
Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 1 (9/21/09)

Synthesis of VHDL Code

This slide set covers

• Fundamental limitation of EDA software

• Realization of VHDL operator

• Realization of VHDL data type

• VHDL synthesis flow

• Timing consideration

Fundamental limitation of EDA software

Can C-to-hardware be done? No, not really

EDA tools consist of:

• Core: optimization algorithms

• Shell: wrappers around the core to carry out conversions, file operations, etc.

Theoretical computer science defines

• Computability (bounds on what algorithms can do)

• Computation complexity (inherent complexity to arrive at an optimal solution)

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 2 (9/21/09)

Computability and Computational Complexity

A problem is computable if an algorithm exists

Some problems are not computable, e.g., the halting problem

Can we develop a program that takes any program and its input, and determines

whether the computation of that program will eventually halt?

Any attempt to examine the meaning of a program is uncomputable

For computable problems, analysis of computation complexity determines how fast

an algorithm can run

Algorithms are analyzed for both time and space complexity

Computation time depends on the size of the input, the type of processor, program-

ming language, compiler and even coding style

To eliminate the smaller factors, computational analysis focuses only on the order of

the algorithm, as a function of the input size

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 3 (9/21/09)

Big-O notation

f(n) is O(g(n)) if n0 and c can be found to satisfy

f(n) < cg(n) for any n, n > n0

g(n) is usually a simple function: 1, n, log2n, n2, n3, 2n

For example, the following are O(n2)

(0.1n2) <---> (n2 + 5n + 9) <---> (500n2 + 1000000)

Interpretation of Big-O

• Filter out constants and other less important terms

• Focus on scaling factor of an algorithm, i.e., what happens if the input size

increases

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 4 (9/21/09)

Computation complexity

Intractable problems are algorithms with O(2n) -- not computable for large n

Frequently tractable heuristic algorithms exist, that run in polynomial time, but gen-

erate optimal solutions for only some inputs and/or generate sub-optimal solutions

Many problems encountered in synthesis are intractable

Synthesis software limitations

• Synthesis software cannot obtain the optimal solution

• Synthesis should be viewed as a transformation carried out using a local search

• Good VHDL code helps a lot by providing a good starting point for the local search

There are other design tasks that are intractable, and no amount of fast hardware or

clever heuristics can be used to find the optimal solution

Therefore, it is impossible for EDA software to completely automate the design pro-

cess

This limitation is REAL and is HERE TO STAY!

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 5 (9/21/09)

Realization of VHDL Operators

Logic operators: simple, direct mapping

Relational operators

=, /= fast, simple implementation exists

>, <, etc: more complex implementation, larger delay

Addition operator, and others that can be derived from addition including subtraction,

negation and abs, has a multitude of implementations that trade-off speed and area

Even more complex than the relation operators

Synthesis support for other operators, e.g., shifting, multiplication, division, expo-

nentiation, and floating point operations, is sporadic or non-existent

Because of their complexity, you must be extremely careful about using them in

VHDL code

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 6 (9/21/09)

Realization of VHDL Operators

Operator with two constant operands: Simplified in preprocessing such that no

hardware is inferred -- used because they clarify the code

constant OFFSET: integer := 8;

signal boundary: unsigned(8 downto 0);

signal overflow: std_logic;

overflow <= ’1’ when boundary > (2**OFFSET-1) else ’0’;

Operator with one constant operand: Can significantly reduce (cut-in-half) the hard-

ware complexity, e.g., adder vs. incrementer, later implementable with half-adders

y <= rotate_right(x, y); -- full-fledged barrel shifter

y <= rotate_right(x, 3); -- rewiring, easy to implement

y <= x(2 downto 0) & x(7 downto 3); -- rewiring

Another example, 4-bit comparator: x=y vs. x=0

Much easier, i.e., only a 4-input NOR gate

Full logic expression

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 7 (9/21/09)

An Example 0.55 um Standard-Cell CMOS Implementation

Realization of VHDL data type

Use and synthesis of ’Z’ and ’-’ (other values other than ’0’ and ’1’ not used in

synthesis)

