
Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 1 (11/8/10)

 Finite State Machines

FSMs are sequential machines with "random" next-state logic

Used to implement functions that are realized by carrying out a sequence of

steps -- commonly used as a controller in a large system

The state transitions within an FSM are more complicated than for regular sequential

logic such as a shift register

An FSM is specified using five entities: symbolic states, input signals, output signals,

next-state function and output function

• Mealy vs Moore output

next state

state_next
d q

state

clk

Mealy

inputs

output

Moore
output
logic

logic

Mealy

outputs

Moore

outputs

reg.logic

state_reg

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 2 (11/8/10)

Finite State Machines

State diagram

Consider a memory controller that sits between a processor and a memory unit

• Commands include mem, rw and burst

mem is asserted when a memory access is requested

rw when ’1’ indicates a read, when ’0’ indicates a write

burst is a special read operation in which 4 consecutive reads occur

• Two control signals oe (output enable) and we (write enable)

One Mealy output we_me

A node represents a unique
state

An arc represents a transition
from one state to another
Is labeled with the condition
that causes the transition

Moore outputs are shown inside
the bubble

Mealy outputs are shown on the
arcs

Only asserted outputs are listed

state_name

moore< = val
expr

mealy <= val

expr

mealy <= val

to other to other
statestate

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 3 (11/8/10)

Finite State Machines

The controller is initially in the idle state, waiting for mem to be asserted

Once mem is asserted, the FSM
inspects the rw signal and moves

to either the read1 or write state

The logic expressions are given on
the arcs

They are checked on the rising edge
of the clock

For example, if mem is asserted and
rw is ’1’, a transition is made to
read1 and the output signal oe
is asserted

on rising edge of clk

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 4 (11/8/10)

Finite State Machines

Algorithmic State Machine (ASM) chart

Flowchart-like diagram with transitions controlled by the rising edge of clk

More descriptive and better for complex description than state diagrams

Each state box has only one exit and is usually followed by a decision box

Conditional output boxes can only follow decision boxes and list the Mealy outputs

that are asserted when we are in this state and the Boolean condition(s) is true

EVERYTHING that follows a state box (to the next state) is next-state combo. logic!

moore <= val

state_name

boolean cond.
T F

mealy <= val
conditional
output box

decision box

state box

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 5 (11/8/10)

Finite State Machines

Conversion between state diagrams and ASMs

Conversion process is trivial for the left example

For right example, a decision box is added to accommodate the conditional transition

to state s1 when a is true.

A conditional output box is added to handle the Mealy output that depends on both

state_reg=s0 and a=’1’

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 6 (11/8/10)

Finite State Machines

More examples

The same general structure is apparent for either state diagrams or ASMs

The biggest difference is in how the decisions and conditional outputs are

expressed

When we code this in VHDL, you must view the decision and conditional output

logic following a state (up to the next state(s)) as combinational next-state logic

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 7 (11/8/10)

Finite State Machines

Memory controller
conversion

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 8 (11/8/10)

Finite State Machines

Basic rules:

• For a given input combination, there is one unique exit path from the current ASM

block

• The exit path of an ASM block must always lead to a state box.

The state box can be the state box of the current ASM block or a state box of

another ASM block.

Incorrect ASM charts:

There are two exit paths (on the left) if a and b are both ’1’ and NO exit path (on the

right) when a is ’0’

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 9 (11/8/10)

Finite State Machines

How do we interpret the ASM chart

• At the rising edge of clk, the FSM enters a new state (a new ASM block)

• During the clock period, the FSM performs several operations

It activates Moore output signals asserted in this new state

It evaluates various Boolean expressions of the decision boxes and activates the

Mealy output signals accordingly

• At the next rising edge of clk (the end of the current clock period), the results of

Boolean expression are examined simultaneously

An exit path is determined and the FSM stays or enters a new ASM block

Timing analysis of an FSM (similar to regular sequential circuit)

next state

state_next
d q

state

clk

Mealy

inputs

output

Moore
output
logic

logic

Mealy

outputs

Moore

outputs

reg.logic

state_reg

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 10 (11/8/10)

