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Register Transfer Methodology: Principle

We typically use algorithms to accomplish complex tasks

Although it is common to execute algorithms on a GPU, a hardware implementation

is sometimes needed because of performance constraints

RT methodology is a design process that describes system operation by a sequence of

data transfers and manipulations among registers

This methodology supports the sequential execution, e.g., data and control dependen-

cies, required to carry out an algorithm

Consider an algorithm that computes the sum of 4 numbers, divides by 8 and rounds

the result to the nearest integer

size = 4;

sum = 0;

for i in (0 to size-1) do

   { sum = sum + a(i); }
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q = sum/8;

r = sum rem 8;

if (r > 3)

   { q = q + 1; }

outp = q;

Algorithm characteristics:

• Algorithms use variables, memory locations with a symbolic addresses

Variables can be used to store intermediate results

• Algorithms are executed sequentially and the order of the steps is important

As we know, variables and sequential execution are supported as a special case and

are encapsulated inside a process

However, variables are NOT treated as symbolic names for memory locations!

We also note that the sequential semantics of an algorithm are very different from the

concurrent model of hardware
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What we have learned so far is how to transfer sequential execution into a struc-

tural data flow, where the sequence is embedded in the ’flow of data’

This is accomplished by mapping an algorithm into a system of cascading hard-

ware blocks, where each block represents a statement in the algorithm

The previous algorithm can be unrolled into a data flow diagram

sum <= 0;

sum0 <= a(0);

sum1 <= sum0 + a(1);

sum2 <= sum1 + a(2);

sum3 <= sum2 + a(3);

q <= "000" & sum3(8 downto 3);

r <= "00000" & sum3(2 downto 0);

outp <= q + 1 when (r > 3) else

        q;

Note that this is very different from the algorithm -- the circuit is a pure combina-

tional (and parallel) logic circuit with NO memory elements
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Block diagram

The problem is the structural data flow implementation is that it can only be applied

to trivial problems and is not flexible (is specific to an array of 4 values)

A better implementation is to share one adder in a time-multiplexed manner (as is

done on a GPU)

Register Transfer Methodology introduces hardware that matches the variable and

sequential execution model

• Registers are used to store intermediate data (model symbolic variables)

• A datapath is used to implement the operations

• A control path (FSM) is used to specify the order of register operations
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The control, data path and registers are implemented as an FSMD (FSM with a data-

path)

FSMDs are key to realizing RT methodology

The basic action in RT methodology is the register transfer operation:

The destination register is shown on the left while the source registers are listed on

the right

The function f uses the contents of the source registers, plus external outputs in some

cases

Difference between an algorithm and an RT register is the implicit embedding of clk

• At the rising edge of the clock, the output of registers rsrc1, rsrc2 become available

• The output are passed to a combinational circuit that represents f( )

• At the next rising edge of the clock, the result is stored into rdest

r
dest

f r
src1

r
src2

… r
src3

, , ,( )←
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The function f() can be any expression that is representable by a combinational circuit

Note that we will continue to use the notation _reg and _next for the current output

and next input of a register

The notation

is translated as

r1_next <= r1_reg + r2_reg;

r1_reg <= r1_next; -- on the next rising edge of clk

Block diagram and timing diagram are shown below
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Be sure to study this carefully because it is heavily used in digital systems

Multiple RT operations

An algorithm consists of many steps and a destination register my be loaded

with different values over time, e.g., initialized to 0, stores result of addition,

etc.

r r1 r2+←
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Consider the following sequence of operations

Since r1 is the destination of multiple operations, we need a MUX to route the proper

value to its input

An FSM is used to drive the control signals so that the sequence of operations are

carried out in the order given

The FSM can also implement conditional execution based, e.g., on external signals
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Note that the state transitions take place on the rising edge of clk -- the same instant

that the RT registers are updated

So we can embed the RT operations within the state boxes/arcs of the FSM

An extended ASM chart known as ASMD (ASM with datapath) chart can be used to

represent the FSMD

**

** IMPORTANT: the new value of r1 is only available when the FSM exits the s1 state

delayed
store
operation
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NOTE: When a register is NOT being updated with a new value, it is assumed that it

maintains its current value, i.e.,

Conceptual block diagram of an FSMD

r
1

r
1

← These actions are NOT shown in the ASMD/state chart

Data Path

Control Path

Regular sequential circuit

Random sequential circuit

Study and become familiar
with the input/output
signals of both modules
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Repetitive addition multiplier

