
Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 1 (11/23/09)

Register Transfer Methodology: Practice

In this lecture, we will look at several examples of RT methodology applied to a vari-

ety of applications

Examples include control of a clockless device, hardware acceleration of a sequential

algorithm, and control- and data-oriented applications

• Design Example: One-Shot Pulse Generator

• Design Example: GCD

• Design Example: UART

• Design Example: SRAM Interface Controller

• Design Example: Square Root Approximation Circuit

One-Shot Pulse Generator

Used to illustrate differences between a regular sequential circuit, an FSM and

RT methodology

A one-shot pulse generator generates a single, fixed-width pulse (5 clk cycles

wide) when triggered

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 2 (11/23/09)

Register Transfer Methodology: Practice

We divided sequential circuits into three types:

• Regular sequential circuit => regular next-state logic

For example, a mod-10 counter

r_next <= (others => ’0’) when r_reg = (TEN - 1) else

 r_reg + 1;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 3 (11/23/09)

Register Transfer Methodology: Practice

• FSM => random next-state logic

For example, edge-detection circuit

 -- next-state logic

process(state_reg, strobe)

begin

case state_reg is

when zero=>

if (strobe = ’1’) then

 state_next <= edge;

else

 state_next <= zero;

end if;

...;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 4 (11/23/09)

Register Transfer Methodology: Practice

• FSMD (RT methodology) => both types, most flexible and capable

For example, a multiplier

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 5 (11/23/09)

One-Shot Pulse Generator

A one-shot pulse generator has 2 input signals, go (trigger pulse) and stop and one

output signal, pulse

The pulse signal is asserted when go is asserted for one clk cycle (if go is

asserted again within 5 clk cycles, it is ignored)

If stop is asserted during the 5 clk cycle period, pulse is set back to ’0’ immedi-

ately

This circuit contains a regular part (a counter) and a random part (idle or pulse)

FSM implementation

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 6 (11/23/09)

One-Shot Pulse Generator

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity pulse_5clk is

port(

 clk, reset: in std_logic;

 go, stop: in std_logic;

 pulse: out std_logic

);

end pulse_5clk;

architecture fsm_arch of pulse_5clk is

type fsm_state_type is

 (idle, delay1, delay2, delay3, delay4, delay5);

signal state_reg, state_next: fsm_state_type;

begin

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 7 (11/23/09)

One-Shot Pulse Generator

-- state register

process(clk,reset)

begin

if (reset = ’1’) then

 state_reg <= idle;

elsif (clk’event and clk=’1’) then

 state_reg <= state_next;

end if;

end process;

-- next-state logic & output logic

process(state_reg, go, stop)

begin

 pulse <= ’0’;

case state_reg is

when idle =>

if (go = ’1’) then

 state_next <= delay1;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 8 (11/23/09)

One-Shot Pulse Generator

else

 state_next <= idle;

end if;

when delay1 =>

if (stop = ’1’) then

 state_next <=idle;

else

 state_next <=delay2;

end if;

 pulse <= ’1’;

when delay2 =>

if (stop = ’1’) then

 state_next <=idle;

else

 state_next <=delay3;

end if;

 pulse <= ’1’;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 9 (11/23/09)

One-Shot Pulse Generator

when delay3 =>

if (stop = ’1’) then

 state_next <=idle;

else

 state_next <=delay4;

end if;

 pulse <= ’1’;

when delay4 =>

if (stop = ’1’) then

 state_next <=idle;

else

 state_next <=delay5;

end if;

 pulse <= ’1’;

when delay5 =>

 state_next <=idle;

 pulse <= ’1’;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 10 (11/23/09)

One-Shot Pulse Generator

end case;

end process;

end fsm_arch;

Regular sequential circuit implementation

It can be considered a mod-5 counter with a special control circuit to enable/dis-

able the counting (a flag FF is used for this)

architecture regular_seq_arch of pulse_5clk is

constant P_WIDTH: natural := 5;

signal c_reg, c_next: unsigned(3 downto 0);

signal flag_reg, flag_next: std_logic;

begin

-- register

process(clk, reset)

 begin

if (reset = ’1’) then

 c_reg <= (others=>’0’);

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 11 (11/23/09)

One-Shot Pulse Generator

 flag_reg <= ’0’;

elsif (clk’event and clk = ’1’) then

 c_reg <= c_next;

 flag_reg <= flag_next;

end if;

end process;

