
Hardware Design with VHDL VHDL II ECE 443

ECE UNM 1 (9/3/08)

RT-Level Combinational Logic

This slide set describes Register Transfer Level (RTL) components, including adders,

comparators and multiplexers.

Plus other VHDL operators and constructs.

We’ve seen that logical operators, e.g., and and or, are synthesizable.

Relational operators and several arithmetic operators are also synthesizable.

These synthesize into larger, module-level components such as comparators and

adders.

VHDL defines six relational operators

Operator Description Data type of operands Data type of result

a = b equal to any boolean

a /= b not equal to any boolean

a < b less than any boolean

a <= b less than or equal to any boolean

a > b greater than any boolean

a >= b greater than or equal any boolean

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 2 (9/3/08)

Relational and Arithmetic Operators

During synthesis, comparators are inferred for the relational operators.

Other operators supported in the std_logic_1164 package:

Operator Description Data type of operands Data type of result

a ** b exponentiation integer integer

a * b multiplication integer integer

a / b division integer integer

a + b addition integer integer

a - b subtraction integer integer

a & b concatenation 1-D array, element 1-D array

not a negation boolean, std_logic,

std_logic_vector

same as operand

a and b and same same

a or b or same same

a xor b xor same same

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 3 (9/3/08)

Relational and Arithmetic Operators

The VHDL standard supports arithmetic operations on integer and natural (integers

>= 0) data types.

Many times you want precise control over the exact number of bits and format, i.e.,

signed vs unsigned.

The IEEE numeric_std package supports this by adding signed and unsigned data

types and defines the relational and arithmetic operators for them through operator

overloading.

Both of these data types are defined as an array of elements of std_logic data type.

Use the following to invoke the package:

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 4 (9/3/08)

Relational and Arithmetic Operators

The following operators are overloaded in the numeric_std package.

Note that synthesis of the multiplication operator depends on the synthesis software

and target device technology.

Many FPGAs have embedded multipliers that the synthesis software will use instead

of building the multiplier from CLBs.

However, each FPGA has only a limited number of embedded multipliers and each

has a limited input width that the user needs to be aware of.

Operator Description Data type of operands Data type of result

a * b multiply unsigned, natural signed,

integer

unsigned, signed

a + b add same same

a - b subtract same same

a = b, ... relational ops same boolean

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 5 (9/3/08)

Type Conversion

Since VHDL is strongly typed, std_logic_vector, unsigned and signed are treated as

different data types (even though all are defined as an array of std_logic elements).

Therefore, conversion functions and type casting are required to convert between

types.

Note: no direct conversion is possible between std_logic_vector and integer, because

std_logic_vector is NOT interpreted as a number.

Some examples follow.

Data type of a To data type
Conversion function/

type casting

unsigned, signed std_logic_vector std_logic_vector(a)

signed, std_logic_vector unsigned unsigned(a)

unsigned, std_logic_vector signed signed(a)

unsigned, signed integer to_integer(a)

natural unsigned to_unsigned(a, size)

integer signed to_signed(a, size)

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 6 (9/3/08)

Type Conversion

Given the following:

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

signal s1, s2, s3, s4, s5: std_logic_vector(3 downto 0);

signal u1, u2, u3, u4, u5, u6, u7: unsigned(3 downto 0);

u1 <= s1; -- ERROR

u2 <= 5; -- ERROR

s2 <= u3; -- ERROR

s3 <= 5; -- ERROR

The correct way to do it:

u1 <= unisgned(s1);

u2 <= to_unsigned(5,4);

s2 <= std_logic_vector(u3);

Text gives other examples...

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 7 (9/3/08)

Concatenation Operator

Combines elements and small arrays to form larger arrays.

signal a1: std_logic;

signal a4: std_logic_vector(3 downto 0);

signal b8, c8, d8: std_logic_vector(7 downto 0);

b8 <= a4 & a4;

c8 <= a1 & a1 & a4 & "00";

d8 <= b8(3 downto 0) & c8(3 downto 0);

Concatenation is a wiring-only operation (no operators required).

The & operator can be used to implement shifting

signal a: std_logic_vector(7 downto 0);

signal rot: std_logic_vector(7 downto 0);

-- rotate a to the right by 3 bits

rot <= a(2 downto 0) & a(8 downto 3);

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 8 (9/3/08)

High Impedance and Conditional/Selected Signal Assignment

The std_logic data type includes ’Z’ (high impedance).

It can only be synthesized by a tri-state buffer

y <= a when oe = ’1’ else ’Z’;

Commonly used to implement a bidirectional port (see text for example).

Conditional and Selected Signal Assignment

These are similar to if and case in C, except they are concurrent.