We built a combinational multiplier earlier which used multiple adders in a data-

flow configuration

It’s also possible to build it using one adder and a sequential algorithm

Basic algorithm:  7*5 = 7+7+7+7+7

if (a_in=0 or b_in=0) then

   { r = 0; }

else

   {

   a = a_in;

   n = b_in;

   r = 0;

while (n != 0)

      {

      r = r + a;
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      n = n - 1;

      }

   }

return(r);

This code is a better match to an ASMD because ASMD does not have a loop con-

struct

if (a_in = 0 or b_in = 0) then

   { r = 0; }

else

   {

   a = a_in;

   n = b_in;

   r = 0;

op:  r = r + a;

   n = n - 1;

if (n = 0) then

      { goto stop; }
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else

      { goto op; }

   }

stop: return(r);

To implement this in hardware, we must first define the I/O signals

• a_in, b_in: 8-bit unsigned input

• clk, reset: 1-bit input

• start: 1-bit command input

• r: 16-bit unsigned output

• ready: 1-bit status output -- asserted when unit has completed and is ready again

The start and ready signals are added to support sequential operation

When this unit is embedded in a larger design, and the main system wants to perform

multiplication

• It checks ready

• If ’1’, it places inputs on a_in and b_in and asserts the start signal
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The ASMD uses n, a and r data registers to emulate the three variables

Decision boxes are used to
implement the if stmts

One difference between the
pseudo code and the ASMD
is the parallelism available
in the latter

scheduled in the same state
When RT operations are

they execute in parallel
in that clock cycle, e.g., op
state

scheduled in the same state
Multiple operations can be

if enough hardware resources
are available and there are
no data dependencies
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With the ASMD chart available, we can refine the original block diagram

We first divide the system into a data path and a control path

For the control path, the input signals are start, a_is_0, b_is_0 and count_0 -- the first

is an external signal, the latter three are status signals from the data path

These signals constitute the inputs to the FSM and are used in the decision boxes

The output of the control path are ready and control signals that specify the RT oper-

ations of the data path

In this example, we use the state register as the output control signals

Construction of the data path is easier if it is handled as follows:

• List all RT operations

• Group RT operation according to the destination register

• Add combinational circuit/mux

• Add status circuits
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For example

• RT operation with the r register

• RT operations with the n register

• RT operations with the a register

Note that the default operations MUST be included to build the proper data path

r r (in the idle state)←

r 0 (in the load and op states)←

r r a (in the op state)+←

n n (in the idle state)←

n b_in (in the load and ab0 state)←

n n 1 (in the op state)–←

a a (in the idle and op states)←

a a_in (in the load and ab0 states)←
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Let’s consider the circuit associated with the r register

The three possible sources, 0, r and r+a are selected using a MUX

The select signals are labeled symbolically with the state names

The routing specified matches that given on the previous slide

We can repeat this process for the other two registers and combine them

The status signals are implemented using three comparators
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The entire control and data path

Note that some elements
are more complicated than
necessary

For example, the a_next
signal can be replaced
with a register with an
enable signal

Don’t worry, the synthesis
tool will optimize this
design
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The VHDL code follows the block diagram and is divided into seven blocks

• Control path state registers

• Control path next-state logic

• Control path output logic

• Data path data registers

• Data path functional units

• Data path routing network

• Data path status circuit

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity seq_mult is

port(

      clk, reset: in std_logic;

      start: in std_logic;

      a_in, b_in: in std_logic_vector(7 downto 0);
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      ready: out std_logic;

      r: out std_logic_vector(15 downto 0)

   );

end seq_mult;

architecture mult_seg_arch of seq_mult is

constant WIDTH: integer:=8;

type state_type is (idle, ab0, load, op);

signal state_reg, state_next: state_type;

signal a_is_0, b_is_0, count_0: std_logic;

signal a_reg, a_next: unsigned(WIDTH-1 downto 0);

signal n_reg, n_next: unsigned(WIDTH-1 downto 0);

signal r_reg, r_next: unsigned(2*WIDTH-1 downto 0);

signal adder_out: unsigned(2*WIDTH-1 downto 0);

signal sub_out: unsigned(WIDTH-1 downto 0);

   begin
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   -- control path: state register

process(clk, reset)

begin

if (reset = ’1’) then

          state_reg <= idle;

elsif (clk’event and clk = ’1’) then

          state_reg <= state_next;

end if;

end process;