Timing Analysis of FSMs

Consider a circuit with both a Moore and Mealy output

The timing parameters are

• Tcq, Tsetup, Thold, Tnext(max)

• Toutput(mo) (Moore logic) and Toutput(me) (Mealy logic)

Similar to the analysis of a regular sequential circuit, the minimum clock period (max

clk freq) of a FSM is given by

Tc = Tcq + Tnext(max) + Tsetup

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 11 (11/8/10)

Timing Analysis of FSMs

Sample timing diagram

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 12 (11/8/10)

Timing Analysis of FSMs

Since the FSM is frequently used in a controller application, the delay of the output

signals are important

For Moore

Tco(mo) = Tcq + Toutput(mo)

For Mealy (when change is due to a change in state)

Tco(me) = Tcq + Toutput(me)

For Mealy (when change is due to a change in input signal(s))

Tco(me) = Toutput(me)

Although the difference between a Moore and Mealy output seem subtle, as you can

see from the timing diagram, there behaviors can be very different

And, in general, it takes fewer states to realize a given function using a Mealy

machine (note that both are equivalent in ’power’)

But greater care must be exercised

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 13 (11/8/10)

Mealy vs Moore

Consider an edge detection circuit

The circuit is designed to detect the rising edge of a slow strobe input, i.e., it

generates a "short" (1-clock period or less) output pulse

The input signal may be asserted for a long time (think of a pushbutton) -- the FSM

has one state for long duration ’0’s and one state for long duration ’1’s

The output, on the other hand, responds only to the rising edge and generates a

pulse of much shorter duration

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 14 (11/8/10)

Mealy vs Moore

The left-most design above is a Moore implementation, which additionally includes

an edge state

Middle design is a Mealy machine

The output p2 goes high in the zero state when strobe becomes ’1’ (after a small

propagation delay), and stays high until the transition to state one on the next

rising edge

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 15 (11/8/10)

Mealy vs Moore

The right-most design includes both types of outputs and adds a third state delay

The state diagram asserts p3 in the zero state (as in second version) when strobe

goes high and transitions to delay state

But since both transitions out of the delay state keep p2 asserted, this has the

effect of adding a clock cycle to p2’s high state (as in the first version)

Since the assertion is on all outgoing arcs, it is high independent of the input

conditions (and can be added inside the bubble as a Moore output)

All three designs generate a ’shot pulse’ but with subtle differences -- understanding

these differences is key to deriving a correct and efficient FSM

There are three main differences between Mealy and Moore:

• Mealy machine uses fewer states -- the input dependency allows several output val-

ues to be specified in the same state

• Mealy machine responds faster -- one clock cycle earlier in systems that use output

• Mealy machine may be transparent to glitches, i.e., passing them to the output

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 16 (11/8/10)

Mealy vs Moore

So which one is better?

For control system applications, we can divide control signals into two categories,

edge sensitive and level sensitive

An edge sensitive signal (e.g., the enable signal on a counter) is sampled only on the

rising edge of clock

Therefore, glitches do NOT matter -- only the setup and hold times must be

obeyed

Both Mealy and Moore machines can generate output signals that meet this require-

ment

However, Mealy machines are preferred because it responds one clk cycle faster

and uses fewer states

For a level sensitive control signal, the signal must be asserted for a certain interval

of time (e.g., the write enable signal of an SRAM chip) and Moore is preferred

While asserted, it MUST remain stable and free of glitches

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 17 (11/8/10)

VHDL Description of FSM

Coding FSMs is similar to regular sequential logic, e.g., separate the memory ele-

ments out and derive the next-state/output logic

There are two differences

• Symbolic states are used in an FSM description -- we use the enumeration VHDL

data type for the state registers

• The next-state logic needs to be constructed according to a state diagram or ASM,

as opposed to using regular combinational logic such as a incrementer or shifter

There are several coding styles

• Multi-Segment: Create a VHDL code segment for each block in the block diagram

Memory
controller
example

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 18 (11/8/10)

VHDL Description of FSM

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 19 (11/8/10)

