Register Transfer Methodology: Principle

We typically use algorithms to accomplish complex tasks

Although it is common to execute algorithms on a GPU, a hardware implementation is sometimes needed because of performance constraints

RT methodology is a design process that describes system operation by a sequence of data transfers and manipulations among registers

This methodology supports the sequential execution, e.g., data and control dependencies, required to carry out an algorithm

Consider an algorithm that computes the sum of 4 numbers, divides by 8 and rounds the result to the nearest integer

```plaintext
size = 4;
sum = 0;
for i in (0 to size-1) do
    { sum = sum + a(i); }
```
Register Transfer Methodology: Principle

\[q = \text{sum}/8; \]
\[r = \text{sum} \rem 8; \]
\[\text{if} \ (r > 3) \]
\[\{ q = q + 1; \} \]
\[\text{outp} = q; \]

Algorithm characteristics:
- Algorithms use **variables**, memory locations with a symbolic addresses
 Variables can be used to store *intermediate* results
- Algorithms are executed sequentially and the order of the steps is important

As we know, variables and sequential execution are supported as a special case and are **encapsulated** inside a process
 However, variables are NOT treated as symbolic names for memory locations!

We also note that the sequential semantics of an algorithm are very different from the concurrent model of hardware
Register Transfer Methodology: Principle

What we have learned so far is how to transfer sequential execution into a structural data flow, where the sequence is embedded in the 'flow of data'.

This is accomplished by mapping an algorithm into a system of cascading hardware blocks, where each block represents a statement in the algorithm.

The previous algorithm can be unrolled into a data flow diagram:

```vhdl
sum <= 0;
sum0 <= a(0);
sum1 <= sum0 + a(1);
sum2 <= sum1 + a(2);
sum3 <= sum2 + a(3);
q <= "000" & sum3(8 downto 3);
r <= "00000" & sum3(2 downto 0);
outp <= q + 1 when (r > 3) else q;
```

Note that this is very different from the algorithm -- the circuit is a pure combinational (and parallel) logic circuit with NO memory elements.
Register Transfer Methodology: Principle

Block diagram

The problem is the structural data flow implementation is that it can only be applied to trivial problems and is not flexible (is specific to an array of 4 values).

A better implementation is to share one adder in a time-multiplexed manner (as is done on a GPU).

Register Transfer Methodology introduces hardware that matches the variable and sequential execution model:
- Registers are used to store intermediate data (model symbolic variables)
- A datapath is used to implement the operations
- A control path (FSM) is used to specify the order of register operations
The control, data path and registers are implemented as an **FSMD** (FSM with a data-path)

FSMDs are key to realizing RT methodology

The basic action in RT methodology is the *register transfer operation*:

\[r_{\text{dest}} \leftarrow f (r_{\text{src1}}, r_{\text{src2}}, \ldots, r_{\text{src3}}) \]

The **destination** register is shown on the left while the **source** registers are listed on the right

The function \(f \) uses the contents of the source registers, plus external outputs in some cases

Difference between an algorithm and an RT register is the implicit embedding of \(clk \)

- At the rising edge of the clock, the output of registers \(r_{\text{src1}}, r_{\text{src2}} \) become available
- The output are passed to a combinational circuit that represents \(f(\) \)
- At the next rising edge of the clock, the result is stored into \(r_{\text{dest}} \)
FSMD

The function \(f() \) can be any expression that is representable by a combinational circuit

\[
\begin{align*}
 r & \leftarrow 1 \\
 r & \leftarrow r \\
 r0 & \leftarrow r1 \\
 n & \leftarrow n - 1 \\
 y & \leftarrow a \oplus b \oplus c \oplus d \\
 s & \leftarrow a^2 + b^2
\end{align*}
\]

Note that we will continue to use the notation _reg and _next for the current output and next input of a register

The notation

\[
r_1 \leftarrow r_1 + r_2
\]

is translated as

\[
\begin{align*}
 r1_next & \leftarrow r1_reg + r2_reg; \\
 r1_reg & \leftarrow r1_next; \ -- \ on \ the \ next \ rising \ edge \ of \ clk
\end{align*}
\]

Block diagram and timing diagram are shown below
FSMD

Be sure to study this carefully because it is heavily used in digital systems

\[r \leftarrow r1 + r2 \]

Multiple RT operations

An algorithm consists of many steps and a destination register my be loaded with different values over time, e.g., initialized to 0, stores result of addition, etc.
Consider the following sequence of operations:

\[
\begin{align*}
 r_1 &\leftarrow 1 \\
 r_1 &\leftarrow r_1 + r_2 \\
 r_1 &\leftarrow r_1 + 1 \\
 r_1 &\leftarrow r_1
\end{align*}
\]

Since \(r_1 \) is the destination of multiple operations, we need a MUX to route the proper value to its input.

An FSM is used to drive the control signals so that the sequence of operations are carried out in the order given.

The FSM can also implement conditional execution based, e.g., on external signals.
FSMD

Note that the state transitions take place on the rising edge of clk -- the same instant that the RT registers are updated.

So we can embed the RT operations within the state boxes/arcs of the FSM.

An extended ASM chart known as **ASMD** (ASM with datapath) chart can be used to represent the FSMD.

IMPORTANT: the new value of r_1 is only available when the FSM exits the s_1 state.

(c) Timing diagram
FSMD

NOTE: When a register is NOT being updated with a new value, it is assumed that it maintains its current value, i.e.,

\[r_1 \leftarrow r_1 \]

These actions are NOT shown in the ASMD/state chart.

