
Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 1 (10/2/09)

Combinational Circuit Design

This slide set covers

• Derivation of efficient HDL description

• Operator sharing

• Functionality sharing

• Layout-related circuits

• General circuits

Operator Sharing

Sharing of resources often results in a performance penalty at the benefit of area

savings

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 2 (10/2/09)

Operator Sharing

Ideally, synthesis software can identify these opportunities automatically, but in prac-

tice, this is rarely the case.

There are usually lots of opportunities to share resources using the basic VHDL con-

structs b/c in many cases, operations are mutually exclusive

The value expressions in priority network and multiplexing network are mutu-

ally exclusive in the sense that only one result is routed to the output

Conditional signal assignment (same for if stmt)

sig_name <= value_expr_1 when boolean_expr_1 else

 value_expr_2 when boolean_expr_2 else

 value_expr_3 when boolean_expr_3 else

 ...

Selected signal assignment (same for case stmt)

with select_expression select

 sig_name <= value_expr_1 when choice_1,

 value_expr_2 when choice_2, ...

 value_expr_n when choice_n;

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 3 (10/2/09)

Operator Sharing

If same operator is used in different expressions, it can be shared

Example 1: Original code:

r <= a+b when boolean_exp else

 a+c;

Revised code: here the operands are routed, not the output of the adder

src0 <= b when boolean_exp else

 c;

r <= a + src0;

Original: Area: 2 adders, 1 MUX, Delay: max(Tadder, Tboolean) + TMUX

With Sharing: Area: 1 adders, 1 MUX, Delay: Tboolean + TMUX + Tadder

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 4 (10/2/09)

Operator Sharing

Example 2: Original code:

process(a,b,c,d,...)

begin

if boolean_exp_1 then

 r <= a+b;

elsif boolean_exp_2 then

 r <= a+c;

else

 r <= d+1;

end if

end process;

Revised code:

process(a,b,c,d,...)

begin

if boolean_exp_1 then

 src0 <= a;

 src1 <= b;

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 5 (10/2/09)

Operator Sharing

elsif boolean_exp_2 then

 src0 <= a;

 src1 <= c;

else

 src0 <= d;

 src1 <= "00000001"; -- MUX with constants can be

end if; -- optimized by synthesis,

end process; -- yielding more area savings

r <= src0 + src1;

Original: Area: 2 adders, 1 inc, 2 MUX

With Sharing: Area: 1 adder, 4 MUX

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 6 (10/2/09)

Operator Sharing

Example 3: Original code:

with sel select

 r <= a+b when "00",

 a+c when "01",

 d+1 when others;

Revised code:

with sel_exp select

 src0 <= a when "00"|"01",

 d when others;

with sel_exp select

 src1 <= b when "00",

 c when "01",

 "00000001" when others;

r <= src0 + src1;

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 7 (10/2/09)

Operator Sharing

Note that the revised implementation has longer delay because of:

• The increased number of cascaded components in some cases

• The restriction on the available parallelism in other cases

Original: Area: 2 adders, 1 inc, 1 MUX

With Sharing: Area: 1 adder, 2 MUX

Note that in the revised scheme, the sel exp Boolean logic MUST be evaluated first

before the addition takes place -- this is not the case in the original version

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 8 (10/2/09)

Operator Sharing

Example 4: Original code:

process(a,b,c,d,...)

begin

if boolean_exp then

 x <= a + b;

 y <= (others=>’0’);

else

 x <= (others=>’1’);

 y <= c + d;

end if;

end process;

Original: Area: 2 adders, 2 MUX

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 9 (10/2/09)

Operator Sharing

Revised code:

process(a,b,c,d,...)

 begin

if boolean_exp then

 src0 <= a;

 src1 <= b;

 x <= sum;

 y <= (others=>’0’);

else

 src0 <= c;

 src1 <= d;

 x <= (others=>’1’);

 y <= sum;

end if;

end process;

sum <= src0 + src1;

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 10 (10/2/09)

Operator Sharing

Worst case situation in which operator has no common sources or destinations

Is the sharing worthwhile in this case?

1 adder saved in original version but 2 MUX added in revised scheme

It depends on the size of the adder -- if optimized for speed, then it can be signif-

icantly larger than 2 MUX

Summary

• Merit of sharing depends on the complexity of the operator and the routing circuit

• Complex operators provide a lot of area savings

• Cost is increased propagation delay because of serial operation

With Sharing: Area:

1 adders, 4 MUX

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 11 (10/2/09)

Functionality Sharing

A large circuit such as a microcontroller includes a lot of functions

Several functions may be related and can share a common circuit

Identifying these opportunities is more difficult and is something synthesis software

can NOT do

Done in an ad hoc manner by designer and is based on his/her expertise

Consider add-sub circuit

Straightforward translation into VHDL:

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity addsub is

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 12 (10/2/09)