Multi-Segment VHDL Description of FSM

library ieee;

use ieee.std_logic_1164.all;

entity mem_ctrl is

port(

 clk, reset: in std_logic;

 mem, rw, burst: in std_logic;

 oe, we, we_me: out std_logic

);

end mem_ctrl ;

architecture mult_seg_arch of mem_ctrl is

type mc_state_type is

 (idle, read1, read2, read3, read4, write);

 signal state_reg, state_next: mc_state_type;

 begin

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 20 (11/8/10)

Multi-Segment VHDL Description of FSM

-- state register

process(clk, reset)

begin

if (reset = ’1’) then

 state_reg <= idle;

elsif (clk’event and clk = ’1’) then

 state_reg <= state_next;

end if;

end process;

-- next-state logic

process(state_reg, mem, rw, burst)

begin

case state_reg is

-- When multiple transitions exist out of a state,

-- use an if stmt

when idle =>

if (mem = ’1’) then

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 21 (11/8/10)

Multi-Segment VHDL Description of FSM

if (rw = ’1’) then

 state_next <= read1;

else

 state_next <= write;

end if;

else

 state_next <= idle;

end if;

when write =>

 state_next <= idle;

when read1 =>

if (burst = ’1’) then

 state_next <= read2;

else

 state_next <= idle;

end if;

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 22 (11/8/10)

Multi-Segment VHDL Description of FSM

when read2 =>

 state_next <= read3;

when read3 =>

 state_next <= read4;

when read4 =>

 state_next <= idle;

end case;

end process;

-- Moore output logic

process(state_reg)

begin

 we <= ’0’; -- default value

 oe <= ’0’; -- default value

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 23 (11/8/10)

Multi-Segment VHDL Description of FSM

case state_reg is

when idle =>

when write =>

 we <= ’1’;

when read1 =>

 oe <= ’1’;

when read2 =>

 oe <= ’1’;

when read3 =>

 oe <= ’1’;

when read4 =>

 oe <= ’1’;

end case; end process;

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 24 (11/8/10)

Multi-Segment VHDL Description of FSM

-- Mealy output logic

process(state_reg, mem, rw)

begin

 we_me <= ’0’; -- default value

case state_reg is

when idle =>

if (mem = ’1’) and (rw = ’0’) then

 we_me <= ’1’;

end if;

when write =>

when read1 =>

when read2 =>

when read3 =>

when read4 =>

end case;

end process;

end mult_seg_arch;

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 25 (11/8/10)

Two-Segment VHDL Description of FSM

Combine next-state/output logic into one process

architecture two_seg_arch of mem_ctrl is

type mc_state_type is

 (idle, read1, read2, read3, read4, write);

signal state_reg, state_next: mc_state_type;

 begin

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 26 (11/8/10)

Two-Segment VHDL Description of FSM

-- state register

process(clk, reset)

begin

if (reset=’1’) then

 state_reg <= idle;

elsif (clk’event and clk = ’1’) then

 state_reg <= state_next;

end if;

end process;

-- next-state logic and output logic

process(state_reg, mem, rw, burst)

begin

 oe <= ’0’; -- default values

 we <= ’0’;

 we_me <= ’0’;

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 27 (11/8/10)

Two-Segment VHDL Description of FSM

case state_reg is

when idle =>

if (mem = ’1’) then

if (rw = ’1’) then

 state_next <= read1;

else

 state_next <= write;

 we_me <= ’1’;

end if;

else

 state_next <= idle;

end if;

when write =>

 state_next <= idle;

 we <= ’1’;

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 28 (11/8/10)

Two-Segment VHDL Description of FSM

when read1 =>

if (burst=’1’) then

 state_next <= read2;

else

 state_next <= idle;

end if;

 oe <= ’1’;

when read2 =>

 state_next <= read3;

 oe <= ’1’;

when read3 =>

 state_next <= read4;

 oe <= ’1’;

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 29 (11/8/10)

Two-Segment VHDL Description of FSM

when read4 =>

 state_next <= idle;

 oe <= ’1’;

end case;

end process;

end two_seg_arch;

State Assignment

State assignment is the process of assigning a binary representations to the set of

symbolic states

Although any arbitrary assignment works for a synchronous FSM, some assignments

reduce the complexity of next-state/output logic and allows faster operation

Typical assignment strategies:

• Binary -- requires ceiling(log2n)-bit register

• Gray -- also minimal size but may reduce complexity of next-state logic

• One-hot or Almost one-hot (includes "0 ...0") -- requires n-bit register

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 30 (11/8/10)

State Assignment

Example for memory controller:

State assignment can be controlled in VHDL either implicitly or explicitly

For implicit state assignment, use user attributes which acts as a "directive" to

guide the CAD synthesis software

The 1076.6 RTL synthesis standard defines an attribute named enum_encoding for

specifying the values for an enumeration data type

This attribute can be used for specifying state assignment, as shown below

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 31 (11/8/10)

State Assignment

type mc_state_type is (idle, write, read1, read2,

 read3, read4);

attribute enum_encoding: string;

attribute enum_encoding of mc_state_type:

type is "0000 0100 1000 1001 1010 1011";

This user attribute is very common is should be accepted by most synthesis software

Explicit state assignment is accomplished by replacing the symbolic values with

actual binary representations

architecture state_assign_arch of mem_ctrl is

constant idle: std_logic_vector(3 downto 0):="0000";

constant write: std_logic_vector(3 downto 0):="0100";

constant read1: std_logic_vector(3 downto 0):="1000";

constant read2: std_logic_vector(3 downto 0):="1001";

constant read3: std_logic_vector(3 downto 0):="1010";

constant read4: std_logic_vector(3 downto 0):="1011";

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 32 (11/8/10)

State Assignment

signal state_reg, state_next:

 std_logic_vector(3 downto 0);

 begin

-- state register

process(clk, reset)

begin

if (reset = ’1’) then

 state_reg <= idle;

elsif (clk’event and clk = ’1’) then

 state_reg <= state_next;

end if;

end process;

-- next-state logic

process(state_reg, mem, rw, burst)

begin

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 33 (11/8/10)

State Assignment

case state_reg is

when idle =>

if (mem = ’1’) then

if (rw = ’1’) then

 state_next <= read1;

else

 state_next <= write;

end if;

else

 state_next <= idle;

end if;

when write =>

 state_next <= idle;

when read1 =>

 if (burst = ’1’) then

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 34 (11/8/10)

State Assignment

 state_next <= read2;

else

 state_next <= idle;

end if;

when read2 =>

 state_next <= read3;

when read3 =>

 state_next <= read4;

when read4 =>

 state_next <= idle;

-- Need this now to cover other std_logic_vector vals

when others =>

 state_next <= idle;

end case;

end process;

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 35 (11/8/10)

State Assignment

-- Moore output logic

process(state_reg)

begin

 we <= ’0’; -- default value

 oe <= ’0’; -- default value

case state_reg is

when idle =>

when write =>

 we <= ’1’;

when read1 =>

 oe <= ’1’;

when read2 =>

 oe <= ’1’;

when read3 =>

 oe <= ’1’;

when read4 =>

 oe <= ’1’;

when others =>

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 36 (11/8/10)

State Assignment

end case;

end process;

-- Mealy output logic

 we_me <= ’1’ when ((state_reg = idle) and

 (mem = ’1’) and(rw = ’0’)) else

 ’0’;

end state_assign_arch;

Moore Output Buffering

Output buffering involves adding a D FF to drive the output signal

The purpose is to remove glitches (and minimize clock-to-output delay (Tco))

The disadvantage is that the output is delayed by one clock cycle

However, for a Moore output, it is possible to obtain a buffered signal without

this delay penalty.

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 37 (11/8/10)

Moore Output Buffering

There are two possible solutions

• Buffering by clever state assignment

A Moore output is shielded from glitches in the input signals, but not from

glitches in the state transition and output logic

Glitches in the state transition can result from multiple-bit transitions of the

state register, e.g., from the "111" to "000" states

Even though the state registers are controlled by the same clk, variations in the

Tcq of the D FFs can produce glitches

Recall that Tco is the sum of Tcq and Toutput

One way to reduce the effect on Tco introduced by the output logic is to eliminate it

completely by clever state assignment

To accomplish this, add bits to the state encoding that specify the behavior of the out-

put signals

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 38 (11/8/10)

Moore Output Buffering

You will also need to specify state assignment explicitly

Consider the memory controller -- we can specify the state of the outputs oe and we

in bits q3 and q2 and the actual state in bits q1 and q0.