Conceptual block diagram of an FSMD

Data Path
Regular sequential circuit

Study and become familiar with the input/output signals of both modules

Control Path
Random sequential circuit
FSMD Design Examples

Repetitive addition multiplier

We built a combinational multiplier earlier which used multiple adders in a data-flow configuration.

It’s also possible to build it using one adder and a sequential algorithm.

Basic algorithm: 7*5 = 7+7+7+7+7

\[
\text{if} \quad (a_in=0 \quad \text{or} \quad b_in=0) \quad \text{then} \\
\{ \quad r = 0; \quad \}
\]

\text{else} \\
\{ \\
a = a_in; \\
n = b_in; \\
r = 0; \\
\textbf{while} \quad (n \neq 0) \\
\{ \\
r = r + a; \\
\}
FSMD Design Examples

```vhdl
n = n - 1;
}
}
return(r);

This code is a better match to an ASMD because ASMD does not have a loop construct

```vhdl
if (a_in = 0 or b_in = 0) then
{ r = 0; }
else
{
 a = a_in;
 n = b_in;
 r = 0;
 op: r = r + a;
 n = n - 1;
 if (n = 0) then
 { goto stop; }
```
FSMD Design Examples

```vhdl
else
 { goto op; }
}
stop: return(r);
```

To implement this in hardware, we must first define the I/O signals:

- `a_in, b_in`: 8-bit unsigned input
- `clk, reset`: 1-bit input
- `start`: 1-bit command input
- `r`: 16-bit unsigned output
- `ready`: 1-bit status output — asserted when unit has completed and is ready again

The `start` and `ready` signals are added to support sequential operation.

When this unit is embedded in a larger design, and the main system wants to perform multiplication:

- It checks `ready`
- If ’1’, it places inputs on `a_in` and `b_in` and asserts the `start` signal
FSMD Design Examples

The ASMD uses $n$, $a$ and $r$ data registers to emulate the three variables.

Decision boxes are used to implement the if stmts.

One difference between the pseudo code and the ASMD is the parallelism available in the latter.

When RT operations are scheduled in the same state they execute in parallel in that clock cycle, e.g., op state.

Multiple operations can be scheduled in the same state if enough hardware resources are available and there are no data dependencies.
FSMD Design Examples

With the ASMD chart available, we can refine the original block diagram.

We first divide the system into a data path and a control path.

For the control path, the input signals are `start`, `a_is_0`, `b_is_0`, and `count_0` -- the first is an external signal, the latter three are status signals from the data path.

These signals constitute the inputs to the FSM and are used in the decision boxes.

The output of the control path are `ready` and control signals that specify the RT operations of the data path.

In this example, we use the state register as the output control signals.

Construction of the data path is easier if it is handled as follows:
- List all RT operations
- Group RT operation according to the destination register
- Add combinational circuit/mux
- Add status circuits
FSMD Design Examples

For example

• RT operation with the $r$ register
  
  $r ← r$ (in the idle state)
  $r ← 0$ (in the load and op states)
  $r ← r + a$ (in the op state)

• RT operations with the $n$ register
  
  $n ← n$ (in the idle state)
  $n ← b_{\text{in}}$ (in the load and ab0 state)
  $n ← n - 1$ (in the op state)

• RT operations with the $a$ register
  
  $a ← a$ (in the idle and op states)
  $a ← a_{\text{in}}$ (in the load and ab0 states)

Note that the default operations MUST be included to build the proper data path.
FSMD Design Examples

Let’s consider the circuit associated with the $r$ register

The three possible sources, 0, $r$ and $r+a$ are selected using a MUX

The select signals are labeled symbolically with the state names

The routing specified matches that given on the previous slide

We can repeat this process for the other two registers and combine them

The status signals are implemented using three comparators
FSMD Design Examples

The entire control and data path

Note that some elements are more complicated than necessary.

For example, the \( a_{\text{next}} \) signal can be replaced with a register with an \textit{enable} signal.

Don’t worry, the synthesis tool will optimize this design.
FSMD Design Examples

The VHDL code follows the block diagram and is divided into seven blocks:

- Control path state registers
- Control path next-state logic
- Control path output logic
- Data path data registers
- Data path functional units
- Data path routing network
- Data path status circuit

```vhdl
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity seq_mult is
 port(
 clk, reset: in std_logic;
 start: in std_logic;
 a_in, b_in: in std_logic_vector(7 downto 0);
)
end entity seq_mult;
```
FSMD Design Examples

```vhdl
ready: out std_logic;
r: out std_logic_vector(15 downto 0);
end seq_mult;

architecture mult_seg_arch of seq_mult is
 constant WIDTH: integer:=8;
 type state_type is (idle, ab0, load, op);
 signal state_reg, state_next: state_type;
 signal a_is_0, b_is_0, count_0: std_logic;
 signal a_reg, a_next: unsigned(WIDTH-1 downto 0);
 signal n_reg, n_next: unsigned(WIDTH-1 downto 0);
 signal r_reg, r_next: unsigned(2*WIDTH-1 downto 0);
 signal adder_out: unsigned(2*WIDTH-1 downto 0);
 signal sub_out: unsigned(WIDTH-1 downto 0);
begin
```
FSMD Design Examples

-- control path: state register

```vhdl
process (clk, reset)
begin
if (reset = '1') then
 state_reg <= idle;
elsif (clk'event and clk = '1') then
 state_reg <= state_next;
end if;
end process;
```

-- control path: next-state/output logic