Functionality Sharing

port (

 a,b: in std_logic_vector(7 downto 0);

 ctrl: in std_logic;

 r: out std_logic_vector(7 downto 0)

);

end addsub;

architecture direct_arch of addsub is

signal src0, src1, sum: signed(7 downto 0);

begin

 src0 <= signed(a);

 src1 <= signed(b);

 sum <= src0 + src1 when ctrl=’0’ else

 src0 - src1;

 r <= std_logic_vector(sum);

end direct_arch;

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 13 (10/2/09)

Functionality Sharing

This version is translated such that it includes an adder, subtractor and MUX

As we know, in 2’s compliment, subtraction is implemented as a + b + 1

architecture shared_arch of addsub is

signal src0, src1, sum: signed(7 downto 0);

signal cin: signed(0 downto 0); -- carry-in bit

begin

 src0 <= signed(a);

 src1 <= signed(b) when ctrl=’0’ else signed(not b);

 cin <= "0" when ctrl=’0’ else "1";

 sum <= src0 + src1 + cin;

 r <= std_logic_vector(sum);

end shared_arch;

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 14 (10/2/09)

Functionality Sharing

The ’+ 1’ is implemented by setting the carry-in bit to ’1’ of the adder

Most synthesis software should deduce that the ’+ cin’ is one bit and can be imple-

mented in this fashion

Alternatively, you can manually describe the carry-in in the adder by adding an extra

bit to the adder and operands

Original operands a7a6a5a4a3a2a1a0 and b7b6b5b4b3b2b1b0

New operands a7a6a5a4a3a2a1a01 and b7b6b5b4b3b2b1b0cin

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 15 (10/2/09)

Functionality Sharing

After the addition, discard the low order bit

architecture manual_carry_arch of addsub is

 signal src0, src1, sum: signed(8 downto 0);

 signal b_tmp: std_logic_vector(7 downto 0);

 signal cin: std_logic; -- carry-in bit

begin

 src0 <= signed(a & ’1’);

 b_tmp <= b when ctrl=’0’ else

 not b;

 cin <= ’0’ when ctrl=’0’ else

 ’1’;

 src1 <= signed(b_tmp & cin);

 sum <= src0 + src1;

 r <= std_logic_vector(sum(8 downto 1));

end manual_carry_arch;

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 16 (10/2/09)

Functionality Sharing

As we know, ieee.numeric_std provides signed and unsigned, with signed in 2’s com-

plement format

Here, addition and subtraction operations are identical and therefore, the same hard-

ware can be used for either data type

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 17 (10/2/09)

Functionality Sharing

Unfortunately, this is not true for the relational operators, and therefore we need to

craft a control signal into the VHDL code

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity comp2mode is

port(

 a,b: in std_logic_vector(7 downto 0);

 mode: in std_logic;

 agtb: out std_logic

);

end comp2mode;

architecture direct_arch of comp2mode is

signal agtb_signed, agtb_unsigned: std_logic;

begin

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 18 (10/2/09)

Functionality Sharing

 agtb_signed <= ’1’ when signed(a) > signed(b) else

 ’0’;

 agtb_unsigned <= ’1’ when unsigned(a) > unsigned(b)

else ’0’;

 agtb <= agtb_unsigned when (mode=’0’) else

 agtb_signed;

end direct_arch;

To create an opportunity for sharing, we need to handle the sign bit separately for

signed operands

If the sign bits are different, then the positive number is larger for signed

If they are the same, compare the n-1 bits (without MSB) using normal comparison

Consider 1111 (-1), 1100 (-4), 1001(-7) -- after removing the MSB (sign bit)

 111 > 100 > 001

Which is consistent with -1 > -4 > -7, so we can share the LSB compare logic

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 19 (10/2/09)

Functionality Sharing

architecture shared_arch of comp2mode is

 signal a1_b0, agtb_mag: std_logic;

begin

 a1_b0 <= ’1’ when a(7)=’1’ and b(7)=’0’ else

 ’0’;

 agtb_mag <= ’1’ when a(6 downto 0) > b(6 downto 0)

else ’0’;

 agtb <= agtb_mag when (a(7)=b(7)) else

 a1_b0 when mode=’0’ else -- unsigned mode

not a1_b0; -- signed mode

end shared_arch;

Rules are

• If a and b have same sign bit, compare in regular fashion

• If a’s sign bit is ’1’ and b’s sign bit is ’0’, a is greater than b when in unsigned

mode and b is greater than a in signed mode

• If a’s sign bit is ’0’ and b’s sign bit is ’1’, reverse the previous result

New version is about 1/2 size of dual mode version

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 20 (10/2/09)

