
HW/SW Codesign VHDL Essentials V ECE 522

ECE UNM 1 (10/30/19)

Register Transfer Methodology (RTL)

We typically use algorithms to accomplish complex tasks

Although it is common to execute algorithms on a GPU, a hardware implementation

is sometimes needed because of power and performance constraints

RT methodology is a design process that describes system operation by a sequence of

data transfers and manipulations among registers

This methodology supports sequential execution semantics used by microprocessors

to execute a program

Consider an algorithm that computes the sum of 4 numbers, divides by 8 and rounds

the result to the nearest integer

size = 4;

sum = 0;

for i in (0 to size-1) do

 { sum = sum + a(i); }

HW/SW Codesign VHDL Essentials V ECE 522

ECE UNM 2 (10/30/19)

Register Transfer Methodology (RTL)

q = sum/8;

r = sum rem 8;

if (r > 3)

 { q = q + 1; }

outp = q;

Characteristics of an algorithm:

• Algorithms use variables, memory locations with a symbolic addresses, to store

intermediate results

• Algorithms are executed sequentially and the order of the steps is important

One approach is to convert sequential execution into a structural data flow, where

the sequence is embedded in the ’flow of data’

This is accomplished by mapping an algorithm into a system of cascading hardware

blocks, where each block represents a statement in the algorithm

HW/SW Codesign VHDL Essentials V ECE 522

ECE UNM 3 (10/30/19)

Register Transfer Methodology (RTL)

For example, the previous algorithm can be unrolled into a data flow diagram

sum <= 0;

sum0 <= a(0);

sum1 <= sum0 + a(1);

sum2 <= sum1 + a(2);

sum3 <= sum2 + a(3);

q <= "000" & sum3(8 downto 3);

r <= "00000" & sum3(2 downto 0);

outp <= q + 1 when (r > 3) else q;

Note that this is very different from the algorithm -- the circuit is strictly combina-

tional with NO memory elements

The structural data flow model can only be applied to small tasks and is not flexible

HW/SW Codesign VHDL Essentials V ECE 522

ECE UNM 4 (10/30/19)

Register Transfer Methodology (RTL)

Register Transfer Methodology introduces hardware that matches the variable and

sequential execution model

• Registers are used to store intermediate data (model symbolic variables)

• A control path (FSM) is used to specify the order of register operations

• A data path is added to implement the operations (FSMD)

The basic action in RT methodology is the register transfer operation:

The function f uses the contents of the source registers, plus external inputs in some

cases

Difference between an algorithm and an RT register is the implicit embedding of clk

• At the rising edge of the clock, the outputs of registers rsrc1, rsrc2 become available

• The outputs drive the inputs of a combinational circuit that represents f()

• At the next rising edge of the clock, the result is stored into rdest

r
dest

f r
src1

r
src2

… r
src3

, , ,()←

HW/SW Codesign VHDL Essentials V ECE 522

ECE UNM 5 (10/30/19)

FSMD

The function f() can be any expression that is representable by a combinational circuit

Note that we will continue to use the notation _reg and _next for the current output

and next input of a register

The notation

is translated as

r1_next <= r1_reg + r2_reg;

r1_reg <= r1_next; -- on the next rising edge of clk

 -- this inside the FF process block

r 1←

r r←

r0 r1←

n n 1–←

y a b c d⊕ ⊕ ⊕←

s a
2

b
2

+←

r
1

r
1

r
2

+←

HW/SW Codesign VHDL Essentials V ECE 522

ECE UNM 6 (10/30/19)

FSMD

Be sure to study this carefully because it is heavily used in digital systems

Multiple RT operations

An algorithm consists of many steps and a destination register my be loaded

with different values over time

r r1 r2+←

2

HW/SW Codesign VHDL Essentials V ECE 522

ECE UNM 7 (10/30/19)

FSMD

Consider the following sequence of operations

Since r1 is the destination of multiple operations, we need a MUX to route the proper

value to its input

An FSM is used to drive the control signals so that the sequence of operations are

carried out in the order given

r
1

1←

r
1

r
1

r
2

+←

r
1

r
1

1+←

r
1

r
1

←

HW/SW Codesign VHDL Essentials V ECE 522

ECE UNM 8 (10/30/19)

FSMD and ASMD

An extended ASM chart known as ASMD (ASM with datapath) chart can be used to

represent the FSMD

State transitions and register updates occur at the same time on the rising edge of the

clk

DELAYED STORE: The new value of r1 is only available when the FSM enters the

s2 state

**

delayed
store
operation

moore <= val

state_name

boolean cond.
T F

mealy <= valconditional
output box

decision box

state box

ASMD

HW/SW Codesign VHDL Essentials V ECE 522

ECE UNM 9 (10/30/19)

FSMD

NOTE: When a register is NOT being updated with a new value, it is assumed that it

maintains its current value, i.e.,

Conceptual block diagram of an FSMD

r
1

r
1

← These actions are NOT shown in the ASMD/state chart

Data Path

Control Path

Regular sequential circuit

Random sequential circuit

Study and become familiar
with the input/output
signals of both modules

HW/SW Codesign VHDL Essentials V ECE 522

ECE UNM 10 (10/30/19)

FSMD Design Examples

Consider a repetitive addition multiplier

Basic algorithm: 7*5 = 7+7+7+7+7

if (a_in=0 or b_in=0) then

 { r = 0; }

else

 {

 a = a_in;

 n = b_in;

 r = 0;

while (n != 0)

 {

 r = r + a;

 n = n - 1;

 }

 }

return(r);

