end if;

end process;

The synthesis tools looks for ’clues’ in your VHDL code for constructs that describe

FFs, and then infers them during synthesis

More importantly, YOU always want to be sure where these FFs are inferred!!!

HW/SW Codesign VHDL Essentials IV ECE 522

ECE UNM 12 (10/11/22)

Golden Rules of FF Process Blocks

• Rule 2: Always use this template: if (reset = ’1’) ... elsif (rising_edge(clk)) ...

process(clk, reset)

begin

if (reset = ’1’) then

 x_reg <= ’0’;

elsif (rising_edge(clk)) then

 x_reg <= x_next;

end if;

end process;

The ONLY exception is when you want a synchronous reset, i.e., when reset of the

FFs ONLY occurs on the rising edge of clk (NOTE: NEVER USE BOTH TYPES)

process(clk, reset)

begin

if (rising_edge(clk)) then

 if (reset = ’1’) then

 x_reg <= ’0’;

else

 x_reg <= x_next; ...

HW/SW Codesign VHDL Essentials IV ECE 522

ECE UNM 13 (10/11/22)

Golden Rules of FF Process Blocks

• Rule 3: Never include anything except signal assignment in the if-elsif statements

process(clk, reset)

begin

if (reset = ’1’) then

 x_reg <= ’0’;

elsif (rising_edge(clk)) then

 x_reg <= x_next;

end if;

end process;

Define ALL combinational functions OUTSIDE the FF process block

VHDL allows a lot of flexibility w.r.t. describing circuits, and there are many, many

ways that you can write code that will result in unexpected behavior

Although the labs will task you on writing VHDL and then inspecting the schematics

produced by the synthesis tool, you will not be able to do this very often in practice

Even moderately complex designs make this type of inspection untenable

HW/SW Codesign VHDL Essentials IV ECE 522

ECE UNM 14 (10/11/22)

Consequences of Violating the Golden Rules of FF Process Blocks

Violating golden rule 3 is the most common

Here’s the correct description of a circuit that generates a pulse every 8 clock cycles,

which assumes max_pulse is defined in the entity as a std_logic out signal

architecture beh of pulse_cir is

signal r_reg, r_next: unsigned(2 downto 0);

 begin

process(clk, reset)

begin

if (reset = ’1’) then

 r_reg <= (others=>’0’);

elsif (rising_edge(clk)) then

 r_reg <= r_next;

end if;

end process;

 r_next <= r_reg + 1;

 max_pulse <= ’1’ when r_reg = "111" else ’0’;

end beh;

HW/SW Codesign VHDL Essentials IV ECE 522

ECE UNM 15 (10/11/22)

Consequences of Violating the Golden Rules of FF Process Blocks

This synthesizes to the following correct version of the circuit

The synthesis tool predictably (and correctly) interprets both the sequential and com-

binational components of the design

CORRECT VERSION

clk

reset

max_pulse

0 1 2 3 4 5 6 7 0r_reg 1 2 3 4 5

HW/SW Codesign VHDL Essentials IV ECE 522

ECE UNM 16 (10/11/22)

Consequences of Violating the Golden Rules of FF Process Blocks

If, on the other hand, you try to place the max_pulse code inside the process block:

architecture beh of pulse_cir_INCORRECT is

signal r_reg, r_next: unsigned(2 downto 0);

 begin

process(clk, reset)

begin

if (reset = ’1’) then

 r_reg <= (others=>’0’);

elsif (rising_edge(clk)) then

 r_reg <= r_next;

if (r_reg = "111") then

 max_pulse <= ’1’;

else

 max_pulse <= ’0’;

end if;

end if;

end process;

 r_next <= r_reg + 1; end pulse_cir_INCORRECT;

HW/SW Codesign VHDL Essentials IV ECE 522

ECE UNM 17 (10/11/22)

Consequences of Violating the Golden Rules of FF Process Blocks

The synthesis tool synthesizes this INCORRECT version of the circuit:

An additional FF for max_pulse is inferred because max_pulse is not assigned to

under all possible conditions (it is in the elsif branch), and the pulse is delayed!

There are ways to fix this problem, but the best solution is ’DON’T DO THIS’

INCORRECT VERSION

clk

reset

max_pulse pulse is delayed by 1 clk cycle

0 1 2 3 4 5 6 7 0r_reg 1 2 3 4 5