So, we see that oe and we are given directly by state_reg(3) and state_reg(2)

oe <= state_reg(3); -- modify the previous code seg by

we <= state_reg(2); -- replacing output logic with these

Therefore, the output logic is eliminated and Tco is reduced to Tcq

Unfortunately, this scheme is difficult to modify and maintain

This encoding scheme
was used in the previous
code segment

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 39 (11/8/10)

Look-Ahead Output Circuit

A more systematic approach to eliminate the one-clock output buffer delay is to use

the state_next signal instead of the state_reg signal

This works because the next output signal is a function of the next state logic

Only drawback is that the critical path is likely extended through the next output logic

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 40 (11/8/10)

Look-Ahead Output Circuit

architecture look_ahead_buffer_arch of mem_ctrl is

type mc_state_type is

 (idle, read1, read2, read3, read4, write);

signal state_reg, state_next: mc_state_type;

signal oe_next, we_next, oe_buf_reg, we_buf_reg:

 std_logic;

 begin

 -- state register

process(clk, reset)

begin

if (reset = ’1’) then

 state_reg <= idle;

elsif (clk’event and clk = ’1’) then

 state_reg <= state_next;

end if;

end process;

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 41 (11/8/10)

Look-Ahead Output Circuit

 -- output buffer

process(clk, reset)

begin

if (reset = ’1’) then

 oe_buf_reg <= ’0’;

 we_buf_reg <= ’0’;

elsif (clk’event and clk = ’1’) then

 oe_buf_reg <= oe_next;

 we_buf_reg <= we_next;

end if;

end process;

 -- next-state logic

process(state_reg, mem, rw, burst)

begin

case state_reg is

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 42 (11/8/10)

Look-Ahead Output Circuit

when idle =>

if (mem = ’1’) then

if (rw = ’1’) then

 state_next <= read1;

else

 state_next <= write;

end if;

else

 state_next <= idle;

end if;

when write =>

 state_next <= idle;

when read1 =>

if (burst = ’1’) then

 state_next <= read2;

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 43 (11/8/10)

Look-Ahead Output Circuit

else

 state_next <= idle;

end if;

when read2 =>

 state_next <= read3;

when read3 =>

 state_next <= read4;

when read4 =>

 state_next <= idle;

end case;

end process;

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 44 (11/8/10)

Look-Ahead Output Circuit

 -- look-ahead output logic

process(state_next)

begin

 we_next <= ’0’; -- default value

 oe_next <= ’0’; -- default value

case state_next is

when idle =>

when write =>

 we_next <= ’1’;

when read1 =>

 oe_next <= ’1’;

when read2 =>

 oe_next <= ’1’;

when read3 =>

 oe_next <= ’1’;

when read4 =>

 oe_next <= ’1’;

end case; end process;

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 45 (11/8/10)

Look-Ahead Output Circuit

 -- output

 we <= we_buf_reg;

 oe <= oe_buf_reg;

end look_ahead_buffer_arch;

FSM Design Examples

Edge detecting circuit (Moore)

The VHDL code for version 1 of edge detection circuit we saw earlier

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 46 (11/8/10)

Edge Detection Circuit

library ieee;

use ieee.std_logic_1164.all;

entity edge_detector1 is

port(

 clk, reset: in std_logic;

 strobe: in std_logic;

 p1: out std_logic

);

end edge_detector1;

architecture moore_arch of edge_detector1 is

type state_type is (zero, edge, one);

 signal state_reg, state_next: state_type;

 begin

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 47 (11/8/10)

Edge Detection Circuit

 -- state register

process(clk, reset)

begin

if (reset = ’1’) then

 state_reg <= zero;

elsif (clk’event and clk = ’1’) then

 state_reg <= state_next;

end if;

end process;