HW/SW Codesign VHDL Essentials V ECE 522

ECE UNM 11 (10/30/19)

FSMD Design Examples

This code is a better match to an ASMD because ASMD does not have a loop con-

struct

if (a_in = 0 or b_in = 0) then

 { r = 0; }

else

 {

 a = a_in;

 n = b_in;

 r = 0;

op: r = r + a;

 n = n - 1;

if (n = 0) then

 { goto stop; }

else

 { goto op; }

 }

stop: return(r);

HW/SW Codesign VHDL Essentials V ECE 522

ECE UNM 12 (10/30/19)

FSMD Design Examples

To implement this in hardware, we must first define the I/O signals

• a_in, b_in: 8-bit unsigned input

• clk, reset: 1-bit input

• start: 1-bit command input

• r: 16-bit unsigned output

• ready: 1-bit status output -- asserted when unit has completed and is ready again

The start and ready signals are added to support sequential operation

When this unit is embedded in a larger design, and the main system wants to perform

multiplication

• It checks ready

• If ’1’, it places inputs on a_in and b_in and asserts the start signal

HW/SW Codesign VHDL Essentials V ECE 522

ECE UNM 13 (10/30/19)

FSMD Design Examples

The ASMD uses a, n and r data registers to emulate the three variables

HW/SW Codesign VHDL Essentials V ECE 522

ECE UNM 14 (10/30/19)

FSMD Design Examples

With the ASMD chart available, we can refine the original block diagram

We first divide the system into a data path and a control path

For the control path, the input signals are start, a_is_0, b_is_0 and count_0 -- the first

is an external signal, the latter three are status signals from the data path

These signals constitute the inputs to the FSM and are used in the decision boxes

The output of the control path are ready and control signals that specify the RT oper-

ations of the data path

In this example, we use the state register as the output control signals

Visualizing the data path can be accomplished by doing the following:

• List all RT operations

• Group RT operation according to the destination register

• Add combinational circuit/mux

• Add status circuits

HW/SW Codesign VHDL Essentials V ECE 522

ECE UNM 15 (10/30/19)

FSMD Design Examples

For example

• RT operation with the r register

• RT operations with the n register

• RT operations with the a register

Note that the default operations MUST be included to build the proper data path

r r (in the idle state)←

r 0 (in the load and ab0 states)←

r r a (in the op state)+←

n n (in the idle state)←

n b_in (in the load and ab0 state)←

n n 1 (in the op state)–←

a a (in the idle and op states)←

a a_in (in the load and ab0 states)←

HW/SW Codesign VHDL Essentials V ECE 522

ECE UNM 16 (10/30/19)

FSMD Design Examples

Let’s consider the circuit associated with the r register

The three possible sources, 0, r and r+a are selected using a MUX

The select signals are labeled symbolically with the state names

The routing is consistent with what is given on the previous slide

We can repeat this process for the other two registers and combine them

The status signals are implemented using three comparators

HW/SW Codesign VHDL Essentials V ECE 522

ECE UNM 17 (10/30/19)

FSMD Design Examples

The entire (un-optimized) control and data path

HW/SW Codesign VHDL Essentials V ECE 522

ECE UNM 18 (10/30/19)

FSMD Design Examples

architecture two_seg_arch of seq_mult is

constant WIDTH: integer := 8;

type state_type is (idle, ab0, load, op);

signal state_reg, state_next: state_type;

signal a_reg, a_next: unsigned(WIDTH-1 downto 0);

signal n_reg, n_next: unsigned(WIDTH-1 downto 0);

signal r_reg, r_next: unsigned(2*WIDTH-1 downto 0);

begin

 -- state and data register

process(clk, reset)

begin

if (reset = ’1’) then

 state_reg <= idle;

 a_reg <= (others => ’0’);

 n_reg <= (others => ’0’);

 r_reg <= (others => ’0’);

HW/SW Codesign VHDL Essentials V ECE 522

ECE UNM 19 (10/30/19)

Two Segment VHDL Descriptions of FSMDs

elsif (clk’event and clk = ’1’) then

 state_reg <= state_next;

 a_reg <= a_next;

 n_reg <= n_next;

 r_reg <= r_next;

end if;

end process;

 -- combinational circuit

process(start, state_reg, a_reg, n_reg, r_reg, a_in,

 b_in, n_next)

begin

 state_next <= state_reg;

 a_next <= a_reg;

 n_next <= n_reg;

 r_next <= r_reg;

 ready <=’0’;

HW/SW Codesign VHDL Essentials V ECE 522

ECE UNM 20 (10/30/19)

Two Segment VHDL Descriptions of FSMDs

case state_reg is

when idle =>

if (start = ’1’) then

if (a_in = "00000000" or

 b_in = "00000000") then

 state_next <= ab0;

else

 state_next <= load;

end if;

end if;

 ready <= ’1’;

when ab0 =>

 a_next <= unsigned(a_in);

 n_next <= unsigned(b_in);

 r_next <= (others => ’0’);

 state_next <= idle;

HW/SW Codesign VHDL Essentials V ECE 522

ECE UNM 21 (10/30/19)

Two Segment VHDL Descriptions of FSMDs

when load =>

 a_next <= unsigned(a_in);

 n_next <= unsigned(b_in);

 r_next <= (others => ’0’);

 state_next <= op;

when op =>

 n_next <= n_reg - 1;

 r_next <= ("00000000" & a_reg) + r_reg;

if (n_next = "00000000") then

 state_next <= idle;

end if;

end case;

end process;

 r <= std_logic_vector(r_reg);

end two_seg_arch;

