
Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 1 (12/3/08)

External SRAM

A common type of system RAM is asynchronous static RAM (SRAM).

Access is more complicated than internal memory -- here data, address and control

signals must be asserted in a specific order and held for a specific time.

A memory controller is usually used to shield the synchronous system from SRAM.

It is responsible for generating the properly timed signals and making the

SRAM look ’synchronous’.

Its performance is measured by the number of memory accesses that can be

completed in a given time period.

Designing a memory controller that is optimal is non-trivial.

This set of slides demonstrates the development of a memory controller.

Note that the timing characteristics of an SRAM will differ depending on the

manufacturer, but the same basic principles apply.



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 2 (12/3/08)

External SRAM

Your boards do NOT have external SRAM installed by default but it is available on

an expansion card.

We have Digilent Memory Modules, C2: 1Mb SRAM, no Flash available.

These expansion cards have two banks of ISSI IS61LV5128AL 512K x 8

SRAM

High-performance, low-power CMOS process with 10 ns access times.

Single 3.3V power supply, static operation: no clock or refresh required.

Easy memory expansion with CE (power down) and OE options.

A0-A18 Decoder
512K X 8

Mem array

Column I/O

I/O
data circuit

Control
circuit

CE
OE
WE

Functional
Block Diagram

I/O0-I/O7



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 3 (12/3/08)

External SRAM

Truth Table:

This device has a 19-bit address bus (A0-A18), a bi-directional 8-bit data bus (I/O0-I/

O7) and three active low control signals, CE, OE and WE (see table above).

The timing characteristics of an asynchronouns SRAM are complex and involve

more than 24 parameters -- here we focus on only a few key parameters.

For reading:

• tRC: read cycle time, the min time between two read operations (min 10 ns).

• tAA: address access time, the time required to obtain a stable output data after an

address change (max 10 ns).

• tOHA: output hold time, the time that the output data remains valid after the address

changes (min 2 ns).

Mode WE CE OE I/O operation

Not selected (power-down) X H X High-Z

Output disabled H L H High-Z

Read H L L Dout

Write L L X Din



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 4 (12/3/08)

SRAM Read Timing Parameters

• tDOE: output enable access time, the time required to obtain valid data after the OE

is activated (max 4 ns).

• tHZOE: output enable high-Z time, the time for the tri-state buffer to enter the high-

impedance state after OE is deactivated (max 4 ns).

• tLZOE: output enable to low-Z time, the time for the tri-state buffer to leave the high-

impedance state after OE is activated (min 0 ns).

Reading can be accomplished in two ways, with OE activated, changing the address

will change the data; second, OE can be used (for interleaved read/writes).

Timing diagram for address-controlled read cycle

Address

Dout

tRC

tOHA

tAA

data valid

tOHA

previous data valid



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 5 (12/3/08)

SRAM Read and Write Timing Parameters

Timing diagram for OE controlled read cycle time

For write operations, the following specs are important:

• tWC: write cycle time, the minimal time between two write operations (min 10 ns).

• tSA: address setup time, the minimal time that the address must be stable before WE

is activated (min 0 ns).

• tHA: address hold time, the minimal time that the address must be stable after WE is

deactivated (min 0 ns).

Address

OE

tRC

tAA
tOHA

Dout
HIGH-Z

data valid

tDOE

tLZOE tHZOE



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 6 (12/3/08)

SRAM Read and Write Timing Parameters

• tPWE1: WE pulse width, the minimal time that WE must be asserted (min 8 ns).

• tSD: data setup time, the minimal time that data must be stable before the latching

edge (the edge in which WE changes from 0 to 1) (min 6 ns).

• tHD: data hold time, the minimal time that data must be stable after the latching

edge (min 0 ns).

Data sheet gives several timing diagrams for write, this one for WE controlled

Address

tWC

tSA

WE
tPWE1

tHA

Din datain valid

tSD tHD



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 7 (12/3/08)

Memory Controller

Block diagram of memory controller

• mem: asserted to 1 to initiate a memory operation.

• rw: specifies read (1) or write (0) operation

• addr: is a 19-bit address

• data_f2s: 8-bit data to be written to SRAM.