```vhdl
process (state_reg, start, a_is_0, b_is_0, count_0)
begin
 case state_reg is
 when idle =>
 if (start = '1') then
 if (a_is_0 = '1' or b_is_0 = '1') then
 state_next <= ab0;
 end if;
 end if;
 when others =>
 state_next <= state_next;
 end case;
end process;
```
FSMD Design Examples

```vhdl
else
 state_next <= load;
 end if;
else
 state_next <= idle;
 end if;
when ab0 =>
 state_next <= idle;
when load =>
 state_next <= op;
when op =>
 if (count_0 = '1') then
 state_next <= idle;
 else
 state_next <= op;
 end if;
end case;
end process;
```
FSMD Design Examples

-- control path: output logic
ready <= '1' when state_reg=idle else '0';

-- data path: data register
process (clk, reset)
begin
if (reset = '1') then
   a_reg <= (others=>'0');
   n_reg <= (others=>'0');
   r_reg <= (others=>'0');
elsif (clk'event and clk='1') then
   a_reg <= a_next;
   n_reg <= n_next;
   r_reg <= r_next;
end if;
end process;
FSMD Design Examples

-- data path: routing multiplexer

process (state_reg, a_reg, n_reg, r_reg,
         a_in, b_in, adder_out, sub_out)

begin

  case state_reg is
    when idle =>
      a_next <= a_reg;
      n_next <= n_reg;
      r_next <= r_reg;
    when ab0 =>
      a_next <= unsigned(a_in);
      n_next <= unsigned(b_in);
      r_next <= (others => '0');
    when load =>
      a_next <= unsigned(a_in);
      n_next <= unsigned(b_in);
      r_next <= (others => '0');
    when op =>
FSMD Design Examples

    a_next <= a_reg;
    n_next <= sub_out;
    r_next <= adder_out;

    end case;

end process;

-- data path: functional units
adder_out <= ("00000000" & a_reg) + r_reg;
sub_out <= n_reg - 1;

-- data path: status
a_is_0 <= '1' when a_in = "00000000" else '0';
b_is_0 <= '1' when b_in = "00000000" else '0';
count_0 <= '1' when n_next = "00000000" else '0';

-- data path: output
r <= std_logic_vector(r_reg);

end mult_seg_arch;
Use of a Register Value in a Decision Box

Most of the translation process is straightforward

One caveat is using a register in a Boolean expression of a decision box

This was avoided in our example by using a \texttt{a\_is\_0}, \texttt{b\_is\_0} and \texttt{count\_0} status signals inside the decision boxes

A more descriptive way is to use registers and input signals in the Boolean exprs.

For example, instead of \texttt{a\_is\_0 = 1}, we could use \texttt{a\_in = 0}

A second example is to (try to) use the \texttt{n} register in the loop termination decision box

Unfortunately, we need to be careful here because the new value of \texttt{n} is \texttt{not available} until we exit the block

Therefore, the ASMD must differ from the pseudo-code shown earlier

\begin{verbatim}
    n = n -1;
    if ( n = 0) then ...
\end{verbatim}
Use of a Register Value in a Decision Box

In the ASMD, the old value of \( n \) would be used in the decision box and one extra iteration would occur (which is INCORRECT)

One way to fix this problem is to use the condition of the previous iteration, e.g., \( n = 1 \) to terminate the loop (see below Fix 1)

Unfortunately, it is less clear what the intention is

**Fix 2** adds a wait state -- this fixes the problem but is clumsy and inefficient
Use of a Register Value in a Decision Box

The best fix (Fix 3) is to use the next value in the Boolean expression. Since the next value is calculated during the op state, it is available at the end of the clock cycle and can be used in the decision box.

Note that the VHDL code given actually uses the n_next signal:

```vhdl
count_0 <= '1' when n_next = 0 else '0';
```

To express this in the ASMD chart, we have to split the RT operation

```vhdl
r <= f(.);
```

into two parts

```vhdl
r_next <= f(.);
r <= r_next;
```

Here, the first part indicates that the next value of the r register is calculated and updated within the current clk cycle.

See Fix 3 for an example using the n_next signal.

This is best b/c it is consistent with the pseudo-code and has no performance penalty.
Two Segment VHDL Descriptions of FSMDs

The previous 7 segment coding style can be easily reduced to two segments

```vhdl
architecture two_seg_arch of seq_mult is

constant WIDTH: integer := 8;
type state_type is (idle, ab0, load, op);
signal state_reg, state_next: state_type;
signal a_reg, a_next: unsigned(WIDTH-1 downto 0);
signal n_reg, n_next: unsigned(WIDTH-1 downto 0);
signal r_reg, r_next: unsigned(2*WIDTH-1 downto 0);
begin

-- state and data register

process (clk, reset)
begin

if (reset = '1') then
 state_reg <= idle;
 a_reg <= (others => '0');
 n_reg <= (others => '0');
 r_reg <= (others => '0');

end if;

end process;
```

```
Two Segment VHDL Descriptions of FSMDs

```
elsif (clk'event and clk = '1') then
    state_reg <= state_next;
    a_reg <= a_next;
    n_reg <= n_next;
    r_reg <= r_next;

end if;
```

```
-- combinational circuit
process(start, state_reg, a_reg, n_reg, r_reg, a_in, b_in, n_next)
begin

    -- default value
    a_next <= a_reg;
    n_next <= n_reg;
    r_next <= r_reg;
    ready <= '0';
```
Two Segment VHDL Descriptions of FSMDs