-- next-state logic

process(c_reg, flag_reg, go, stop)

begin

 c_next <= c_reg;

 flag_next <= flag_reg;

if (flag_reg = ’0’) and (go = ’1’) then

 flag_next <= ’1’;

 c_next <= (others=>’0’);

elsif (flag_reg = ’1’) and

 ((c_reg = P_WIDTH-1) or (stop = ’1’)) then

 flag_next <= ’0’;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 12 (11/23/09)

One-Shot Pulse Generator

elsif (flag_reg = ’1’) then

 c_next <= c_reg + 1;

end if;

end process;

 -- output logic

 pulse <= ’1’ when flag_reg=’1’ else ’0’;

end regular_seq_arch;

Although this implements the functionality, it is ’clumsy’ and cluttered

The flag FF functions as some sort of state register that keeps track of the cur-

rent condition of the circuit

The RT methodology is the clearest

It uses two states indicating whether the counter is active or not

In the delay state, the counter is incremented if stop is ’0’ and count has not

reached 5

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 13 (11/23/09)

One-Shot Pulse Generator

architecture fsmd_arch of

 pulse_5clk is

constant P_WIDTH: natural := 5;

type fsmd_state_type is

 (idle, delay);

signal state_reg, state_next:

 fsmd_state_type;

signal c_reg, c_next:

 unsigned(3 downto 0);

begin

 -- state and data registers

process(clk, reset)

begin

if (reset = ’1’) then

 state_reg <= idle;

 c_reg <= (others => ’0’);

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 14 (11/23/09)

One-Shot Pulse Generator

elsif (clk’event and clk = ’1’) then

 state_reg <= state_next;

 c_reg <= c_next;

end if;

end process;

-- next-state logic & data path functional units/routing

process(state_reg, go, stop, c_reg)

begin

 pulse <= ’0’;

 c_next <= c_reg;

case state_reg is

when idle =>

if (go = ’1’) then

 state_next <= delay;

else

 state_next <= idle;

end if;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 15 (11/23/09)

One-Shot Pulse Generator

 c_next <= (others=>’0’);

when delay =>

if (stop = ’1’) then

 state_next <= idle;

else

if (c_reg = P_WIDTH-1) then

 state_next <= idle;

else

 state_next <= delay;

 c_next <= c_reg + 1;

end if;

end if;

 pulse <= ’1’;

end case;

end process;

end fsmd_arch;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 16 (11/23/09)

Programmable One-Shot Pulse Generator

To further illustrate the capability of the one-shot generator, consider a version that is

programmable:

• The desired width can be programmed between 1 and 7

• The circuit enters the programming mode when both the go and stop signals are

asserted

• The desired width shifted in via the go signal in the next three clock cycles

Although possible to derive this using
an FSM or a regular sequential circuit,

it requires a great deal of effort

See text for VHDL code and SRAM
controller implementation

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 17 (11/23/09)

Greatest Common Divisor

Returns the greatest common divisor of 2 positive nums, gcd(1, 10)=1, gcd(12, 9)=3

It is possible to compute GCD without division as follows:

Pseudocode

a = a_in;

b = b_in;

while (a /= b)

 {

if (b > a) then

 a = a - b;

else

 b = b - a;

 }

r = a;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 18 (11/23/09)

Greatest Common Divisor

Modified pseudo algorithm with goto to better match

ASMD

a = a_in;

b = b_in;

sw: if (a = b) then

 goto st;

else

if (b > a) then

 a = b;

 b = a;

end if;

 a = a - b;

 goto sw;

end if;

st: r = a;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 19 (11/23/09)

Greatest Common Divisor

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity gcd is

port(

 clk, reset: in std_logic;

 start: in std_logic;

 a_in, b_in: in std_logic_vector(7 downto 0);

 ready: out std_logic;

 r: out std_logic_vector(7 downto 0)

);

end gcd ;

architecture slow_arch of gcd is

type state_type is (idle, swap, sub);

signal state_reg, state_next: state_type;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 20 (11/23/09)

Greatest Common Divisor

signal a_reg, a_next, b_reg, b_next:

 unsigned(7 downto 0);

begin

-- state & data registers

process(clk, reset)

begin

if (reset = ’1’) then

 state_reg <= idle;

 a_reg <= (others=>’0’);

 b_reg <= (others=>’0’);

elsif (clk’event and clk = ’1’) then

 state_reg <= state_next;

 a_reg <= a_next;

 b_reg <= b_next;

end if;

end process;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 21 (11/23/09)