• data_s2f_r: 8-bit registered data retrieved from SRAM

• data_s2f_ur: 8-bit unregistered data retrieved from SRAM

• ready: status signal indicating whether the controller is ready to accept a new com-

mand -- needed b/c memory operation may take more than 1 clock cycle.

main
system

addr

memory
controller

data_f2s

data_s2f_r

data_s2f_ur

mem

r/w

ready

512 X 8

SRAM

ad

WE

OE

dio

CE0



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 8 (12/3/08)

Memory Controller

The memory controller provides a ’synchronous’ wrap around the SRAM.

When the main system wants to access memory, it places the address and data (for

writes) on the bus and activates mem and rw signals.

On the rising edge of clock, all signals are sampled by the memory controller and the

operation is performed.

For reads, the data becomes available after 1 or 2 clock cycles.

FSM

mem

rw

ready

d

d

dq

q

q
en

en

en

addr

data_f2s

data_s2f_r dio

ad

data_s2f_ur

Memory Controller Block Diagram

WE

OE

two read
ports



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 9 (12/3/08)

Memory Controller

The data path consists of one address register and two data registers, which store the

data for each direction.

Since the data bus, dio, is a bi-directional signal, a tri-state buffer is inserted.

The FSM defines the control path which is constrained by the timing specs.

Consider the control sequence for a read operation:

Here, WE is deactivated during the entire operation.

• Place the address on the ad bus and activate the OE signal.

• Wait for at least tAA. The data from the SRAM becomes available after this

interval.

• Retrieve the data from dio and deactivate the OE signal.

For a write operation:

• Place address on ad bus and data on dio bus and activate WE signal.

• Wait for at least tPWE1.

• Deactivate WE -- data is latched to SRAM on 0 to 1 transition.

• Remove data from the dio bus.



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 10 (12/3/08)

Memory Controller

Note that tHD (data hold time after write ends) is 0 ns for this SRAM.

This means that it is possible to remove the data and deactivate WE simulta-

neously.

However, it is unwise to do this because of variations in propagation delays and

it is best to ensure WE is deactivated first.

We consider first a ’safe’ design -- one in which the design of the memory controller

provides large timing margins.

The controller uses two clock cycles (20 ns with a 100 MHz system clk) to complete

the memory access and requires 3 clk cycles for back-to-back operations.

The FSMD has 5 states, initially is in idle, and starts a memory operation when mem

signal is activated.

The rw signal determines if it is a read or write operation.



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 11 (12/3/08)

Memory Controller

FSMD chart

For read operation, FSM moves to r1. As it does so, the memory address, addr, is

sampled and stored in addr_reg.

ready <= 1

idle

mem = 1F

rw = 1

T
T F

addr_reg<-addr addr_reg<-addr
data_f2s_reg<-data_f2s

oe_n <= 0

r1

r2

oe_n <= 0
data_s2f_reg<-dio

we_n <= 0

w1

tri_n <= 0

tri_n <= 0

w2



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 12 (12/3/08)

Memory Controller

The oe_n signal is activated in both the r1 and r2 states.

The dio data is sampled and stored in data_s2f_reg on the edge returning the FSM to

the idle state.

Note that the oe_n signal is deactivated after the state transition is made, and

therefore after the latching event.

Note that the block diagram shown earlier has two read ports.

The data_s2f_r signal is driven by the registers and becomes available AFTER

the FSM exits the r2 state (and back to idle).

The data on this port remains unchanged until the end of the next read cycle.

The data_s2f_ur signal is connected to the SRAM’s dio bus, with the data

becoming valid at the end of r2 but is REMOVED when the FSM enters idle.

This port allows the main system (for some apps) to sample/store the data in its

own registers, making it available one cycle earlier (same time as data_s2f_r).



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 13 (12/3/08)

Memory Controller

If it had to wait for data_s2f_r to be valid, then the main system would not be able to

latch the data in its own registers until the NEXT clk cycle.

For the write operation, the FSM moves to the w1 state.

The memory address, addr, and the data, data_f2s, are sampled and stored in

addr_reg and data_f2s_reg registers on the transition to w1.

The we_n and tri_n signals are both activated in state w1.

tri_n enables the tri-state buffer to put the data on the SRAM’s dio bus.

On the transition to w2, we_n is deactivated but tri_n remains activated.

This ensures the data is properly latched to the SRAM when we_n changes from

0 to 1.

At the end of the write cycle, the FSM returns to idle and tri_n is deactivated to

remove the data from the dio bus.