During synthesis, they are mapped to a routing network.

Conditional Signal Assignment

signal_name <= val_expr_1 when bool_1 else

 val_expr_2 when bool_2 else ...

 val_expr_n;

oe

ya

yoe

a

0

1

Z

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 9 (9/3/08)

Conditional Signal Assignment

The Boolean expressions are evaluted successively until one is found true.

The val_x is then assigned to the signal_name if a bool_x returns true else val_n

is assigned.

Note that this evaluation process implies a priority routing scheme, e.g.,

r <= a + b + c when m = n else

 a - b when m > n else

 c + 1;

Muxiplexers are used to implement:

+

+

a
b

c

-
1

0

+1

1

0

>

=

m
n

r

Note that the Boolean
expressions and value
expressions are all evaluated
concurrently.

Also note that there may be
glitches at the output r due
to delays along the various paths.

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 10 (9/3/08)

Conditional Signal Assignment

Example: Priority Encoder

library ieee;

use ieee.std_logic_1164.all;

entity priority_encoder is

port(

r: in std_logic_vector(4 downto 1);

p: out std_logic_vector(2 downto 0);

);

end priority encoder;

input r output p

1--- 100

01-- 011

001- 010

0001 001

0000 000

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 11 (9/3/08)

Conditional Signal Assignment

Example: Priority Encoder

architecture cond_arch of priority_encoder is

begin

p <= "100" when (r(4) = ’1’) else

 "011" when (r(3) = ’1’) else

 "010" when (r(2) = ’1’) else

 "001" when (r(1) = ’1’) else

 "000";

end cond_arch;

Example: Binary Decoder

library ieee;

use ieee.std_logic_1164.all;

entity decoder_2_4 is

port(

a: in std_logic_vector(1 downto 0);

en: in std_logic;

y: out std_logic_vector(3 downto 0);

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 12 (9/3/08)

Conditional/Selected Signal Assignment

Example: Binary Decoder

);

end decoder_2_4;

architecture cond_arch of decoder_2_4 is

begin

y <= "0000" when (en = ’0’) else

 "0001" when (a = "00") else

 "0010" when (a = "01") else

 "0100" when (a = "10") else

 "1000";

end cond_arch;

Selected Signal Assignment

with sel select

sig <= val_expr_1 when choice_a;

 val_expr_2 when choice_b; ...

 val_expr_n when others;

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 13 (9/3/08)

Selected Signal Assignment

The selected signal assignment stmt is similar to a case stmt.

The choice_x must be valid values of sel, they must be mutually exclusive

(non- priority) and all inclusive (all possible values of sel must be given).

sel is usually of type std_logic_vector and therefore the others clause ensures all

other values of sel are covered, including unsynthesizable values (’X’, ’U’, etc.)

The selected signal assignment stmt implies a non-priority based MUX scheme.

signal sel: std_logic_vector(1 downto 0);

with sel select

r <= a + b + c when "00";

 a - b when "10";

 c + 1 when others;

+

+

a
b

c

-
00

+1sel

r01
10
11

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 14 (9/3/08)

Selected Signal Assignment

Example: Priority Encoder (entity declaration identical to that shown earlier).

architecture sel_arch of priority_encoder is

begin

with r select

p <= "100" when "1000" | "1001" | "1010" | "1011" |

"1100" | "1101" | "1110" | "1111",

"011" when "0100" | "0101" | "0110" | "0111",

 "010" when "0010" | "0011"

 "001" when "0001",

 "000" when others; -- r = "0000"

end cond_arch;

Example: Binary Decoder

architecture sel_arch of decoder_2_4 is

signal s: std_logic_vector(2 downto 0);

begin

s <= en & a; -- concatenate signals

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 15 (9/3/08)

Selected Signal Assignment and Process Construct

Example: Binary Decoder

with s select

y <= "0000" when "000" | "001" | "010" | "011,

 "0001" when "100",

 "0010" when "101",

 "0100" when "110",

 "1000" when others; -- s = "111’

end cond_arch;

Process Construct

The process construct allows stmts to be executed sequentially (just as in a tradi-

tional programming language).

This helps with system modeling by providing a recipe type approach, e.g.,

do this, followed by that, etc.

Note that the process itself is a concurrent stmt, that executes in parallel with

other concurrent stmts, such as those we just covered.

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 16 (9/3/08)

Caveats Concerning Processes

There are a variety of sequential stmts that can be included in a process, many of

which don’t have a clear hardware implementation.

In general, processes provide the user with the ability to describe the system behav-

iorally, which, as you will see, is a significant enhancement over structural.

But consider the following caveats:

Perhaps the most difficult part for students who begin writing behavioral code is

to stop thinking about programming and start thinking about hardware.