case state_reg is
when idle =>
 if (start = '1') then
 if (a_in = "00000000" or
 b_in = "00000000") then
 state_next <= ab0;
 else
 state_next <= load;
 end if;
 else
 state_next <= idle;
 end if;
when ab0 =>
a_next <= unsigned(a_in);
n_next <= unsigned(b_in);
r_next <= (others => '0');
state_next <= idle;
Two Segment VHDL Descriptions of FSMDs

\[
\text{when load =>}
\begin{align*}
a_{\text{next}} & \leq \text{unsigned(a_in);} \\
n_{\text{next}} & \leq \text{unsigned(b_in);} \\
r_{\text{next}} & \leq (\text{others} => '0'); \\
\text{state_next} & \leq \text{op}; \\
\end{align*}
\]

\[
\text{when op =>}
\begin{align*}
n_{\text{next}} & \leq n_\text{reg} - 1; \\
r_{\text{next}} & \leq ("00000000" & a_\text{reg}) + r_\text{reg}; \\
\text{if} & (n_{\text{next}} = "00000000") \text{ then} \\
\text{state_next} & \leq \text{idle}; \\
\text{else} & \\
\text{state_next} & \leq \text{op}; \\
\text{end if}; \\
\end{align*}
\]

\[
\text{end case;}
\]

\[
\text{end process;}
\]

\[
r \leq \text{std_logic_vector(r_reg);}
\]

\[
\text{end two_seg_arch;}
\]
One Segment VHDL Descriptions of FSMDs

Although possible, combining everything into one segment may introduce subtle problems and is not recommended

```vhdl
architecture one_seg_arch of seq_mult is
  constant WIDTH: integer := 8;
  type state_type is (idle, ab0, load, op);
  signal state_reg: state_type;
  signal a_reg, n_reg: unsigned(WIDTH-1 downto 0);
  signal r_reg: unsigned(2*WIDTH-1 downto 0);
begin
  process(clk, reset)
    variable n_next: unsigned(WIDTH-1 downto 0);
  begin
    if (reset = '1') then
      state_reg <= idle;
      a_reg <= (others => '0');
      n_reg <= (others => '0');
      r_reg <= (others => '0');
  end if;
end process;
```

One Segment VHDL Descriptions of FSMDs

```vhdl
elsif (clk'event and clk = '1') then
  case state_reg is
    when idle =>
      if (start = '1') then
        if (a_in = "00000000" or b_in = "00000000") then
          state_reg <= ab0;
        else
          state_reg <= load;
        end if;
      end if;
    when ab0 =>
      a_reg <= unsigned(a_in);
      n_reg <= unsigned(b_in);
      r_reg <= (others => '0');
      state_reg <= idle;
    when load =>
      a_reg <= unsigned(a_in);
  end case;
end if;
```
One Segment VHDL Descriptions of FSMDs

```vhdl
n_reg <= unsigned(b_in);
r_reg <= (others => '0');
state_reg <= op;

when op =>
n_next := n_reg - 1;
n_reg <= n_next;
r_reg <= ("00000000" & a_reg) + r_reg;
if (n_next = "00000000") then
  state_reg <= idle;
end if;
end case;
end if;
end process;

ready <= '1' when (state_reg = idle) else '0';
r <= std_logic_vector(r_reg);
end one_seg_arch;
```
One Segment VHDL Descriptions of FSMDs

There are several subtle problems

- Since a register is inferred for ANY signal within the clause
  ```vhdl
  elsif (clk'event and clk = '1') then
  the next value of a data register CANNOT be referred by a signal
  ```

 To overcome this, we must define \texttt{n_next} as a \texttt{variable} for immediate assignment

- To avoid the unnecessary output buffer, the \texttt{ready} output signal has to be moved outside the process and be coded as a separate segment

Alternative Design of a Repetitive-Addition Multiplier

We discussed combinational \texttt{resource sharing} earlier

Since FSMD allows RT operations to be scheduled, sharing can be achieved in a \texttt{time-multiplexing} fashion by assigning the same functional unit in different states

In the repetitive addition multiplier example, the \texttt{addition} and \texttt{decrement} operation can share a functional unit if they are placed in different states
Alternative Design of a Repetitive-Addition Multiplier

This requires the \textit{op} state to be split into \textit{op1} and \textit{op2} as shown below.

\begin{itemize}
 \item \textit{op1}:
 \begin{align*}
 & r \leftarrow r + a \\
 & n \leftarrow n - 1
 \end{align*}
 \item \textit{op2}:
 \begin{align*}
 & n_{\text{next}} \leq n - 1 \\
 & n \leftarrow n_{\text{next}} \\
 & n_{\text{next}} = 0
 \end{align*}
\end{itemize}
Alternative Design of a Repetitive-Addition Multiplier
The revised data path uses an additional multiplexer
Alternative Design of a Repetitive-Addition Multiplier

The following code makes explicit the sharing of the functional unit, given the limitations of RT-level optimization within synthesis tools

```vhdl
architecture sharing_arch of seq_mult is
  constant WIDTH: integer := 8;
  type state_type is (idle, ab0, load, op1, op2);
  signal state_reg, state_next: state_type;
  signal a_reg, a_next: unsigned(WIDTH-1 downto 0);
  signal n_reg, n_next: unsigned(WIDTH-1 downto 0);
  signal r_reg, r_next: unsigned(2*WIDTH-1 downto 0);
  signal adder_src1, adder_src2:
    unsigned(2*WIDTH-1 downto 0);
  signal adder_out: unsigned(2*WIDTH-1 downto 0);
begin

  -- state and data registers
  process(clk, reset)
    begin
```
Alternative Design of a Repetitive-Addition Multiplier

if (reset = '1') then
 state_reg <= idle;
 a_reg <= (others => '0');
 n_reg <= (others => '0');
 r_reg <= (others => '0');
elsif (clk'event and clk = '1') then
 state_reg <= state_next;
 a_reg <= a_next;
 n_reg <= n_next;
 r_reg <= r_next;
end if;
end process;