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 14 (12/3/08)

Timing Analysis of Memory Controller

We must verify the memory controller meets the timing specs. for the SRAM chip.

With a 100 MHz system clock, the FSM stays in each state for 10 ns.

For a read cycle, oe_n is asserted for two states, totaling 20 ns.

This provides a 10 ns margin over the 10 ns tAA.

Deactivating oe_n in r1 imposes a more stringent timing constraint.

The data is stored in the data_s2f_reg when the FSM moves to idle.

Although oe_n is deactivated at the transition, the data remains valid for a small

interval b/c the FPGA’s pad delay and the tHZOE delay (4 ns) of the SRAM.

During the write cycle, we_n is asserted in w1 -- the 10 ns interval exceeds the tPWE1

spec (min 8 ns).

tri_n remains activated in w2 and thus ensures the data is still stable during the 0 -> 1

transition of the we_n signal.



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 15 (12/3/08)

Timing Analysis of Memory Controller

In terms of performance, both read and write operations take two clock cycles to

complete.

During the read operation, the unregistered data (data_s2f_ur) is available at the end

of the second cycle (right before the rising edge)

While the registered data is available after the clock edge.

Note that both operations require a return to idle and therefore the sustained rate is 3

clocks (not 2).

With regard to the HDL implementation, the memory controller must generate fast,

glitch-free control signals.

The output logic can be modified to include Moore look-ahead output buffers.

This scheme adds a buffer (DFF) for each output signal to remove glitches and

reduce clock-to-output delay.



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 16 (12/3/08)

HDL of Memory Controller

To compensate for the added clock cycle, we ’look ahead’ at the state’s future value

(state_next signal) and use it to replace the state_reg signals in the output logic.

library ieee;

use ieee.std_logic_1164.all;

entity sram_ctrl is

port(

clk, reset: in std_logic;

mem: in std_logic;

rw: in std_logic;

addr: in std_logic_vector(18 downto 0);

data_f2s: in std_logic_vector(7 downto 0);

ready: out std_logic;

data_s2f_r, data_s2f_ur:

out std_logic_vector(7 downto 0);

ad: out std_logic_vector(18 downto 0);

we_n, oe_n: out std_logic;

dio: inout std_logic_vector(7 downto 0);

ce_n: out std_logic); end sram_ctrl;



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 17 (12/3/08)

HDL of Memory Controller

architecture arch of sram_ctrl is

type state_type is (idle, r1, r2, w1, w2);

signal state_reg, state_next: state_type;

signal data_f2s_reg, data_f2s_next:

std_logic_vector(7 downto 0);

signal data_s2f_reg, data_s2f_next:

std_logic_vector(7 downto 0);

signal addr_reg, addr_next:

std_logic_vector(18 downto 0);

signal we_buf, oe_buf, tri_buf: std_logic;

signal we_reg, oe_reg, tri_reg: std_logic;

begin

process(clk, reset)

begin

if (reset = ’1’) then

state_reg <= idle;

addr_reg <= (others => ’0’);



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 18 (12/3/08)

HDL of Memory Controller

data_f2s_reg <= (others => ’0’);

data_s2f_reg <= (others => ’0’);

tri_reg <= ’1’;

we_reg <= ’1’;

oe_reg <= ’1’;

elsif (clk’event and clk = ’1’) then

state_reg <= state_next;

addr_reg <= addr_next;

data_f2s_reg <= data_f2s_next;

data_s2f_reg <= data_s2f_next;

tri_reg <= tri_buf;

we_reg <= we_buf;

oe_reg <= oe_buf;

end if;

end process;



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 19 (12/3/08)

HDL of Memory Controller

-- next state logic

process(state_reg, mem, rw, dio, addr, data_f2s,

data_f2s_reg, data_s2f_reg, addr_reg)

begin

addr_next <= addr_reg;

data_f2s_next <= data_f2s_reg;

data_s2f_next <= data_s2f_reg;

ready <= ’0’;

case state_reg is

when idle =>

if (mem = ’0’) then

state_next <= idle;

else

addr_next <= addr;

if (rw = ’0’) then -- write

state_next <= w1;

data_f2s_next <= data_f2s;

else



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 20 (12/3/08)

HDL of Memory Controller

state_next <= r1;

end if;

end if;

ready <= ’1’;

when w1 =>

state_next <= w2;

when w2 =>

state_next <= idle;

when r1 =>

state_next <= r2;

when r2 =>

data_s2f_next <= dio;

state_next <= idle;

end case;

end process;