In other words, for every piece of behavioral code that you write, you should

have a combinational or sequential circuit in mind that it should synthesize to.

Do NOT think of a process as an escape mechanism that allows you to just write

code as you would in C to implement an algorithm.

Start by drawing the hardware system that you want to realize FIRST, and then

start the coding process.

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 17 (9/3/08)

Caveats Concerning Processes

Caveats:

This may require some experimentation with smaller circuits.

I know what you are thinking! What’s the point -- why not just write structural

code directly.

You can, of course, but you will be limited in what you can do.

The behavioral synthesis tools will enable you to synthesize MUCH more com-

plex systems, but you’ll need to learn what to expect from them.

Once you’ve practiced with smaller circuits and understand what to expect, you

will gain confidence and learn to appreciate the power of behavioral synthesis.

If you follow the coding style you learned C programming 101, you’ll certainly

become frustrated or end up coding a system that doesn’t synthesize.

The most important exercise that you can do as a novice is write code fragments,

synthesize and look at the structural schematic that is generated.

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 18 (9/3/08)

Process

In this course, we will restrict the use of sequential stmts within processes to if and

case stmts and templates for memory elements.

The simplified syntax of a process is

process (sensitivity_list)

begin

sequential stmt;

sequential stmt;

end process;

The sensitivity_list is a set of signals to which the process responds.

For processes designed to describe combinational logic, ALL input signals (those

used on the right side of the sequential stmts) must be included in the list.

Sequential Signal Assignment

sig <= value_expression;

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 19 (9/3/08)

Process: Sequential Signal Assignment

Note that the concurrent signal assignment is very similar.

The behavior or semantics are different however.

In a process, it is possible to assign multiple times to the same signal.

In such cases, only the last assignment takes effect.

process(a, b)

begin

c <= a and b;

c <= a or b; -- c is determined by this stmt

end process;

If these statements apprear outside a process, this implies that the wire represented by

c is driven by BOTH an and and an or gate.

This obviously implies a design error.

The most common use of multiple assignments within a process is to avoid unin-

tended memory, as we shall see.

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 20 (9/3/08)

Process: if Stmt

if and case are commonly used within processes to describe routing structures.

if stmt:

if boolean_expr_1 then

sequential_stmts;’

elsif boolean_expr_2 then

sequential_stmts;

...

else

sequential_stmts;

end if;

The if stmt is similar to the concurrent conditional signal assignment stmt.

They are equivalent when there is only one sequential_stmt inside the if.

For example, the following can be re-written using if stmts.

r <= a + b + c when m = n else

 a - b when m > n else

 c + 1;

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 21 (9/3/08)

Process: if Stmt

As an if stmt within a process:

process(a, b, c, m, n)

begin

if m = n then

r <= a + b + c;

elsif m > 0 then

r <= a - b;

else

r <= c + 1;

end if;

end;

Example: Priority Encoder

architecture if_arch of priority_encoder is

begin

process(r)

begin

if (r(4) = ’1’) then

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 22 (9/3/08)

Process: if and case Stmts

p <= "100";

elsif (r(3) = ’1’) then

p <= "011";

elsif (r(2) = ’1’) then

p <= "010";

elsif (r(1) = ’1’) then

p <= "001";

else

p <= "000";

end if;

end process;

end;

case stmt:

case sel is

when choice_1 =>

sequential_stmts;

when others => ... end case;

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 23 (9/3/08)

Process: case Stmt

The same rules apply here as those described for selected signal assignment stmts.

choice_x must be valid for sel, choices must be mutually exclusive and all inclu-

sive.

The two are equivalent when the branches of the case contain only a single stmt.

with sel select

r <= a + b + c when "00";

 a - b when "10";

 c + 1 when others;

Eqivalent to:

process(a, b, c, sel)

begin

case sel is

when "00" => r <= a + b + c;

when "10" => r <= a - b;

when others => r <= c + 1;

end case;

end;

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 24 (9/3/08)

Process: if and case Stmts

The if and case stmts allow any number and any type sequential stmts.

This enables a more concise way to describe a circuit (over conditional and selected

signal assignment stmts) and sometimes more efficient.

For example, consider the circuit that sorts two input signals and routes them to the

large and small outputs.

large <= a when a > b else

 b;

small <= b when a > b else

 a;

With the two ’>’ operators, the synthesis software may infer two comparators.

Alternatively:

process(a, b)

begin

if a > b then

large <= a;

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 25 (9/3/08)

Process: if and case Stmts

small <= b;

else

large <= b;

small <= a;

end if;

end;

Here only one ’>’ comparator is explicitly given.

Text gives another example where the if stmt is better because it allows a nested

structure that is more intuitive.

