
Hardware Design with VHDL Design Example: BRAM ECE 443

ECE UNM 1 (11/18/08)

BRAM

There are two sources of memory available on most FPGA boards.

• Internal (on-chip memory)

• External SRAMs and DRAMs.

Internal memory is either distributed (from the LUTs) or block (dedicated on-chip

memory).

Distributed is usually limited to Kbits, e.g., 30 K bits for the Spartan-3

XC3S200.

Using it also uses up resources used for normal logic.

Block allocated memory is limited in size (compared to external SRAM).

There are three ways to allocate memory in Xilinx chips

• HDL instantiation

• The CORE generator

• Behavioral HDL inference template

Hardware Design with VHDL Design Example: BRAM ECE 443

ECE UNM 2 (11/18/08)

BRAM

Embedded block SRAM is surrounded by a synchronous configurable interface.

Each block consists of 16K bits plus an optional 2K parity bits.

It is organized in different widths, from 16K by 1 to 512 by 32.

The Spartian-3 XC3S200 has 12 block RAMs, for a total of 172K bits of storage.

The S3 board has 8M bits of external SRAM.

Both distributed and block RAM are already "wrapped" with a synchr. interface.

They are configurable to perform single- and dual-port access, and support vari-

ous types of buffering and clocking schemes, enable, reset and initialization.

Because of these subtleties, it is difficult for the synthesis software to recognize the

intention of the designer from the HDL code.

Therefore, HDL specified memory is not always portable.

Hardware Design with VHDL Design Example: BRAM ECE 443

ECE UNM 3 (11/18/08)

Method 1: HDL Component Instantiation

Instantiating a Xilinx memory module does not include an HDL description for the

architecture body.

The instantiation code for many Xilinx compenents can be obtained from ISE by

selected Edit, Language Templates -- for a 16K-by-1 dual-port RAM:

-- RAMB16_S1_S1: Virtex-11/11-Pro,

-- Spartan -3/3E 16k x 1 Dual-Port RAM

-- Xilinx HDL Language Template version 8.1i

RAMB16_S1_S1_inst: RAMB16_S1_S1

generic map(-- MUST CONSULT THE MANUAL

init_a => "0", -- TO GET INFO ON PARAMETERS

init_b => "0",

srval_a => "0",

srval_b => "0",

write_mode_a => "WRITE_FIRST",

write_mode_b => "WRITE_FIRST",

sim_collision_check => "ALL",

init_00 => x"0 ... 0",

Hardware Design with VHDL Design Example: BRAM ECE 443

ECE UNM 4 (11/18/08)

Method 1: HDL Component Instantiation

init_3f => x"0 ... 0"

),

port map(

doa => doa, -- port a 1-bit data output

dob => dob, -- port b 1-bit data output

addra => addra, -- port a 14-bit address input

addrb => addrb, -- port b 14-bit address input

clka => clka, -- port a clk

clkb => clkb, -- port b clk

dia => dia, -- port a 1-bit data input

dib => dib, -- port b 1-bit data input

ena => ena, -- port a ram enable input

enb => enb, -- port b ram enable input

ssra => ssra, -- port a synch. set/reset input

ssrb => ssrb, -- port b synch. set/reset input

wea => wea, -- port a write enable input

web => web, -- port b write enable input

);

Hardware Design with VHDL Design Example: BRAM ECE 443

ECE UNM 5 (11/18/08)

Method 2: CORE generator

To simplify the instantiation process, Xilinx provides a utility program called the

CORE generator.

Invoke it using Project, New Source and select IP (Coregen & Architecture Wizard)

in the Wizard dialog.

The CORE generator program guides you through a series of questions and tehn gen-

erates several files.

The file is the .xco extension is a text file that contains the information needed to

construct the desired memory component.

The file with the .vhd extension contains the "wrapper" code for simulation pur-

poses.

Although Coregen is more convenient than direct HDL instantiation, it is not within

the HDL framework and can lead to comparability problems outside the ISE env.

Hardware Design with VHDL Design Example: BRAM ECE 443

ECE UNM 6 (11/18/08)

Method 3: Memory Module via HDL Inference

It is not possible to write a device-independent HDL description of a memory mod-

ule.

However, XST (the Xilinx synthesis program) provides a collection of behavioral

HDL templates to infer memory modules from Xilinx FPGA devices.

The templates are implemented as behavioral descriptions and contain no device

specific component instantiation.

Be aware that the code may not be recognized by other third-party synthesis sof-

ware.

Therefore, the templates are semi-portable behavioral descriptions.

Also, the template approach is based on XST being able to recognize the template

and infer the proper memory module accordingly.

Updates to the software may cause some code to be mis-interpreted.

Check the synthesis report to be sure the desired memory module is inferred.

Hardware Design with VHDL Design Example: BRAM ECE 443

ECE UNM 7 (11/18/08)

Method 3: Memory Module via HDL Inference

Single-port RAM

The embedded memory of a Spartan-3 device is wrapped with a synchronous

interface.

During a write operation, at the rising edge of the clock, the address, input

data, and relevant control signals, such as we (write enable) are sampled.

If we is asserted, a write operation is performed.

The read operation can be synchronous or asynchronous.

For asynchronous, the address signal is used directly to access the RAM

array (can only be used with distributed RAM).

After the address changes, the data becomes available after a short delay.

For synchronous, the address is sampled on the rising edge of clk and stored

in a register.

The data becomes available following the clk and a short delay.

Hardware Design with VHDL Design Example: BRAM ECE 443

ECE UNM 8 (11/18/08)

Method 3: Memory Module via HDL Inference

-- single-port RAM with synchronous read

-- modified from XST 8.1i rams_07

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity xilinx_one_port_ram_sync is

generic(

ADDR_WIDTH: integer := 12;

DATA_WIDTH: integer := 8;

);

port(

clk: in std_logic;

we: in std_logic;

addr: in std_logic_vector(ADDR_WIDTH-1 downto 0);

din: in std_logic_vector(DATA_WIDTH-1 downto 0);

dout: out std_logic_vector(DATA_WIDTH-1 downto 0)

);

end xilinx_one_port_ram_sync;

Hardware Design with VHDL Design Example: BRAM ECE 443

ECE UNM 9 (11/18/08)

Method 3: Memory Module via HDL Inference

architecture beh_arch of xilinx_one_port_ram_sync is

type ram_type is array (2**ADDR_WIDTH-1 downto 0)

of std_logic_vector (DATA_WIDTH-1 downto 0);

signal ram: ram_type;

signal addr_reg: std_logic_vector(ADDR_WIDTH-1 downto

0);

begin

process (clk)

begin

if (clk’event and clk = ’1’) then

if (we = ’1’) then

ram(to_integer(unsigned(addr))) <= din;

endif;

addr_reg <= addr;

endif;

end process;

dout <= ram(to_integer(unsigned(addr_reg)));

end beh_arch;

Hardware Design with VHDL Design Example: BRAM ECE 443

ECE UNM 10 (11/18/08)

Method 3: Memory Module via HDL Inference

Here, we see addr is sampled and stored to addr_reg register on the rising edge of

clk.

Also, the memory array (ram signal) is addressed via the addr_reg signal.