   -- control path: next-state/output logic

process(state_reg, start, a_is_0, b_is_0, count_0)

begin

case state_reg is

when idle =>

if (start = ’1’) then

if (a_is_0 = ’1’ or b_is_0 = ’1’) then

                  state_next <= ab0;
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else

                  state_next <= load;

end if;

else

               state_next <= idle;

end if;

when ab0 =>

            state_next <= idle;

when load =>

            state_next <= op;

when op =>

if (count_0 = ’1’) then

               state_next <= idle;

else

               state_next <= op;

end if;

end case;

end process;
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   -- control path: output logic

   ready <= ’1’ when state_reg=idle else ’0’;

   -- data path: data register

process(clk, reset)

begin

if (reset = ’1’) then

         a_reg <= (others=>’0’);

         n_reg <= (others=>’0’);

         r_reg <= (others=>’0’);

elsif (clk’event and clk=’1’) then

         a_reg <= a_next;

         n_reg <= n_next;

         r_reg <= r_next;

end if;

end process;
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   -- data path: routing multiplexer

process(state_reg, a_reg, n_reg, r_reg,

           a_in, b_in, adder_out, sub_out)

begin

case state_reg is

when idle =>

            a_next <= a_reg;

            n_next <= n_reg;

            r_next <= r_reg;

when ab0 =>

            a_next <= unsigned(a_in);

            n_next <= unsigned(b_in);

            r_next <= (others => ’0’);

when load =>

            a_next <= unsigned(a_in);

            n_next <= unsigned(b_in);

            r_next <= (others => ’0’);

when op =>
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            a_next <= a_reg;

            n_next <= sub_out;

            r_next <= adder_out;

end case;

end process;

   -- data path: functional units

   adder_out <= ("00000000" & a_reg) + r_reg;

   sub_out <= n_reg - 1;

   -- data path: status

   a_is_0 <= ’1’ when a_in = "00000000" else ’0’;

   b_is_0 <= ’1’ when b_in = "00000000" else ’0’;

   count_0 <= ’1’ when n_next = "00000000" else ’0’;

   -- data path: output

   r <= std_logic_vector(r_reg);

end mult_seg_arch;



Hardware Design with VHDL Register Transfer Methodology I ECE 443

ECE UNM 26 (11/23/09)

Use of a Register Value in a Decision Box

Most of the translation process is straightforward

One caveat is using a register in a Boolean expression of a decision box

This was avoided in our example by using a_is_0, b_is_0 and count_0 status signals

inside the decision boxes

A more descriptive way is to use registers and input signals in the Boolean exprs.

For example, instead of a_is_0 = 1, we could use a_in = 0

A second example is to (try to) use the n register in the loop termination decision box

Unfortunately, we need to be careful here because the new value of n is not

available until we exit the block

Therefore, the ASMD must differ from the pseudo-code shown earlier

   n = n -1;

   if ( n = 0) then ...
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In the ASMD, the old value of n would be used in the decision box and one extra

iteration would occur (which is INcorrect)

One way to fix this problem is to use the condition of the previous iteration, e.g., n =

1 to terminate the loop (see below Fix 1)

Unfortunately, it is less clear what the intention is

Fix 2 adds a wait state -- this fixes the problem but is clumsy and inefficient

WRONG Fix 1

Fix 2

Fix 3
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The best fix (Fix 3) is to use the next value in the Boolean expression

Since the next value is calculated during the op state, it is available at the end of

the clock cycle and can be used in the decision box

Note that the VHDL code given actually uses the n_next signal

count_0 <= ’1’ when n_next = 0 else ’0’;