-- next-state logic/output logic and data path routing
process(start, state_reg, a_reg, n_reg, r_reg, a_in,
b_in, adder_out, n_next)
Alternative Design of a Repetitive-Addition Multiplier

begin
 -- default value
 a_next <= a_reg;
 n_next <= n_reg;
 r_next <= r_reg;
 ready <= '0';
 case state_reg is
 when idle =>
 if (start = '1') then
 if (a_in = "00000000" or
 b_in="00000000") then
 state_next <= ab0;
 else
 state_next <= load;
 end if;
 else
 state_next <= idle;
 end if;
 end case;
end
Alternative Design of a Repetitive-Addition Multiplier

```vhdl
ready <= '1';

when ab0 =>
    a_next <= unsigned(a_in);
    n_next <= unsigned(b_in);
    r_next <= (others => '0');
    state_next <= idle;

when load =>
    a_next <= unsigned(a_in);
    n_next <= unsigned(b_in);
    r_next <= (others => '0');
    state_next <= op1;

when op1 =>
    r_next <= adder_out;
    state_next <= op2;

when op2 =>
    n_next <= adder_out(WIDTH-1 downto 0);
    if (n_next = "00000000") then
        state_next <= idle;
```
Alternative Design of a Repetitive-Addition Multiplier

```vhdl
else
    state_next <= op1;
end if;
end case;
end process;

-- data path input routing and functional units
-- Note the n register is only 8-bits wide
process(state_reg, r_reg, a_reg, n_reg)
begin
    if (state_reg = op1) then
        adder_src1 <= r_reg;
        adder_src2 <= "00000000" & a_reg;
    else -- for op2 state
        adder_src1 <= "00000000" & n_reg;
        adder_src2 <= (others => '1');
    end if;
end process;
```
Alternative Design of a Repetitive-Addition Multiplier

adder_out <= adder_src1 + adder_src2;

-- output
r <= std_logic_vector(r_reg);
end sharing_arch;

Mealy-Controlled RT Operation
The control signals connected to the data path are edge-sensitive, and therefore Mealy outputs can be used (they are faster and require fewer states)
Mealy-Controlled RT Operation

As shown, RT operations can appear in the conditional output box of an ASMD chart

\[r_2 \leftarrow r_3 + r_4 \]

Note that this result is computed in parallel with the Moore output \(r_1 \) and the comparison \(a > b \)

However, for the Moore output, there is only one possible outcome \((r_1 \) is assigned \(r_1 + 1 \))

For the Mealy output, a MUX is added to select \(r_2 \) or \(r_3 + r_4 \) to store in \(r_2 \)

For the original ASMD chart for the multiplier, the \(a_{in} \) and \(b_{in} \) signals are used in both the \textit{idle} state (for comparison) and the \textit{load} and \textit{ab0} states for loading

This requires the external system that ‘calls’ the multiplier to hold the \(a_{in} \) and \(b_{in} \) signals for two clock cycles

The following modification to the ASMD uses Mealy-controlled RT operations to eliminate the two clock cycle requirement by merging \(ab0 \) and \textit{load} states to \textit{idle}
Mealy-Controlled RT Operation

The RT operations are moved into a conditional output box

Note that this change reduces the number of states from 4 to 2 and improves the performance.
Mealy-Controlled RT Operation

architecture mealy_arch of seq_mult is

constant WIDTH: integer := 8;
type state_type is (idle, op);
signal state_reg, state_next: state_type;
signal a_reg, a_next: unsigned(WIDTH-1 downto 0);
signal n_reg, n_next: unsigned(WIDTH-1 downto 0);
signal r_reg, r_next: unsigned(2*WIDTH-1 downto 0);
begin

-- state and data registers
process (clk, reset)
begin

if (reset = '1') then
 state_reg <= idle;
a_reg <= (others => '0');
n_reg <= (others => '0');
r_reg <= (others => '0');
end if;

end process;
end mealy_arch;
Mealy-Controlled RT Operation

```vhdl
elsif (clk'event and clk = '1') then
    state_reg <= state_next;
    a_reg <= a_next;
    n_reg <= n_next;
    r_reg <= r_next;

    end if;

end process;

-- combinational circuit
process(start, state_reg, a_reg, n_reg, r_reg, a_in, b_in, n_next)
begin
    a_next <= a_reg;
    n_next <= n_reg;
    r_next <= r_reg;
    ready <= '0';

```

Mealy-Controlled RT Operation

```vhdl
case state_reg is
    when idle =>
        if (start = '1') then
            a_next <= unsigned(a_in);
            n_next <= unsigned(b_in);
            r_next <= (others => '0');
            if (a_in = "00000000" or
                b_in = "00000000") then
                state_next <= idle;
            else
                state_next <= op;
            end if;
        else
            state_next <= idle;
        end if;
    else
        state_next <= idle;
    end if;
ready <= '1';
```
Mealy-Controlled RT Operation

```vhdl
when op =>
    n_next <= n_reg - 1;
    r_next <= ("00000000" & a_reg) + r_reg;
    if (n_next = "00000000") then
        state_next <= idle;
    else
        state_next <= op;
    end if;
end case;
end process;
```

```vhdl
r <= std_logic_vector(r_reg);
end mealy_arch;
```

Clock Rate and Performance of FSMD

The maximum clk rate of an FSMD is bounded by the setup time constraint, as it was in our earlier analysis.
Clock Rate and Performance of FSMD

Unfortunately, an FSMD is more difficult to analyze because of the interaction between the control and data path loops.