 -- next-state logic

process(state_reg, strobe)

begin

case state_reg is

when zero=>

if (strobe = ’1’) then

 state_next <= edge;

else

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 48 (11/8/10)

Edge Detection Circuit

 state_next <= zero;

end if;

when edge =>

if (strobe = ’1’) then

 state_next <= one;

else

 state_next <= zero;

end if;

when one =>

if (strobe = ’1’) then

 state_next <= one;

else

 state_next <= zero;

end if;

end case;

end process;

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 49 (11/8/10)

 -- Moore output logic

 p1 <= ’1’ when state_reg = edge else

 ’0’;

end moore_arch;

If we need to the output to be glitch-free, we can use the clever state assignment

shown below or the look-ahead output scheme

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 50 (11/8/10)

Edge Detection Circuit

Edge detecting circuit (Mealy)

library ieee;

use ieee.std_logic_1164.all;

entity edge_detector2 is

port(

 clk, reset: in std_logic;

 strobe: in std_logic;

 p2: out std_logic

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 51 (11/8/10)

);

end edge_detector2;

architecture mealy_arch of edge_detector2 is

type state_type is (zero, one);

signal state_reg, state_next: state_type;

 begin

 -- state register

process(clk, reset)

begin

if (reset = ’1’) then

 state_reg <= zero;

elsif (clk’event and clk = ’1’) then

 state_reg <= state_next;

end if;

end process;

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 52 (11/8/10)

Edge Detection Circuit

 -- next-state logic

process(state_reg, strobe)

begin

case state_reg is

when zero=>

if (strobe = ’1’) then

 state_next <= one;

else

 state_next <= zero;

end if;

when one =>

if (strobe = ’1’) then

 state_next <= one;

else

 state_next <= zero;

end if;

end case;

end process;

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 53 (11/8/10)

Edge Detection Circuit

 -- Mealy output logic

 p2 <= ’1’ when (state_reg = zero) and (strobe = ’1’)

else

 ’0’;

end mealy_arch;

An alternative to deriving the edge detection circuit is to treat it as a regular sequen-

tial circuit and design it in an ad hoc manner

Output p2 is asserted when the previous value in FF is ’0’ and the new value is

(strobe) is ’1’ -- this represents an edge

Note that the output is a Mealy output (subject to glitches) -- what does the tim-

ing diagram look like?

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 54 (11/8/10)

Edge Detection Circuit

architecture direct_arch of edge_detector2 is

signal delay_reg: std_logic;

 begin

 -- delay register

process(clk, reset)

begin

if (reset = ’1’) then

 delay_reg <= ’0’;

elsif (clk’event and clk = ’1’) then

 delay_reg <= strobe;

end if;

end process;

 -- decoding logic

 p2 <= (not delay_reg) and strobe;

end direct_arch;

Text covers an Arbiter circuit

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 55 (11/8/10)

DRAM Strobe Signal Generation

The address signals of a DRAM are split into two parts, row and column

They are sent to the DRAM from the controller in a time-multiplexed manner

Two signals, ras_n (active low row access strobe) and cas_n are de-asserted to

instruct the DRAM to latch the addresses internally

There are several timing parameters associated with a (simplified) DRAM

• Tras and Tcas: ras/cas access time -- time required to obtain output data after ras_n/

cas_n are de-asserted

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 56 (11/8/10)

DRAM Strobe Signal Generation

• Tpr: precharge time -- the time to recharge the DRAM cell to restore the destroyed

original value after a read

• Trc: read cycle -- minimum elapsed time between two read operations

DRAMs are asynchronous (do not have a clk input)

Instead the strobe signals have to de-asserted in a proper sequence and be held

long enough to allow for decoding, multiplexing and recharging

A memory controller is the interface between a DRAM device and a synchronous

system

Its primary function is to generate the proper strobe signals

A full blown read controller should contain registers to store address and data,

plus extra control signals to coordinate the address and data bus operations

Assume our DRAM card has the following parameters

• 120 ns DRAM (Trc = 120 ns):

• Tras = 85 ns, Tcas = 20 ns, Tpr = 35 ns

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 57 (11/8/10)