To express this in the ASMD chart, we have to split the RT operation

into two parts

Here, the first part indicates that the next value of the r register is calculated and

updated within the current clk cycle

See Fix 3 for an example using the n_next signal

This is best b/c it is consistent with the pseudo-code and has no performance penalty

r f (.)←

r r_next;←

r_next <= f(.)
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The previous 7 segment coding style can be easily reduced to two segments

architecture two_seg_arch of seq_mult is

constant WIDTH: integer := 8;

type state_type is (idle, ab0, load, op);

signal state_reg, state_next: state_type;

signal a_reg, a_next: unsigned(WIDTH-1 downto 0);

signal n_reg, n_next: unsigned(WIDTH-1 downto 0);

signal r_reg, r_next: unsigned(2*WIDTH-1 downto 0);

begin

   -- state and data register

process(clk, reset)

begin

if (reset = ’1’) then

         state_reg <= idle;

         a_reg <= (others => ’0’);

         n_reg <= (others => ’0’);

         r_reg <= (others => ’0’);
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elsif (clk’event and clk = ’1’) then

         state_reg <= state_next;

         a_reg <= a_next;

         n_reg <= n_next;

         r_reg <= r_next;

end if;

end process;

   -- combinational circuit

process(start, state_reg, a_reg, n_reg, r_reg, a_in,

      b_in, n_next)

begin

      -- default value

      a_next <= a_reg;

      n_next <= n_reg;

      r_next <= r_reg;

      ready <=’0’;
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case state_reg is

when idle =>

if (start = ’1’) then

if (a_in = "00000000" or

                    b_in = "00000000") then

                  state_next <= ab0;

else

                  state_next <= load;

end if;

else

                 state_next <= idle;

end if;

            ready <= ’1’;

when ab0 =>

            a_next <= unsigned(a_in);

            n_next <= unsigned(b_in);

            r_next <= (others => ’0’);

            state_next <= idle;
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when load =>

            a_next <= unsigned(a_in);

            n_next <= unsigned(b_in);

            r_next <= (others => ’0’);

            state_next <= op;

when op =>

            n_next <= n_reg - 1;

            r_next <= ("00000000" & a_reg) + r_reg;

if (n_next = "00000000") then

               state_next <= idle;

else

               state_next <= op;

end if;

end case;

end process;

   r <= std_logic_vector(r_reg);

end two_seg_arch;
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Although possible, combining everything into one segment may introduce subtle

problems and is not recommended

architecture one_seg_arch of seq_mult is

constant WIDTH: integer := 8;

type state_type is (idle, ab0, load, op);

signal state_reg: state_type;

signal a_reg, n_reg: unsigned(WIDTH-1 downto 0);

signal r_reg: unsigned(2*WIDTH-1 downto 0);

   begin

process(clk, reset)

variable n_next: unsigned(WIDTH-1 downto 0);

begin

if (reset = ’1’) then

         state_reg <= idle;

         a_reg <= (others => ’0’);

         n_reg <= (others => ’0’);

         r_reg <= (others => ’0’);
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elsif (clk’event and clk = ’1’) then

case state_reg is

when idle =>

if (start = ’1’) then

if (a_in = "00000000" or

                        b_in = "00000000") then

                     state_reg <= ab0;

else

                     state_reg <= load;

end if;

end if;

when ab0 =>

               a_reg <= unsigned(a_in);

               n_reg <= unsigned(b_in);

               r_reg <= (others => ’0’);

               state_reg <= idle;

when load =>

               a_reg <= unsigned(a_in);
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               n_reg <= unsigned(b_in);

               r_reg <= (others => ’0’);

               state_reg <= op;

when op =>

               n_next := n_reg - 1;

               n_reg <= n_next;

               r_reg <= ("00000000" & a_reg) + r_reg;

if (n_next = "00000000") then

                  state_reg <= idle;

end if;

end case;

end if;

end process;

  ready <= ’1’ when (state_reg = idle) else ’0’;

  r <= std_logic_vector(r_reg);

end one_seg_arch;
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There are several subtle problems

• Since a register is inferred for ANY signal within the clause

elsif (clk’event and clk = ’1’) then

the next value of a data register CANNOT be referred by a signal

To overcome this, we must define n_next as a variable for immediate assign-

ment

• To avoid the unnecessary output buffer, the ready output signal has to be moved out-

side the process and be coded as a separate segment

Alternative Design of a Repetitive-Addition Multiplier

We discussed combinational resource sharing earlier

Since FSMD allows RT operations to be scheduled, sharing can be achieved in a

time-multiplexing fashion by assigning the same functional unit in different states