Unintended Memory

When processes are used to describe combinational logic, it is easy to make a

mistake that introduces a memory element.

The VHDL standard specifies that a signal will keep its previous value if it is

NOT assigned in a process.

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 26 (9/3/08)

Unintended Memory in a Process

The following rules MUST be adhered to in order to avoid unintended memory.

• Include ALL input signals in the sensitivity list.

• Include the else branch with EVERY if stmt.

• Assign a value to EVERY signal in EVERY branch.

Here’s a code snippet that violates all three rules

process(a)

begin

if (a > b) then

gt <= ’1’;

elsif (a = b) then

eq <= ’1’;

end if;

end process;

How does gt get assigned 0?

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 27 (9/3/08)

Unintended Memory in a Process

The correct way to specify it.

process(a, b)

begin

if (a > b) then

gt <= ’1’;

eq <= ’0’;

elsif (a = b) then

gt <= ’0’;

eq <= ’1’;

else

gt <= ’0’;

eq <= ’0’;

end if;

end process;

Is there a more efficient way that violates the ’assign all signals in all branches’ rule?

Assigning a signal multiple times can be done in this context but beware in others.

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 28 (9/3/08)

Constants

It is good practice to replace literals is symbolic constants.

General form:

constant const_name: data_type := value_expr;

For example:

constant DATA_BIT: integer := 8;

constant DATA_RANGE: integer := 2**DATA_BIT - 1;

The constant expression is evaluted during pre-processing and therefore has no effect

on the synthesized circuit.

Example: Adder

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 29 (9/3/08)

Constants

Example: Adder (without constants)

entity add_w_carry is

port(

a, b: in std_logic_vector(3 downto 0);

cout: out std_logic;

sum: out std_logic_vector(3 downto 0)

);

end add_w_carry;

architecture hard_arch of add_w_carry is

signal a_ext, b_ext, sum_ext: unsigned(4 downto 0);

begin

a_ext <= unsigned(’0’ & a);

b_ext <= unsigned(’0’ & b);

sum_ext <= a_ext + b_ext;

sum <= std_logic_vector(sum_ext(3 downto 0));

cout <= sum_ext(4);

end hard_arch;

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 30 (9/3/08)

Constants and Generics

Example: Adder (WITH constants)

architecture const_arch of add_w_carry is

constant N: integer := 4;

signal a_ext, b_ext, sum_ext: unsigned(N downto 0);

begin

a_ext <= unsigned(’0’ & a);

b_ext <= unsigned(’0’ & b);

sum_ext <= a_ext + b_ext;

sum <= std_logic_vector(sum_ext(N-1 downto 0));

cout <= sum_ext(N);

end const_arch;

Generics

A generic is a construct that can also be used to pass ’constant’ information into

an entity.

It cannot be modified inside the architecture.

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 31 (9/3/08)

Generics

entity entity_name is

generic(

generic_name: data_type := default_values;

generic_name: data_type := default_values;

...

)

port(

port_name: mode data_type;

...

end entity_name;

For the Adder example:

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity gen_add_w_carry is

generic(N: integer := 4);

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 32 (9/3/08)

Generics

port(

a, b: in std_logic_vector(N-1 downto 0);

cout: out std_logic;

sum: out std_logic_vector(N-1 downto 0)

);

end gen_add_w_carry;

N is also defined within the architecture body:

architecture gen_arch of gen_add_w_carry is

signal a_ext, b_ext, sum_ext: unsigned(N downto 0);

begin

a_ext <= unsigned(’0’ & a);

b_ext <= unsigned(’0’ & b);

sum_ext <= a_ext + b_ext;

sum <= std_logic_vector(sum_ext(N-1 downto 0));

cout <= sum_ext(N);

end gen_arch;

Hardware Design with VHDL VHDL II ECE 443

ECE UNM 33 (9/3/08)

Generics

Another advantage is that the generic can be assigned in the component instantiation

(generic mapping), so a different value can be used when the component is re-used

elsewhere.

signal a4, b4, sum4: unsigned(3 downto 0);

signal a8, b8, sum8: unsigned(7 downto 0);

signal a16, b16, sum16: unsigned(15 downto 0);

signal c4, c8, c16: std_logic;

-- instantiate 8-bit adder

adder_8_unit: work.gen_add_w_carry(gen_arch)

generic map(N=>8)

port map(a=>a8, b=>b8, cout=>c8, sum=>sum8);

-- instantiate 16-bit adder

adder_16_unit: work.gen_add_w_carry(gen_arch)

generic map(N=>16)

port map(a=>a16, b=>b16, cout=>c16, sum=>sum16);

The 4-bit version can be instantiated WITHOUT the generic map (4 is default value)