Greatest Common Divisor

-- next-state logic & data path functional units/routing

process(state_reg, a_reg, b_reg, start, a_in, b_in)

begin

 a_next <= a_reg;

 b_next <= b_reg;

case state_reg is

when idle =>

if (start = ’1’) then

 a_next <= unsigned(a_in);

 b_next <= unsigned(b_in);

 state_next <= swap;

else

 state_next <= idle;

end if;

when swap =>

if (a_reg = b_reg) then

 state_next <= idle;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 22 (11/23/09)

Greatest Common Divisor

else

if (a_reg < b_reg) then

 a_next <= b_reg;

 b_next <= a_reg;

end if;

 state_next <= sub;

end if;

when sub =>

 a_next <= a_reg - b_reg;

 state_next <= swap;

end case;

end process;

-- output

 ready <= ’1’ when state_reg = idle else ’0’;

 r <= std_logic_vector(a_reg);

end slow_arch;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 23 (11/23/09)

Greatest Common Divisor

The worst case scenario is with gcd(1,28-1), which requires 28 - 1 iterations of the

loop

For a circuit with an N-bit input, run time is bound by O(2N)

One method to speed this up is to look at the LSB to determine if the inputs are even

or odd

Divide-by-2 is easily implemented in hardware

What is the best method to handle 2*gcd(a/2, b/2)?

The recursive relationship suggests this may happen more than once, e.g., 12, 36

-> 2*gcd(6,18) -> 4*gcd(3,9)

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 24 (11/23/09)

Greatest Common Divisor

Best way is to count the number of times (using register n) that this occurs and multi-

ply at the end by 2n to get the final result.

In swap state, check LSBs of a and b

If a(0) = 0, then shift right

Also, n is incremented if both are even

If a and b are odd, they are compared

and swapped (if necessary) - then enter
sub state

An extra state, res, is added to ’restore’

the final GCD value

Here, a is shifted left repeatedly (mult.

by 2) until n becomes 0

Text gives VHDL code

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 25 (11/23/09)

Greatest Common Divisor

How much have we improved performance by?

Assume the width of input operands is N bits

The algorithm gradually reduces the values in a_reg and b_reg until they are equal

In the worst case, there are 2N bits to process

If one value is even, the LSB is shifted out and the number of bits is reduced by

1

If both values are odd, a subtraction is performed and the difference is even --

reducing the number of bits in the next iteration by 1.

Therefore, under the most pessimistic scenario, the 2N bits can be processed in 2 *

2N iterations

Thus, we have reduced the complexity from O(n2) to O(n)

Text covers further improvements that uses extra hardware to replace bit-by-bit ops

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 26 (11/23/09)

Greatest Common Divisor

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity gcd is

port(

 clk, reset: in std_logic;

 start: in std_logic;

 a_in, b_in: in std_logic_vector(7 downto 0);

 ready: out std_logic;

 r: out std_logic_vector(7 downto 0)

);

end gcd ;

architecture fast_arch of gcd is

type state_type is (idle, swap, sub, res);

signal state_reg, state_next: state_type;

signal a_reg, a_next, b_reg, b_next:

 unsigned(7 downto 0);

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 27 (11/23/09)

Greatest Common Divisor

signal n_reg, n_next: unsigned(2 downto 0);

begin

 -- state & data registers

process(clk,reset)

begin

if (reset = ’1’) then

 state_reg <= idle;

 a_reg <= (others => ’0’);

 b_reg <= (others => ’0’);

 n_reg <= (others => ’0’);

elsif (clk’event and clk=’1’) then

 state_reg <= state_next;

 a_reg <= a_next;

 b_reg <= b_next;

 n_reg <= n_next;

end if;

end process;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 28 (11/23/09)

Greatest Common Divisor

-- next-state logic & data path functional units/routing

 process(state_reg, a_reg, b_reg, n_reg, start, a_in,

 b_in, n_next)

begin

 a_next <= a_reg;

 b_next <= b_reg;

 n_next <= n_reg;

case state_reg is

when idle =>

if (start = ’1’) then

 a_next <= unsigned(a_in);

 b_next <= unsigned(b_in);

 n_next <= (others => ’0’);

 state_next <= swap;

else

 state_next <= idle;

end if;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 29 (11/23/09)

Greatest Common Divisor

when swap =>

if (a_reg = b_reg) then

if (n_reg = 0) then

 state_next <= idle;

else

 state_next <= res;

end if;

else

if (a_reg(0) = ’0’) then -- a even

 a_next <= ’0’ & a_reg(7 downto 1);

if (b_reg(0) = ’0’) then -- both ev.