The interaction occurs by virtue of the control signals that control the data path, and the status signals generated by the data path.

The exact value depends on where the control signals are needed and where the status signals are generated.

Although software is needed to determine the exact maximum clock rate, it is possible, however, to establish a bound by considering best and worst case scenarios.

The timing parameters for the control path are the same as those discussed earlier for an FSM:

- $T_{cq(state)}$
- $T_{setup(state)}$
- T_{next} (max delay of next state logic)
- T_{output} (max delay of output logic)
Clock Rate and Performance of FSMD

The timing parameters for the data path are as follows

- $T_{cq(data)}$
- $T_{setup(data)}$
- T_{func} (max delay of functional units -- likely to be the largest)
- T_{route} (max delay of routing MUXes)
- T_{dp} (max delay of combo logic in data path -- sum of T_{func} and $2T_{route}$)

T_c is used for the clock period

In the best-case scenario, the control signals are needed at late stage in a data path operation and the status signals are generated in an early stage.
Clock Rate and Performance of FSMD

The time line under the best case scenario

The **minimum clk period** of the FSMD is the same as the clk period of the *data path*

\[T_c = T_{cq}(data) + T_{dp} + T_{setup}(data) \]
Clock Rate and Performance of FSMD

The **worst-case scenario** occurs when the *control signals* are needed at early stage and the *status signals* available at late stage.

Here, the data path MUST wait for the FSM to generate the output signals.

And the control path MUST wait for the status signals to generate the next-state value.

Except for the registers, there is *no overlap* between the control path and data path (see next slide).

The minimum clk period is the delay of **all** combinational components.
Clock Rate and Performance of FSMD

Time line of **worst case** scenario

Worst case timing

\[T_c = T_{cq(state)} + T_{output} + T_{dp} + T_{next} + T_{setup(state)} \]
Clock Rate and Performance of FSMD

From these two extreme scenarios, we can establish the timing bounds (assuming the state register and data register have similar timing characteristics)

\[T_{cq} + T_{dp} + T_{setup} \leq T_c \leq \]

\[T_{cq} + T_{output} + T_{dp} + T_{next} + T_{setup} \]

Bounds on the **maximum clk frequency** are given by

\[\frac{1}{T_{cq} + T_{output} + T_{dp} + T_{next} + T_{setup}} \leq f \leq \]

\[\frac{1}{T_{cq} + T_{dp} + T_{setup}} \]

For a design with a complex data path, \(T_{dp} \) will be much larger than \(T_{next} \) and \(T_{output} \) and therefore the difference between the min and max bound is small.

For a design with a complex control path, we need to minimize \(T_{next} \) and \(T_{output} \) to maximize performance, and therefore, we need to isolate and optimize the FSM.
Performance of FSMD

The computation performed by an FSMD usually takes many clk cycles (K) to complete, and is given by

$$\text{Total time} = K \times T_c$$

The value K is determined by the algorithm, input patterns etc.

There are usually trade-offs associated with K and T_c

For example, it is usually possible to **merge** computation steps, reducing the number of states but increasing T_c because of the larger T_{dp}

On the other hand, it is also possible to divide an operation into smaller steps, reducing T_c but increasing K (the number of steps)

Consider the multiplier, where b_{in} is an 8-bit input

Best case: $b_{\text{in}} = 0 \Rightarrow K = 2$

Worst case: $b_{\text{in}} = 255 \Rightarrow K = 257$

For an n-bit input:

Worst: $K = 2 + (2^n-1)$ (2 is for the *idle* and *load* states)
Sequential Add-and-Shift Multiplier

The fact that this multiplication algorithm is proportional to 2^n makes it impractical.

A better algorithm: *sequential add-and-shift* multiplier

<table>
<thead>
<tr>
<th>\times</th>
<th>a_3</th>
<th>a_2</th>
<th>a_1</th>
<th>a_0</th>
<th>multiplicand</th>
<th>multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_3</td>
<td>a_3b_0</td>
<td>a_2b_0</td>
<td>a_1b_0</td>
<td>a_0b_0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_2</td>
<td>a_3b_1</td>
<td>a_2b_1</td>
<td>a_1b_1</td>
<td>a_0b_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_1</td>
<td>a_3b_2</td>
<td>a_2b_2</td>
<td>a_1b_2</td>
<td>a_0b_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_0</td>
<td>a_3b_3</td>
<td>a_2b_3</td>
<td>a_1b_3</td>
<td>a_0b_3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The algorithm involves three tasks:
- Multiply the digits of the multiplier (b_3, b_2, b_1 and b_0) by the multiplicand (A) one at a time to obtain b_3*A, b_2*A, b_1*A and b_0*A.