DRAM Strobe Signal Generation

Our task is to design an FSM that generates the strobe signals, ras_n and cas_n after

the input command signal mem is asserted

From the timing diagram

• ras_n is de-asserted first for 65 ns (output pattern of FSM is "01" in this interval

• cas_n is then de-asserted for at least 20 ns (output pattern is "00")

• The ras_n and cas_n signals are re-asserted for at least 35 ns ("11")

First design uses state to generate the pattern and divides a read cycle into three

states, r, c and p

Three states + idle for no-op

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 58 (11/8/10)

DRAM Strobe Signal Generation

We also use a Moore machine because it has better control over the width of the

intervals (level-sensitive) and the outputs can be easily made glitch-free

For this design, clock cycle needs to be at least 65 ns to satisfy the timing constraints

Therefore, this is a slow design because read cycle time is 195 ns (3*65 ns)

library ieee;

use ieee.std_logic_1164.all;

entity dram_strobe is

port(

 clk, reset: in std_logic;

 mem: in std_logic;

 cas_n, ras_n: out std_logic

);

end dram_strobe;

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 59 (11/8/10)

DRAM Strobe Signal Generation

architecture fsm_slow_clk_arch of dram_strobe is

type fsm_state_type is (idle, r, c, p);

signal state_reg, state_next: fsm_state_type;

begin

-- state register

process(clk, reset)

begin

if (reset = ’1’) then

 state_reg <= idle;

elsif (clk’event and clk = ’1’) then

 state_reg <= state_next;

end if;

end process;

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 60 (11/8/10)

DRAM Strobe Signal Generation

-- next-state logic

process(state_reg, mem)

begin

case state_reg is

when idle =>

if (mem = ’1’) then

 state_next <= r;

else

 state_next <= idle;

end if;

when r =>

 state_next <=c;

when c =>

 state_next <=p;

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 61 (11/8/10)

DRAM Strobe Signal Generation

when p =>

 state_next <=idle;

end case;

end process;

-- output logic

process(state_reg)

begin

 ras_n <= ’1’;

 cas_n <= ’1’;

case state_reg is

when idle =>

when r =>

 ras_n <= ’0’;

when c =>

 ras_n <= ’0’;

 cas_n <= ’0’;

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 62 (11/8/10)

DRAM Strobe Signal Generation

when p =>

end case;

end process;

end fsm_slow_clk_arch;

Since the strobe signals are level-sensitive, we have to ensure that these signals are

glitch-free by, e.g., adding a look-ahead output buffer

A faster design must use a clock period that is smaller to accommodate the differ-

ences in the three intervals

For example, if we use a 20 ns clock period then the three output patterns need

• ceiling(65/20) or 4 states for r

• ceiling(20/20) or 1 state for c

• ceiling(35/20) or 2 states for p

This reduces the read cycle to 140 ns (7*20 ns) -- down from 195 ns

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 63 (11/8/10)

DRAM Strobe Signal Generation

One way to implement this is to split the r and p states -- make multiple states where

one existed originally

The minimum read cycle time for the memory can be achieved using a clock period

of 5 ns (largest factor evenly divisible into all three parameters)

This would yield 13 states + 4 states + 7 states for r, c and p, respectively

A better approach is to use counters in each state as we will see later

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 64 (11/8/10)

DRAM Strobe Signal Generation

Text covers a Manchester encoding circuit

In reality, all sequential circuits, including regular sequential circuits, can be mod-

eled by FSMs

Consider a free-running mod-16 binary counter consider earlier

Expressed as an FSM, it is an extremely regular structure with 16 states

We can modify this easily to add ’features’ as we did earlier

To add synchronous clear

Original

Hardware Design with VHDL Finite State Machines ECE 443

ECE UNM 65 (11/8/10)

DRAM Strobe Signal Generation

To add the load operation, need to add 1 control signal and a 4-bit data signal

This becomes extremely tedious, especially for larger counters

Therefore, for regular sequential circuits, we do NOT employ this strategy

To add load

Note: 16 additional transitions
are needed here

To add enable

Note: Logic expression establish
priority with syn_clr highest,
followed by load and then
enable