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 21 (12/3/08)

HDL of Memory Controller

-- look-ahead output logic

process(state_next)

begin

tri_buf <= ’1’;

we_buf <= ’1’;

oe_buf <= ’1’;

case state_next is

when idle =>

when w1 =>

tri_buf <= ’0’;

we_buf <= ’0’;

when w2 =>

tri_buf <= ’0’;

when r1 =>

oe_buf <= ’0’;

when r2 =>

oe_buf <= ’0’;

end case; end process;



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 22 (12/3/08)

HDL of Memory Controller

-- to main system

data_s2f_r <= data_s2f_reg;

data_s2f_ur <= dio;

-- to SRAM

we_n <= we_reg;

oe_n <= oe_reg;

ad <= addr_reg;

-- I/O for SRAM chip

ce_n <= ’0’;

dio <= data_f2s_reg when tri_reg = ’0’

else (others => ’Z’);

end arch;



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 23 (12/3/08)

Testing the Memory Controller

Basic testing circuit allows testing of a single read and write operation.

The following signals are used to control the operation.

• sw: 4 bits wide and used as data or address input.

• led: 4 bits wide and used to display retrieved data.

• btn(0): When asserted, the current value of sw is loaded to a data register. The out-

put of the register is used as the data input for the write operation.

• btn(1):When asserted, the controller uses the value of sw as a memory address and

performs a write operation.

• btn(2): When asserted, the controller uses the value of sw as a memory address and

performs a read operation. The readout is routed to the led signal.

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity ram_ctrl_test is

port(

clk, reset: in std_logic;

sw: in std_logic_vector(3 downto 0);



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 24 (12/3/08)

Testing the Memory Controller

btn: in std_logic_vector(2 downto 0);

led: out std_logic_vector(3 downto 0);

ad: out std_logic_vector(18 downto 0);

we_n, oe_n: out std_logic;

dio: inout std_logic_vector(7 downto 0);

ce_n: out std_logic

);

end ram_ctrl_test;

architecture arch of ram_ctrl_test is

constant ADDR_W: integer:= 19;

constant DATA_W: integer:= 8;

signal addr: std_logic_vector(ADDR_W-1 downto 0);

signal data_f2s, data_s2f:

std_logic_vector(DATA_W-1 downto 0);

signal mem, rw: std_logic;

signal data_reg: std_logic_vector(3 downto 0);

signal db_btn: std_logic_vector(2 downto 0);



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 25 (12/3/08)

Testing the Memory Controller

begin

ctrl_unit: entity work.sram_ctrl

port map(

clk=>clk, reset=>reset, mem=>mem, rw=>rw,

addr=>addr, data_f2s=>data_f2s,

ready=>open, data_s2f_r=>data_s2f,

data_s2f_ur=>open, ad=>ad, we_n=>we_n,

oe_n=>oe_n, dio=>dio, ce_n=>ce_n);

debounce_unit0: entity work.debounce

port map(

clk=>clk, reset=>reset, sw=>btn(0),

db_level=>open, db_tick=>db_btn(0));

debounce_unit1: entity work.debounce

port map(

clk=>clk, reset=>reset, sw=>btn(1),

db_level=>open, db_tick=>db_btn(1));



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 26 (12/3/08)

Testing the Memory Controller

debounce_unit2: entity work.debounce

port map(

clk=>clk, reset=>reset, sw=>btn(2),

db_level=>open, db_tick=>db_btn(2));

--data registers

process(clk)

begin

if (clk’event and clk = ’1’) then

if (db_btn(0) = ’1’) then

data_reg <= sw;

end if;

end if;

end process;

-- address

addr <= "000000000000000" & sw;



Hardware Design with VHDL Design Example: SRAM ECE 443

ECE UNM 27 (12/3/08)

Testing the Memory Controller

-- command

process(db_btn, data_reg)

begin

data_f2s <= (others => ’0’);

if (db_btn(1) = ’1’) then -- write

mem <= ’1’;

rw <= ’0’;

data_f2s <= "0000" & data_reg;

elsif (db_btn(2) = ’1’) then -- read

mem <= ’1’;

rw <= ’1’;

else

mem <= ’0’;

rw <= ’1’;

end if;

end process;

led <= data_s2f(3 downto 0);

end arch;