The b_i*A operation is bitwise, and defined as

$$b_iA = (a_3 \cdot b_i, a_2 \cdot b_i, a_1 \cdot b_i, a_0 \cdot b_i)$$
Sequential Add-and-Shift Multiplier

- Shift $b_i \times A$ to the left by i positions according to the position of digits b_i
- Add the shifted $b_i \times A$ to obtain the final product

```c
n = 0;
p = 0;
while (n != 8)
{
    if (b_in(n) = 1) then
    { p = p + (a_in << n); }
    n = n + 1;
}
return(p);
```

In hardware, it is expensive to do indexing, i.e., $b_{in}(n)$ and to build a generic shifter, i.e., $a_{in} \ll n$

Instead, we can carry out an equivalent operation by shifting a_{in} and b_{in} by one position in each iteration
Sequential Add-and-Shift Multiplier

We also count have n count down to remove the constant dependency and allow for a generic operand width

\[
a = a_{\text{in}}; \\
b = b_{\text{in}}; \\
n = 8; \\
p = 0;
\]

while (n != 0)

{
 if (b(0) = 1)
 { p = p + a; }
 a = a << 1;
 b = b >> 1;
 n = n - 1;
}

return (p);
Sequential Add-and-Shift Multiplier

Last, we convert the while loop to an if and goto stmt:

\[
\begin{align*}
a &= a_{\text{in}}; \\
b &= b_{\text{in}}; \\
n &= 8; \\
p &= 0;
\end{align*}
\]

\[
op: \quad \textbf{if} \ (b(0) = 1) \ \textbf{then} \\
\{ \ p = p + a; \} \\
a &= a \ll 1; \\
b &= b \gg 1; \\
n &= n - 1;
\]

\[
\textbf{if} \ (n \neq 0) \ \textbf{then} \\
\{ \ \text{goto op}; \}
\]

\[
\text{return}(p);
\]
Sequential Add-and-Shift Multiplier

The ASMD chart
Sequential Add-and-Shift Multiplier

Since the two shift operations and the counter decrementing operation are independent, they are scheduled in the same state (performed in parallel).

Also, due to the **delayed store** of the RT operations, we use the *next* values, i.e., \(b_{next}(0) \) and \(n_{next} \), of the registers in the decision boxes.

Last, the two shift operations, \(a \ll 1 \) and \(b \gg 1 \), can use the *concatenation* operation and require no logic.

```vhdl
architecture shift_add_raw_arch of seq_mult is

constant WIDTH: integer := 8;

-- width of the counter
constant C_WIDTH: integer := 4;
constant C_INIT: unsigned(C_WIDTH-1 downto 0) := "1000";

type state_type is (idle, add, shift);
signal state_reg, state_next: state_type;
signal b_reg, b_next: unsigned(WIDTH-1 downto 0);
```

```
Sequential Add-and-Shift Multiplier

```vhdl
signal a_reg, a_next: unsigned(2*WIDTH-1 downto 0);
signal n_reg, n_next: unsigned(C_WIDTH-1 downto 0);
signal p_reg, p_next: unsigned(2*WIDTH-1 downto 0);
begin