 b_next <= ’0’ & b_reg(7 downto 1);

 n_next <= n_reg + 1;

end if;

 state_next <= swap;

else -- a odd

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 30 (11/23/09)

Greatest Common Divisor

if (b_reg(0) = ’0’) then -- b even

 b_next <= ’0’ & b_reg(7 downto 1);

 state_next <= swap;

else -- both a_reg and b_reg odd

if (a_reg < b_reg) then

 a_next <= b_reg;

 b_next <= a_reg;

end if;

 state_next <= sub;

end if;

 end if;

end if;

when sub =>

 a_next <= a_reg - b_reg;

 state_next <= swap;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 31 (11/23/09)

Greatest Common Divisor

when res =>

 a_next <= a_reg(6 downto 0) & ’0’;

 n_next <= n_reg - 1;

if (n_next = 0) then

 state_next <= idle;

else

 state_next <= res;

end if;

end case;

end process;

 --output

 ready <= ’1’ when state_reg = idle else ’0’;

 r <= std_logic_vector(a_reg);

end fast_arch;

(See text for UART receiver example)

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 32 (11/23/09)

Square Root Approximation Circuit

UART is an example of a control-oriented application -- here we look at an example

of a data-oriented application (computation-intensive)

Although data-oriented applications can be implemented using combinational

resources, in practice, there are limits and sharing must be used

For the square root approx. circuit, we use simple adder-type components to obtain

an approximate value for:

Here, a and b are signed integers

The constants and operations, 0.125*x and 0.5*y corresponds to shift right by 3 bits

and 1 bit, respectively

Therefore, we don’t need a multiplication circuit

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 33 (11/23/09)

Square Root Approximation Circuit

Pseudocode:

a = a_in;

b = b_in;

t1 = abs(a);

t2 = abs(b);

x = max(t1, t2);

y = min(t1, t2);

t3 = x*0.125;

t4 = y*0.5;

t5 = x - t3;

t6 = t4 + t5;

t7 = max(t6, x);

r = t7;

Here, we intentionally avoided the reuse of the same variable name on the left-hand

statements to assist with conversion to VHDL

This can be translated directly as a data-flow implementation (no control structure)

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 34 (11/23/09)

Square Root Approximation Circuit

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity sqrt is

port(

 a_in, b_in: in std_logic_vector(7 downto 0);

 r: out std_logic_vector(8 downto 0)

);

end sqrt;

architecture comb_arch of sqrt is

constant WIDTH: natural := 8;

signal a, b, x, y: signed(WIDTH downto 0);

signal t1, t2, t3, t4, t5, t6, t7:

 signed(WIDTH downto 0);

begin

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 35 (11/23/09)

Square Root Approximation Circuit

 a <= signed(a_in(WIDTH-1) & a_in);

 b <= signed(b_in(WIDTH-1) & b_in);

 t1 <= a when a > 0 else

 0 - a;

 t2 <= b when b > 0 else

 0 - b;

 x <= t1 when t1 - t2 > 0 else

 t2;

 y <= t2 when t1 - t2 > 0 else

 t1;

 t3 <= "000" & x(WIDTH downto 3);

 t4 <= "0" & y(WIDTH downto 1);

 t5 <= x - t3;

 t6 <= t4 + t5;

 t7 <= t6 when t6 - x > 0 else

 x;

 r <= std_logic_vector(t7);

end comb_arch;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 36 (11/23/09)

Square Root Approximation Circuit

This implementation requires one adder and six subtractors

These operations are not mutually exclusive and therefore sharing is NOT possi-

ble

The code contains only concurrent signal assignment statements

The order is not important

Sequence of execution is embedded in the flow of data

To examine the dependency and movement of data, we use a data flow graph

Nodes (circle) represent an operation

Arcs represent input and output variables

The data flow graph illustrates that the algorithm has only a limited degree of paral-

lelism b/c at most two operations can be executed concurrently (see next slide)

The seven arithmetic components of the previous VHDL code canNOT significantly

increase performance, and therefore, these resources are wasted

RT methodology can share resources and is a better alternative in this case

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 37 (11/23/09)