In the repetitive addition multiplier example, the addition and decrement operation

can share a functional unit if they are placed in different states
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Alternative Design of a Repetitive-Addition Multiplier

This requires the op state to be split into op1 and op2 as shown below
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The revised data path uses an additional multiplexer



Hardware Design with VHDL Register Transfer Methodology I ECE 443

ECE UNM 39 (11/23/09)

Alternative Design of a Repetitive-Addition Multiplier

The following code makes explicit the sharing of the functional unit, given the limita-

tions of RT-level optimization within synthesis tools

architecture sharing_arch of seq_mult is

constant WIDTH: integer := 8;

type state_type is (idle, ab0, load, op1, op2);

signal state_reg, state_next: state_type;

signal a_reg, a_next: unsigned(WIDTH-1 downto 0);

signal n_reg, n_next: unsigned(WIDTH-1 downto 0);

signal r_reg, r_next: unsigned(2*WIDTH-1 downto 0);

signal adder_src1,adder_src2:

      unsigned(2*WIDTH-1 downto 0);

signal adder_out: unsigned(2*WIDTH-1 downto 0);

   begin

   -- state and data registers

process(clk, reset)

begin
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if (reset = ’1’) then

         state_reg <= idle;

         a_reg <= (others => ’0’);

         n_reg <= (others => ’0’);

         r_reg <= (others => ’0’);

elsif (clk’event and clk = ’1’) then

         state_reg <= state_next;

         a_reg <= a_next;

         n_reg <= n_next;

         r_reg <= r_next;

end if;

end process;

-- next-state logic/ouput logic and data path routing

process(start, state_reg, a_reg, n_reg, r_reg, a_in,

      b_in, adder_out, n_next)
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begin

      -- defaut value

      a_next <= a_reg;

      n_next <= n_reg;

      r_next <= r_reg;

      ready <=’0’;

case state_reg is

when idle =>

if (start = ’1’) then

if (a_in = "00000000" or

                  b_in="00000000") then

                  state_next <= ab0;

else

                  state_next <= load;

end if;

else

                 state_next <= idle;

end if;
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            ready <=’1’;

when ab0 =>

            a_next <= unsigned(a_in);

            n_next <= unsigned(b_in);

            r_next <= (others => ’0’);

            state_next <= idle;

when load =>

            a_next <= unsigned(a_in);

            n_next <= unsigned(b_in);

            r_next <= (others => ’0’);

            state_next <= op1;

when op1 =>

            r_next <= adder_out;

            state_next <= op2;

when op2 =>

            n_next <= adder_out(WIDTH-1 downto 0);

if (n_next = "00000000") then

               state_next <= idle;
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else

               state_next <= op1;

end if;

end case;

end process;

-- data path input routing and functional units

-- Note the n register is only 8-bits wide

process(state_reg, r_reg, a_reg, n_reg)

begin

if (state_reg = op1) then

         adder_src1 <= r_reg;

         adder_src2 <= "00000000" & a_reg;

else  -- for op2 state

         adder_src1 <= "00000000" & n_reg;

         adder_src2 <= (others => ’1’);

end if;

end process;
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   adder_out <= adder_src1 + adder_src2;

   -- output

   r <= std_logic_vector(r_reg);

end sharing_arch;

Mealy-Controlled RT Operation

The control signals connected to the data path are edge-sensitive, and therefore

Mealy outputs can be used (they are faster and require fewer states)
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As shown, RT operations can appear in the conditional output box of an ASMD chart

Note that this result is computed in parallel with the Moore output (r1) and the com-

parison a > b

However, for the Moore output, there is only one possible outcome (r1 is assigned r1

+ 1)

For the Mealy output, a MUX is added to select r2 or r3 + r4 to store in r2

For the original ASMD chart for the multiplier, the a_in and b_in signals are used in

both the idle state (for comparison) and the load and ab0 states for loading

This requires the external system that ’calls’ the multiplier to hold the a_in and b_in

signals for two clock cycles

The following modification to the ASMD uses Mealy-controlled RT operations to

eliminate the two clock cycle requirement by merging ab0 and load states to idle

r
2

r
3

r
4

+←
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The RT operations are moved into a conditional output box