’Z’ indicates high impedance (or open circuit)

Not a Boolean value but is exhibited in a physical circuit, e.g., as the output of a

tri-state buffer

a: optimized for
area

d: optimized for
delay

gate count: in
equivalent 2-input
NAND gates

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 8 (9/21/09)

Tri-State Buffer

Tri-state buffer

Major applications

• Bi-directional I/O pins

• Tri-state bus

VHDL description

y <= ’Z’ when oe=’1’ else a_in;

’Z’ cannot be used as input or manipulated

f <= ’Z’ and a;

y <= data_a when in_bus=’Z’ else data_b;

oe: output enable

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 9 (9/21/09)

Tri-State Buffer

Because a tri-state buffer is not an ordinary logic value, it is a good idea to separate it

from regular code

Less clear (cannot be synthesized):

Better:

with sel select

 y <= ’Z’ when "00",

 ’1’ when "01"|"11",

 ’0’ when others;

with sel select

 tmp <= ’1’ when "01"|"11",

 ’0’ when others;

 y <= ’Z’ when sel="00" else tmp;

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 10 (9/21/09)

Bi-directional I/O Pins

An important application of a tri-state buffer

entity bi_demo is

port(bi: inout std_logic;

...

begin

 sig_out <= output_expression;

... <= expression_with_sig_in;

 bi <= sig_out when dir = ’1’ else ’Z’;

 sig_in <= bi;

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 11 (9/21/09)

Bi-directional I/O Pins and Tri-State Bus

sig_in <= bi when dir = ’0’ else ’Z’;

Tri-state bus

Alternative if driving sig_in

with sig_out when dir = ’1’
is a problem

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 12 (9/21/09)

Tri-State Bus

with src_select select

 oe <= "0001" when "00",

 "0010" when "01",

 "0100" when "10",

 "1000" when others;

y0 <= i0 when oe(0)=’1’ else ’Z’;

y1 <= i1 when oe(1)=’1’ else ’Z’;

y2 <= i2 when oe(2)=’1’ else ’Z’;

y3 <= i3 when oe(3)=’1’ else ’Z’;

data_bus <= y0;

data_bus <= y1;

data_bus <= y2;

data_bus <= y3;

Problems with the tri-state bus

• Difficult to optimize, verify and test

• Somewhat difficult to design: is technology dependent and can result in ’contention’

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 13 (9/21/09)

Alternative to Tri-State Bus

Alternative to tri-state bus: mux

with src_select select

 data_bus <= i0 when "00",

 i1 when "01",

 i2 when "10",

 i3 when others;

Use of ’-’

In conventional logic design, ’-’ used as input value: shorthand to make table

compact

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 14 (9/21/09)

Use of ’-’

’-’ as output value: helps simplification, for example

• If ’-’ assigned to 0: ab + ab

• If ’-’ assigned to 1: a + b (much less hardware than if 0)

As input value: (Syntactically correct but Wrong)

y <= "10" when req = "1--" else

 "01" when req = "01-" else

 "00" when req = "001" else

 "00"

Fix

y <= "10" when req(3) = ’1’ else

 "01" when req(3 downto 2) = "01" else

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 15 (9/21/09)

Use of ’-’

 "00" when req(3 downto 1) = "001" else

 "00"

Another fix (must include ’use ieee.numeric_std.all):

y <= "10" when std_match(req, "1--") else

 "01" when std_match(req, "01-") else

 "00" when std_match(req, "001") else

 "00"

Wrong (but syntactically correct):

with req select

 y <= "10" when "1--",

 "01" when "01-",

 "00" when "001",

 "00" when others;

Fix:

with req select

 y <= "10" when "100" | "101" | "110" | "111",

 "01" when "010" | "011",

 "00" when others;

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 16 (9/21/09)

Use of ’-’

’-’ as an output value in VHDL may work with some software

sel <= a & b;

with sel select

 y <= ’0’ when "00",

 ’1’ when "01",

 ’1’ when "10",

 ’-’ when others;

VHDL Synthesis Flow

Synthesis: realize VHDL code using logic cells from the target device’s library

Main steps:

• High-level synthesis (translates an algorithm into an architecture consisting of a

data path and control path -- done by specialized hardware tools)

• RT level synthesis (the rest generate structural netlists)

• Logic synthesis

• Technology mapping

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 17 (9/21/09)

VHDL Synthesis Flow

For complex operators, e.g.,
adder, comparator

Level-by-level
transformation
and optimization

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 18 (9/21/09)

RT Level Synthesis

Realize VHDL code using generic RT-level components

Generic implies that the components are technology independent

Components classified into

• function units: those use to implement logic, relational and arith ops

• routing units: various MUXs to construct routing structure

• storage units: registers and latches

During RT-level synthesis, VHDL statements are converted to structural implementa-

tions (similar to derivation of the conceptual diagrams given earlier)

Some optimizations such as operator sharing, common code elimination and con-

stant propagation can be applied to reduce hardware and improve performance

Unlike gate- and cell-level synthesis, optimizations are performed in an ad hoc way

and scope is very limited

Good design can drastically alter the RT-level structure

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 19 (9/21/09)

Module Generator

The generic RT-level components (from RT-level synthesis) need to be transformed

into lower-level components for further processing

Some components, such as logical operators and MUXs are simple and can be

mapped directly into gate-level components

These are called random logic (low regularity) -- can be optimized later in logic syn-

thesis

Other components such as an adder, subtracter, incrementer, comparator, shifter and

multiplier are more complex and need a module generator

They usually show some kind of repetitive structure, and are called regular logic

Regular logic is usually designed in advance, as presynthesized gate- or cell-level

netlists

Manual design can be more efficient than logic synthesis so these components

are not flattened or optimized with other components during logic synthesis

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 20 (9/21/09)

Logic Synthesis

Implement the circuit with the optimal number of generic gate level components,

such as NAND and NORs

The result is a structural view, expressed as Boolean functions

Logic synthesis can be divided into categories:

• Two-level synthesis: sum-of-product format

• Multi-level synthesis (deals with large fan-ins, can trade-off area and speed)

Multi-level synthesis is more efficient and flexible, but more difficult to carry out

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 21 (9/21/09)

Technology Mapping

Map generic gates to device-dependent logic cells

The technology library is provided by the vendors who manufactured, as in FPGAs,

or will manufacture, as in ASICs, the device

Mapping in standard-cell ASIC

Technology mapping is a difficult
process (intractable) and involves
the use of heuristics and rule-based
algorithms to find sub-optimal
solutions

Std cell libraries usually contain
several hundred cells, such as
simple gates, 1-bit full adders,
MUXs

The nand-not representation is used
to facilitate the mapping process

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 22 (9/21/09)

Technology Mapping

Std cells are ’tuned’ to a
particular technology

They are manually designed
at the transistor level

Multiple versions of the
same function are common,
each trading-off area and
delay

Top design is a one-to-one,
gate-to-cell mapping --
area is 31

Bottom design is optimized
for area by selecting
specific std cells from
library -- result is 17

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 23 (9/21/09)

Technology Mapping

Mapping into an FPGA (with 5-input LUT (Look-Up-Table) cells)

Effective Use of synthesis software

Logic operators: software can do a good job

Relational/Arith operators: manual intervention needed

Direct mapping -- requires 4 LUTs Optimized mapping -- requires 2 LUTs

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 24 (9/21/09)

Effective Use of Synthesis Software

"layout" and "routing structure":

• Silicon chip is 2-dimensional square

• rectangular or tree-shaped circuit is easier to optimize

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 25 (9/21/09)

Timing Considerations

Propagation delay

Synthesis with timing constraint

Hazards

Delay-sensitive design

Propagation Delay

Delay: time required to propagate a signal from an input port to a output port

Cell level delay (vs. RT-level) is the most accurate b/c netlist is final

Simplified model:

The dintrinsic term is the self-loading component, while the r*Cload term is the

driver’s resistance and downstream capacitance components

Remember from basic circuit theory that resistance*capacitance = time (delay)

delay d
intrinsic

rC
load

+=

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 26 (9/21/09)