Square Root Approximation Circuit

Tasks in converting a dataflow graph to an ASMD chart

• Scheduling: when a function (circle) can start execution

• Binding: which functional unit is assigned to perform

the operation

An important design constraint is the number of func-

tional units assigned to perform the operation

Allocate minimal number to reduce circuit size

Allocate maximum number to exploit FULL paral-

lelism

Find a mid-point that trade-offs size and perfor-

mance

Finding an optimal schedule involves sophisticated algo-

rithms and is difficult

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 38 (11/23/09)

Square Root Approximation Circuit

In square root algorithm, all operations can be performed by a modified addition unit

Also, no function unit is needed for shifting (should not be scheduled)

Scheduling with
2 functional units

Note that *0.125 and
*0.5 are removed

The dataflow graph

is divided into 5
time intervals (states)

Left graph gives one
option which binds

two ops on left to
one unit and 5 ops
on right to second

Right graph gives an
alternative

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 39 (11/23/09)

Square Root Approximation Circuit

This schedule uses one functional unit and requires

TWO extra time intervals to complete the operation

Once scheduling and binding are complete, the data-

flow graph can be transformed into an ASMD chart

Each time interval represents a state in the chart

Also, a register is needed when a signal is passed

through a state boundary

The variables of the dataflow graph are mapped into

the registers of the ASMD chart

The ASMD chart (next slide) shows two operations

are performed in the s1 and s2 states

start and ready and state idle are added to inter-

face circuit with external system

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 40 (11/23/09)

Square Root Approximation Circuit

Optimizations can be performed to reduce number of regis-

ters and simplify the routing

Instead of creating a new reg. for each variable, we can reuse

if its value is no longer needed

This corresponds to renaming the variables in the dataflow

graph

Here, we can use three registers to do the whole dataflow

graph

Here, we can use three registers

• Use r1 to replace a, t1 and y

• Use r2 to replace b, t2 and x

• Use r3 to replace t5, t6 and t7

ASMD chart

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 41 (11/23/09)

Square Root Approximation Circuit

Revised ASMD chart

Registers renaming
shown earlier as
registers in parenthesis

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 42 (11/23/09)

Square Root Approximation Circuit

To ensure proper sharing, the two functional units are isolated from one another and

coded in two segments

One unit for abs and min

One unit for abs, min, - and +

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity sqrt is

port(

 clk, reset: in std_logic;

 start: in std_logic;

 a_in, b_in: in std_logic_vector(7 downto 0);

 ready: out std_logic;

 r: out std_logic_vector(8 downto 0)

);

end sqrt;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 43 (11/23/09)

Square Root Approximation Circuit

architecture seq_arch of sqrt is

constant WIDTH: integer := 8;

type state_type is (idle, s1, s2, s3, s4, s5);

signal state_reg, state_next: state_type;

signal r1_reg, r2_reg, r3_reg:

 signed(WIDTH downto 0);

signal r1_next, r2_next, r3_next:

 signed(WIDTH downto 0);

signal sub_op0, sub_op1, diff, au1_out:

 signed(WIDTH downto 0);

signal add_op0, add_op1, sum, au2_out:

 signed(WIDTH downto 0);

signal add_carry: integer;

begin

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 44 (11/23/09)

Square Root Approximation Circuit

 -- state & data registers

process(clk, reset)

begin

if (reset = ’1’) then

 state_reg <= idle;

 r1_reg <= (others => ’0’);

 r2_reg <= (others => ’0’);

 r3_reg <= (others => ’0’);

elsif (clk’event and clk = ’1’) then

 state_reg <= state_next;

 r1_reg <= r1_next;

 r2_reg <= r2_next;

 r3_reg <= r3_next;

end if;

end process;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 45 (11/23/09)

Square Root Approximation Circuit

-- next-state logic and data path routing

process(start, state_reg, r1_reg, r2_reg, r3_reg,

 a_in, b_in, au1_out, au2_out)

begin

 r1_next <= r1_reg;

 r2_next <= r2_reg;

 r3_next <= r3_reg;

 ready <=’0’;

case state_reg is

when idle =>

if (start = ’1’) then

 r1_next <= signed(a_in(WIDTH-1) & a_in);

 r2_next <= signed(b_in(WIDTH-1) & b_in);

 state_next <= s1;

else

 state_next <= idle;

end if;

 ready <=’1’;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 46 (11/23/09)