Note that this change reduces the number of states from 4 to 2 and improves the per-

formance
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architecture mealy_arch of seq_mult is

constant WIDTH: integer := 8;

type state_type is (idle, op);

signal state_reg, state_next: state_type;

signal a_reg, a_next: unsigned(WIDTH-1 downto 0);

signal n_reg, n_next: unsigned(WIDTH-1 downto 0);

signal r_reg, r_next: unsigned(2*WIDTH-1 downto 0);

begin

   -- state and data registers

process(clk, reset)

begin

if (reset = ’1’) then

         state_reg <= idle;

         a_reg <= (others => ’0’);

         n_reg <= (others => ’0’);

         r_reg <= (others => ’0’);
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elsif (clk’event and clk = ’1’) then

         state_reg <= state_next;

         a_reg <= a_next;

         n_reg <= n_next;

         r_reg <= r_next;

end if;

end process;

   -- combinational circuit

process(start, state_reg, a_reg, n_reg, r_reg, a_in,

      b_in, n_next)

begin

      a_next <= a_reg;

      n_next <= n_reg;

      r_next <= r_reg;

      ready <=’0’;
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case state_reg is

when idle =>

if (start = ’1’) then

               a_next <= unsigned(a_in);

               n_next <= unsigned(b_in);

               r_next <= (others => ’0’);

if (a_in = "00000000" or

                  b_in = "00000000") then

                  state_next <= idle;

else

                  state_next <= op;

end if;

else

               state_next <= idle;

end if;

            ready <=’1’;
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when op =>

            n_next <= n_reg - 1;

            r_next <= ("00000000" & a_reg) + r_reg;

if (n_next = "00000000") then

               state_next <= idle;

else

               state_next <= op;

end if;

end case;

end process;

   r <= std_logic_vector(r_reg);

end mealy_arch;

Clock Rate and Performance of FSMD

The maximum clk rate of an FSMD is bounded by the setup time constraint, as it was

in our earlier analysis
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Unfortunately, an FSMD is more difficult to analyze because of the interaction

between the control and data path loops

The interaction occurs by virtue of the control signals that control the data path,

and the status signals generated by the data path

The exact value depends on where the control signals are needed and where the sta-

tus signals are generated

Although software is needed to determine the exact maximum clock rate, it is possi-

ble, however, to establish a bound by considering best and worst case scenarios

The timing parameters for the control path are the same as those discussed earlier for

an FSM

• Tcq(state)

• Tsetup(state)

• Tnext (max delay of next state logic)

• Toutput (max delay of output logic)
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The timing parameters for the data path are as follows

• Tcq(data)

• Tsetup(data)

• Tfunc (max delay of functional units -- likely to be the largest)

• Troute (max delay of routing MUXes)

• Tdp (max delay of combo logic in data path -- sum of Tfunc and 2*Troute

Tc is use for the clock period

In the best-case scenario, the control signals are needed at late stage in a data path

operation and the status signals are generated in an early stage
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The time line under the best case scenario

The minimum clk period of the FSMD is the same as the clk period of the data path

Tc = Tcq(data) + Tdp + Tsetup(data)
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The worst-case scenario occurs when the control signals are needed at early stage

and the status signals available at late stage

Here, the data path MUST wait for the FSM to generate the output signals

And the control path MUST wait for the status signals to generate the next-state value

Except for the registers, there is no overlap between the control path and data path

(see next slide)

The minimum clk period is the delay of all combinational components
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Time line of worst case scenario

Worst case timing

Tc = Tcq(state) + Toutput + Tdp + Tnext + Tsetup(state)
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From these two extreme scenarios, we can establish the timing bounds (assuming the

state register and data register have similar timing characteristics)

Tcq + Tdp + Tsetup <= Tc <=

      Tcq + Toutput + Tdp + Tnext + Tsetup

Bounds on the maximum clk frequency are given by

1/(Tcq + Toutput + Tdp + Tnext + Tsetup) <= f <=

      1/(Tcq + Tdp + Tsetup)

For a design with a complex data path, Tdp will be much larger than Tnext and Toutput

and therefore the difference between the min and max bound is small

For a design with a complex control path, we need to minimize Tnext and Toutput to

maximize performance, and therefore, we need to isolate and optimize the FSM
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The computation performed by an FSMD usually takes many clk cycles (K) to com-

plete, and is given by

Total time = K * Tc

The value K is determined by the algorithm, input patterns etc.