-- state and data registers
process (clk, reset)
begin
 if (reset = '1') then
 state_reg <= idle;
 b_reg <= (others => '0');
 a_reg <= (others => '0');
 n_reg <= (others => '0');
 p_reg <= (others => '0');
 elsif (clk'event and clk = '1') then
 state_reg <= state_next;
 b_reg <= b_next;
 a_reg <= a_next;
end if;
end process;
```

---

Hardware Design with VHDL Register Transfer Methodology I
ECE 443

ECE UNM 64
(11/23/09)
Sequential Add-and-Shift Multiplier

n_reg <= n_next;
p_reg <= p_next;

end if;
end process;

-- combinational circuit

process (start, state_reg, b_reg, a_reg, n_reg,
p_reg, b_in, a_in, n_next, a_next)
begin
b_next <= b_reg;
a_next <= a_reg;
n_next <= n_reg;
p_next <= p_reg;
ready <= '0';
case state_reg is
  when idle =>
    if (start = '1') then
      b_next <= unsigned(b_in);
end if;
end process;
Sequential Add-and-Shift Multiplier

\[
\begin{align*}
\text{a\textunderscore next} & \leq "00000000" \& \text{unsigned(a\textunderscore in)}; \\
\text{n\textunderscore next} & \leq \text{C\textunderscore INIT}; \\
\text{p\textunderscore next} & \leq (\text{others} \Rightarrow '0'); \\
\text{if (b\textunderscore in}(0) = '1') \text{ then} \\
\text{state\textunderscore next} & \leq \text{add}; \\
\text{else} \\
\text{state\textunderscore next} & \leq \text{shift}; \\
\text{end if}; \\
\text{else} \\
\text{state\textunderscore next} & \leq \text{idle}; \\
\text{end if}; \\
\text{ready} & \leq '1'; \\
\text{when add} \Rightarrow \\
\text{p\textunderscore next} & \leq \text{p\textunderscore reg} + \text{a\textunderscore reg}; \\
\text{state\textunderscore next} & \leq \text{shift}; \\
\text{when shift} \Rightarrow \\
\text{n\textunderscore next} & \leq \text{n\textunderscore reg} - 1; \\
\text{b\textunderscore next} & \leq '0' \& \text{b\textunderscore reg (WIDTH}-1 \text{ downto 1});
\end{align*}
\]
Sequential Add-and-Shift Multiplier

\[
a_{\text{next}} \leq a_{\text{reg}}(2 \times \text{WIDTH} - 2 \ \text{downto} \ 0) \ & \ '0' \; ;
\]

\[
\text{if} \ (n_{\text{next}} \neq "0000") \ \text{then}
\]

\[
\text{if} \ (a_{\text{next}}(0) = '1') \ \text{then}
\]

\[
\text{state}_{\text{next}} \leq \text{add} ;
\]

\[
\text{else}
\]

\[
\text{state}_{\text{next}} \leq \text{shift} ;
\]

\[
\text{end \ if} ;
\]

\[
\text{else}
\]

\[
\text{state}_{\text{next}} \leq \text{idle} ;
\]

\[
\text{end \ if} ;
\]

\[
\text{end \ case} ;
\]

\[
\text{end \ process} ;
\]

\[
r \leq \text{std\_logic\_vector}(p_{\text{reg}}) ;
\]

\[
\text{end \ shift\_add\_raw\_arch} ;
\]
Sequential Add-and-Shift Multiplier

For an 8-bit input

Best case: $b = 0 \Rightarrow K = 1 + 8$ (shift only)

Worst case: $b = 255 \Rightarrow K = 1 + 8\times2$ (add and shift)

For an $n$-bit input:

Worst case: $K = 2\times n + 1$

There are several opportunities for improvement

- The operations in the add and shift states are independent and therefore, these two states can be merged

  A conditional output box is used to implement the $p <- p + a$ operation

- In the data path, when $a$ is added to the partial products, only the eight leftmost bits are involved and the remaining (trailing) bits are kept unchanged

  We can reduce the 16-bit adder to a 9-bit adder (8-bit operand and 1-bit carry) by shifting the partial product to the right one position in each iteration

This also eliminates the need to shift multiplier $A$ and reduces the width of the $a$ register by half
Sequential Add-and-Shift Multiplier

Part (b) shows the improvements

(a) Initial design

(b) "Shifting p register" design
Sequential Add-and-Shift Multiplier

The last improvement involves using the unused portion of the \( p \) register for operand \( b \)

Only the left portion of the \( p \) register contains valid data initially

The valid portion expands to the right one position in each iteration when the shift-right operation is performed

On the other hand, the \( b \) register has 8 valid bits initially and shrinks when the shift operation removes the LSB on each iteration
Sequential Add-and-Shift Multiplier
Final ASMD

Diagram showing the flowchart for the Sequential Add-and-Shift Multiplier.
Sequential Add-and-Shift Multiplier

architecture shift_add_better_arch of seq_mult is
constant WIDTH: integer := 8;
-- width of the counter
constant C_WIDTH: integer := 4;
constant C_INIT:
    unsigned(C_WIDTH-1 downto 0) := "1000";
type state_type is (idle, add_shft);
signal state_reg, state_next: state_type;
signal a_reg, a_next: unsigned(WIDTH-1 downto 0);
signal n_reg, n_next: unsigned(C_WIDTH-1 downto 0);
signal p_reg, p_next: unsigned(2*WIDTH downto 0);

-- alias for the upper part and lower parts of p_reg
alias pu_next: unsigned(WIDTH downto 0) is
    p_next(2*WIDTH downto WIDTH);
alias pu_reg: unsigned(WIDTH downto 0) is
    p_reg(2*WIDTH downto WIDTH);
Sequential Add-and-Shift Multiplier

alias pl_reg: unsigned(WIDTH-1 downto 0) is
p_reg(WIDTH-1 downto 0);

begin

-- state and data registers
process (clk, reset)

begin
if (reset = '1') then
    state_reg <= idle;
    a_reg <= (others => '0');
    n_reg <= (others => '0');
    p_reg <= (others => '0');
elsif (clk'event and clk = '1') then
    state_reg <= state_next;
    a_reg <= a_next;
    n_reg <= n_next;
    p_reg <= p_next;
end if;
end process;
Sequential Add-and-Shift Multiplier
-- combinational circuit

process (start, state_reg, a_reg, n_reg, p_reg,
a_in, b_in, n_next, p_next)
begin
a_next <= a_reg;
n_next <= n_reg;
p_next <= p_reg;
ready <= '0';
case state_reg is
when idle =>
if (start = '1') then
  p_next <= "000000000" & unsigned(b_in);
a_next <= unsigned(a_in);
n_next <= C_INIT;
state_next <= add_shft;
else
  state_next <= idle;
end if;
end case;
end process;
Sequential Add-and-Shift Multiplier

ready <= '1';

when add_shft =>
  n_next <= n_reg - 1;

-- add if multiplier bit is '1'
  if (p_reg(0) = '1') then
    pu_next <= pu_reg + ('0' & a_reg);
  else
    pu_next <= pu_reg;
  end if;

-- shift
  p_next <= '0' & pu_next &
    pl_reg(WIDTH-1 downto 1);

  if (n_next /= "0000") then
    state_next <= add_shft;
  end if;
Sequential Add-and-Shift Multiplier

```vhdl
else
 state_next <= idle;
end if;
end case;
end process;

r <= std_logic_vector(p_reg(2*WIDTH-1 downto 0));
end shift_add_better_arch;
```

Comparison of three designs

<table>
<thead>
<tr>
<th>Design method</th>
<th># Clock cycles</th>
<th>Size of functional units</th>
<th># Register bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive-addition</td>
<td>2 to $2^n + 1$</td>
<td>$2n$-bit adder, $n$-bit decrementor</td>
<td>$4n$</td>
</tr>
<tr>
<td>Add-and-shift (original)</td>
<td>$n + 1$ to $2n + 1$</td>
<td>$2n$-bit adder, $\lceil \log_2(n+1) \rceil$-bit dec</td>
<td>$5n + \lceil \log_2(n+1) \rceil$</td>
</tr>
<tr>
<td>Add-and-shift (refined)</td>
<td>$n + 1$</td>
<td>$n$-bit adder, $\lceil \log_2(n+1) \rceil$-bit dec</td>
<td>$3n + \lceil \log_2(n+1) \rceil + 1$</td>
</tr>
</tbody>
</table>