Propagation Delay

The routing parasitics are not known at synthesis time, only after place and route

In advanced technologies, the impact of wire becomes more significant and must be

considered to obtain an accurate delay estimation

System Delay

There are many paths between the inputs and outputs of a typical circuit

Each of them have different delays -- for overall system timing, we are inter-

ested in the critical path delay

Lumped model of
capacitance (Cload)

adds together all
wire loads (Cwx) and
input loads (Cgx)

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 27 (9/21/09)

System Delay

The worst input-to-output delay

This method has the drawback that the critical path obtained may be a false path

That is, a path along which it is impossible to propagate a signal

Can be obtained from the
netlist by treating it as a
graph and extracting the
longest path

Called the topologically
critical path

This critical path is a false path
because MUXs don’t allow it

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 28 (9/21/09)

System Delay

When estimating RT level delay:

• It is difficult if the design is mainly random logic because the simple logic will go

through many transformations and optimizations

• However, if the design consists of many complex operators (such as addition) and

function blocks, the critical path can be identified

This is true because these components are typically pre-designed and optimized

Synthesis with Timing Constraints

It is possible to reduce by delay at the expense of area, i.e., by adding extra logic

There are multiple implementations that trade-off area and delay

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 29 (9/21/09)

Synthesis with Timing Constraints

Multilevel logic is flexible, making it possible to add additional gates to achieve

shorter delay

Timing constraints are sometimes needed to guarantee a specific performance metric

The synthesis process that considers timing constraints is carried out as follows

• Obtain the minimal-area implementation

• Identify the critical path

• Reduce the delay by adding extra logic

• Repeat 2 & 3 until meeting the constraint

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 30 (9/21/09)

Synthesis with Timing Constraints

It is also possible to perform this process at the RT level

When the design consists of complex operators (blocks), global optimization can be

explored (which is more efficient than synthesis optimization at the cell level)

Improvements can be made at the "architectural" level, which can have a huge impact

on critical path delay and size

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 31 (9/21/09)

Timing Hazards

Propagation delay: time to obtain a stable output

Hazards: the fluctuation in the output occurring during the transient period

• Static hazard: glitch in output when the signal should be stable

• Dynamic hazard: a glitch in output during the transition

Hazards are caused by multiple converging paths of an output port

Static ’0’ hazard because
of extra delay along
a_b_not on transition
of b from 1 to 0

Assume a and c are 1

sh = ab + bc (2-to-1 MUX)

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 32 (9/21/09)

Timing Hazards

Dynamic hazard

Dealing with hazards

Some hazards can be eliminated in theory

Assume a = c = d = 1

Transition of b from 1 to 0

Add an AND gate

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 33 (9/21/09)

Timing Hazards

Eliminating glitches is very difficult in reality, and almost impossible for synthesis

Multiple inputs can change simultaneously (e.g., cycling from 1111 -> 0000 in a

counter)

How do we deal with them?

Ignore glitches in the transient period, e.g., sample after the signal is stabilized

Delay Sensitive Design and its Danger

Boolean algebra is the theoretical model for digital design and most algorithms

used in the synthesis process

This model handles only stabilized signals (no transient behavior)

Delay-sensitive design, on the other hand, depends on the transient behavior

(delay characteristics) of the circuit

Consider the addition of the ac (AND gate) to eliminate the static hazard --

the ac term is redundant UNTIL you consider the transient behavior

Hardware Design with VHDL Synthesis of VHDL Code ECE 443

ECE UNM 34 (9/21/09)

Delay Sensitive Design and its Danger

Another circuit that depends on transient behavior is the edge detection circuit, with

function pulse = a . a

Unfortunately, synthesis software does NOT consider transient behavior and will

optimize and eliminate statements such as:

 pulse <= a and (not a)

Other problems include

• During technology mapping, the gates specified may be re-mapped to other gates

• During placement & routing, wire delays may change creating unexpected results

• Difficult to test and verify (redundant logic is difficult to test for defects)

If delay-sensitive design is really needed, it should be done manually, not by synthe-

sis