There are usually trade-offs associated with K and Tc

For example, it is usually possible to merge computation steps, reducing the

number of states but increasing Tc because of the larger Tdp

On the other hand, it is also possible to divide an operation into smaller steps,

reducing Tc but increasing K (the number of steps)

Consider the multiplier, where b_in is an 8-bit input

Best case: b_in = 0 => K = 2

Worst case: b_in = 255 => K = 257

For an n-bit input:

Worst: K = 2 + (2n-1) (2 is for the idle and load states)
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The fact that this multiplication algorithm is proportional to 2n makes it impractical

A better algorithm: sequential add-and-shift multiplier

The algorithm involves three tasks:

• Multiply the digits of the multiplier (b3, b2, b1 and b0) by the multiplicand (A) one

at a time to obtain b3*A, b2 *A, b1*A and b0*A.

The bi*A operation is bitwise, and defined as

b
i
A a

3
b

i
• a

2
b
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• Shift bi*A to the left by i positions according to the position of digits bi

• Add the shifted bi*A to obtain the final product

n = 0;

p = 0;

while (n != 8)

   {

if (b_in(n) = 1) then

      { p = p + (a_in << n); }

   n = n + 1;

   }

return(p);

In hardware, it is expensive to do indexing, i.e., b_in(n) and to build a generic shifter,

i.e., a_in << n

Instead, we can carry out an equivalent operation by shifting a_in and b_in by one

position in each iteration
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We also count have n count down to remove the constant dependency and allow for a

generic operand width

a = a_in;

b = b_in;

n = 8;

p = 0;

while (n != 0)

   {

if (b(0) = 1 )

      { p = p + a; }

   a = a << 1;

   b = b >> 1;

   n = n - 1;

   }

return(p);
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Last, we convert the while loop to an if and goto stmt

a = a_in;

b = b_in;

n = 8;

p = 0;

op: if (b(0) = 1) then

   { p = p + a; }

a = a << 1;

b = b >> 1;

n = n - 1;

if (n != 0) then

   { goto op; }

return(p);
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The ASMD chart
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Since the two shift operations and the counter decrementing operation are indepen-

dent, they are scheduled in the same state (performed in parallel)

Also, due to the delayed store of the RT operations, we use the next values, i.e.,

b_next(0) and n_next, of the registers in the decision boxes

Last, the two shift operations, a << 1 and b >> 1, can use the concatenation operation

and require no logic

architecture shift_add_raw_arch of seq_mult is

constant WIDTH: integer := 8;

-- width of the counter

constant C_WIDTH: integer := 4;

constant C_INIT:

      unsigned(C_WIDTH-1 downto 0) := "1000";

type state_type is (idle, add, shift);

signal state_reg, state_next: state_type;

signal b_reg, b_next: unsigned(WIDTH-1 downto 0);
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signal a_reg, a_next: unsigned(2*WIDTH-1 downto 0);

signal n_reg, n_next: unsigned(C_WIDTH-1 downto 0);

signal p_reg, p_next: unsigned(2*WIDTH-1 downto 0);

begin

   -- state and data registers

process(clk, reset)

begin

if (reset = ’1’) then

         state_reg <= idle;

         b_reg <= (others => ’0’);

         a_reg <= (others => ’0’);

         n_reg <= (others => ’0’);

         p_reg <= (others => ’0’);

elsif (clk’event and clk = ’1’) then

         state_reg <= state_next;

         b_reg <= b_next;

         a_reg <= a_next;
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         n_reg <= n_next;

         p_reg <= p_next;

end if;

end process;

-- combinational circuit

process(start, state_reg, b_reg, a_reg, n_reg,

      p_reg, b_in, a_in, n_next, a_next)

begin

      b_next <= b_reg;

      a_next <= a_reg;

      n_next <= n_reg;

      p_next <= p_reg;

      ready <=’0’;

case state_reg is

when idle =>

if (start = ’1’) then

               b_next <= unsigned(b_in);
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               a_next <= "00000000" & unsigned(a_in);

               n_next <= C_INIT;

               p_next <= (others => ’0’);

if (b_in(0) = ’1’) then

                  state_next <= add;

else

                  state_next <= shift;

end if;