Square Root Approximation Circuit

when s1 =>

 r1_next <= au1_out; -- t1=|a|

 r2_next <= au2_out; -- t2=|b|

 state_next <= s2;

when s2 =>

 r1_next <= au1_out; -- y=min(t1,t2)

 r2_next <= au2_out; -- x=max(t1,t2)

 state_next <= s3;

when s3 =>

 r3_next <= au2_out; -- t5=x-0.125x

 state_next <= s4;

when s4 =>

 r3_next <= au2_out; -- t6=0.5y+t5

 state_next <= s5;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 47 (11/23/09)

Square Root Approximation Circuit

when s5 =>

 r3_next <= au2_out; -- t7=max(t6,x)

 state_next <= idle;

end case;

end process;

-- arithmetic unit 1

-- subtractor

 diff <= sub_op0 - sub_op1;

-- input routing

process(state_reg, r1_reg, r2_reg)

begin

case state_reg is

when s1 => -- 0-a

 sub_op0 <= (others=>’0’);

 sub_op1 <= r1_reg; -- a

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 48 (11/23/09)

Square Root Approximation Circuit

when others => -- s2: t2-t1

 sub_op0 <= r2_reg; -- t2

 sub_op1 <= r1_reg; -- t1

end case;

end process;

-- output routing

process(state_reg, r1_reg, r2_reg, diff)

begin

case state_reg is

when s1 => --|a|

if (diff(WIDTH) = ’0’) then -- (0-a)>0

 au1_out <= diff; -- - a

else

 au1_out <= r1_reg; -- a

end if;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 49 (11/23/09)

Square Root Approximation Circuit

when others => -- s2: min(a,b)

if (diff(WIDTH) = ’0’) then --(t2-t1)>0

 au1_out <= r1_reg; -- t1

else

 au1_out <= r2_reg; -- t2

end if;

 end case;

end process;

-- arithmetic unit 2

-- adder

 sum <= add_op0 + add_op1 + add_carry;

-- input routing

process(state_reg, r1_reg, r2_reg, r3_reg)

begin

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 50 (11/23/09)

Square Root Approximation Circuit

case state_reg is

when s1 => -- 0-b

 add_op0 <= (others=>’0’); --0

 add_op1 <= not r2_reg; -- not b

 add_carry <= 1;

when s2 => -- t1-t2

 add_op0 <= r1_reg; --t1

 add_op1 <= not r2_reg; --not t2

 add_carry <= 1;

when s3 => -- -- x-0.125x

 add_op0 <= r2_reg; --x

 add_op1 <=

 not("000" & r2_reg(WIDTH downto 3));

 add_carry <= 1;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 51 (11/23/09)

Square Root Approximation Circuit

when s4 => -- 0.5*y + t5

 add_op0 <= "0" & r1_reg(WIDTH downto 1);

 add_op1 <= r3_reg;

 add_carry <= 0;

when others => -- t6 - x

 add_op0 <= r3_reg; --t1

 add_op1 <= not r2_reg; --not x

 add_carry <= 1;

end case;

end process;

-- output routing

process(state_reg, r1_reg, r2_reg, r3_reg, sum)

begin

case state_reg is

when s1 => -- |b|

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 52 (11/23/09)

Square Root Approximation Circuit

if (sum(WIDTH) = ’0’) then -- (0-b)>0

 au2_out <= sum; -- -b

else

 au2_out <= r2_reg; -- b

end if;

when s2 =>

if (sum(WIDTH) = ’0’) then

 au2_out <= r1_reg;

else

 au2_out <= r2_reg;

end if;

when s3|s4 => -- +,-

 au2_out <= sum;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 53 (11/23/09)

Square Root Approximation Circuit

when others => -- s5

if (sum(WIDTH) = ’0’) then

 au2_out <= r3_reg;

else

 au2_out <= r2_reg;

end if;

end case;

end process;

-- output

 r <= std_logic_vector(r3_reg);

end seq_arch;

Hardware Design with VHDL Register Transfer Methodology II ECE 443

ECE UNM 54 (11/23/09)

High Level Synthesis

Deriving an optimal RT design for data-oriented applications is not a simple task

This task is known as high-level synthesis, also called behavioral synthesis (mislead-

ingly)

Synthesis starts with a set of constraints and an abstract VHDL description similar

to the algorithm’s pseudocode

High-level synthesis software converts the initial description into an FSMD and auto-

matically derives code for the control and data path

The transformation is basically modeled by the last two VHDL code fragments

given above

Objective is to find an optimal schedule and binding to minimize the required

hardware resources, to maximize performance or to obtain the best trade-off

for a given constraint

Mainly used for computation intensive applications, e.g., DSP