else

               state_next <= idle;

end if;

            ready <=’1’;

when add =>

            p_next <= p_reg + a_reg;

            state_next <= shift;

when shift =>

            n_next <= n_reg - 1;

            b_next <= ’0’ & b_reg (WIDTH-1 downto 1);
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            a_next <= a_reg(2*WIDTH-2 downto 0) & ’0’;

if (n_next /= "0000") then

               if (a_next(0) = ’1’) then

                  state_next <= add;

else

                  state_next <= shift;

end if;

else

               state_next <= idle;

end if;

end case;

end process;

   r <= std_logic_vector(p_reg);

end shift_add_raw_arch;
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For an 8-bit input

Best case: b = 0 => K = 1 + 8 (shift only)

Worst case: b = 255 => K = 1 + 8*2 (add and shift)

For an n-bit input:

Worst case: K = 2*n + 1

There are several opportunities for improvement

• The operations in the add and shift states are independent and therefore, these two

states can be merged

A conditional output box is used to implement the p <- p + a operation

• In the data path, when a is added to the partial products, only the eight leftmost bits

are involved and the remaining (trailing) bits are kept unchanged

We can reduce the 16-bit adder to a 9-bit adder (8-bit operand and 1-bit carry)

by shifting the partial product to the right one position in each iteration

This also eliminates the need to shift multiplier A and reduces the width of the a

register by half
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Part (b) shows the improvements
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The last improvement involves using the unused portion of the p register for operand

b

Only the left portion of the p register contains valid data initially

The valid portion expands to the right one position in each iteration when the shift-

right operation is performed

On the other hand, the b register has 8 valid bits initially and shrinks when the shift

operation removes the LSB on each iteration
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Final ASMD
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architecture shift_add_better_arch of seq_mult is

constant WIDTH: integer := 8;

-- width of the counter

constant C_WIDTH: integer := 4;

constant C_INIT:

      unsigned(C_WIDTH-1 downto 0) := "1000";

type state_type is (idle, add_shft);

signal state_reg, state_next: state_type;

signal a_reg, a_next: unsigned(WIDTH-1 downto 0);

signal n_reg, n_next: unsigned(C_WIDTH-1 downto 0);

signal p_reg, p_next: unsigned(2*WIDTH downto 0);

-- alias for the upper part and lower parts of p_reg

alias pu_next: unsigned(WIDTH downto 0) is

                 p_next(2*WIDTH downto WIDTH);

alias pu_reg: unsigned(WIDTH downto 0) is

                 p_reg(2*WIDTH downto WIDTH);
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alias pl_reg: unsigned(WIDTH-1 downto 0) is

                 p_reg(WIDTH-1 downto 0);

begin

-- state and data registers

process(clk, reset)

begin

if (reset = ’1’) then

         state_reg <= idle;

         a_reg <= (others => ’0’);

         n_reg <= (others => ’0’);

         p_reg <= (others => ’0’);

elsif (clk’event and clk = ’1’) then

         state_reg <= state_next;

         a_reg <= a_next;

         n_reg <= n_next;

         p_reg <= p_next;

end if;

end process;
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-- combinational circuit

process(start, state_reg, a_reg, n_reg, p_reg,

           a_in, b_in, n_next, p_next)

begin

      a_next <= a_reg;

      n_next <= n_reg;

      p_next <= p_reg;

      ready <=’0’;

case state_reg is

when idle =>

if (start = ’1’) then

               p_next <= "000000000" & unsigned(b_in);

               a_next <= unsigned(a_in);

               n_next <= C_INIT;

               state_next <= add_shft;

else

               state_next <= idle;

end if;
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            ready <=’1’;

when add_shft =>

            n_next <= n_reg - 1;

-- add if multiplier bit is ’1’

if (p_reg(0) = ’1’) then

               pu_next <= pu_reg + (’0’ & a_reg);

else

               pu_next <= pu_reg;

end if;

-- shift

            p_next <= ’0’ & pu_next &

                      pl_reg(WIDTH-1 downto 1);

if (n_next /= "0000") then

               state_next <= add_shft;
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else

               state_next <= idle;

end if;

end case;

end process;

   r <= std_logic_vector(p_reg(2*WIDTH-1 downto 0));

end shift_add_better_arch;

Comparison of three designs