Functionality Sharing

Assume we need a full comparator, i.e., one that provides greater-than, equal-to and

less-than -- straightforward approach

library ieee;

use ieee.std_logic_1164.all;

entity comp3 is

port(

 a,b: in std_logic_vector(15 downto 0);

 agtb, altb, aeqb: out std_logic

);

end comp3 ;

architecture direct_arch of comp3 is

begin

 agtb <= ’1’ when a > b else ’0’;

 altb <= ’1’ when a < b else ’0’;

 aeqb <= ’1’ when a = b else ’0’;

end direct_arch;

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 21 (10/2/09)

Functionality Sharing

An obvious change is to share the resources of two of the compares to derive the third

Another optimization is to recognize that the equal-to comparator is faster and

smaller than the other two

architecture share2_arch of comp3 is

signal eq, lt: std_logic;

 begin

 eq <= ’1’ when a = b else ’0’;

 lt <= ’1’ when a < b else ’0’;

 aeqb <= eq;

 altb <= lt;

 agtb <= not (eq or lt);

end share2_arch;

Text covers a

• absolute difference circuit

• three function barrel shifter circuit

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 22 (10/2/09)

Layout-Related Circuits

After synthesis, placement and routing will derive the actual physical layout of a dig-

ital circuit on a silicon chip

VHDL cannot specify the exact layout, but it can control the general "shape"

In general, "square" or 2-D circuits are better than a 1-D cascading-chain

•\Conditional signal assignment/if statement form a single "horizontal" cascading

chain

• Selected signal assignment/case statement form a large "vertical" mux

• Neither is ideal

1-D has long delay

Better, 2-D has shorter
delay

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 23 (10/2/09)

Layout-Related Circuits

Consider the reduced-xor circuit (covered before), in which all input bits of the oper-

and are XOR’ed to produce the output

The previous 1-D schematic is described as follows

library ieee;

use ieee.std_logic_1164.all;

entity reduced_xor is

port(

 a: in std_logic_vector(7 downto 0);

 y: out std_logic

);

end reduced_xor;

architecture cascade1_arch of reduced_xor is

begin

 y <= a(0) xor a(1) xor a(2) xor a(3) xor

 a(4) xor a(5) xor a(6) xor a(7);

end cascade1_arch;

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 24 (10/2/09)

Layout-Related Circuits

We can also use an 8-bit internal signal p to represent intermediate results

architecture cascade2_arch of reduced_xor is

signal p: std_logic_vector(7 downto 0);

begin

 p(0) <= ’0’ xor a(0);

 p(1) <= p(0) xor a(1);

 p(2) <= p(1) xor a(2);

 p(3) <= p(2) xor a(3);

 p(4) <= p(3) xor a(4);

 p(5) <= p(4) xor a(5);

 p(6) <= p(5) xor a(6);

 p(7) <= p(6) xor a(7);

 y <= p(7);

end cascade2_arch;

The repetitive nature allows for a more compact vector form as shown below

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 25 (10/2/09)

Layout-Related Circuits

architecture cascade_compact_arch of reduced_xor is

constant WIDTH: integer := 8;

signal p: std_logic_vector(WIDTH-1 downto 0);

 begin

 p <= (p(WIDTH-2 downto 0) & ’0’) xor a;

 y <= p(WIDTH-1);

end cascade_compact_arch;

Although this design uses the minimal number of XOR gates, it suffers from long

propagation delay

Although the synthesis tool is likely to produce a 2-D structure given the simplicity

of this circuit, the following is one way to guarantee it

architecture tree_arch of reduced_xor is

begin

 y <= ((a(7) xor a(6)) xor (a(5) xor a(4))) xor

 ((a(3) xor a(2)) xor (a(1) xor a(0)));

end tree_arch;

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 26 (10/2/09)

Layout-Related Circuits

Comparison of n-input reduced xor

• Cascading chain :

Area: (n-1) xor gates, Delay: (n-1), Coding: easy to modify (scale)

• Tree:

Area: (n-1) xor gates, Delay: log2n, Coding: not so easy to modify

Consider a reduced-xor-vector circuit

Here, all combinations of the lower bits of the input signal are xor’ed to produce 8

outputs, yi

The straightforward (no sharing) implementation is given below

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 27 (10/2/09)

Layout-Related Circuits

library ieee;

use ieee.std_logic_1164.all;

entity reduced_xor_vector is

port(

 a: in std_logic_vector(7 downto 0);

 y: out std_logic_vector(7 downto 0)

);

end reduced_xor_vector;

architecture direct_arch of reduced_xor_vector is

begin

 y(0) <= a(0);

 y(1) <= a(1) xor a(0);

 y(2) <= a(2) xor a(1) xor a(0);

 y(3) <= a(3) xor a(2) xor a(1) xor a(0);

 y(4) <= a(4) xor a(3) xor a(2) xor a(1) xor a(0);

 y(5) <= a(5) xor a(4) xor a(3) xor a(2) xor a(1)

 xor a(0);

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 28 (10/2/09)

Layout-Related Circuits

 y(6) <= a(6) xor a(5) xor a(4) xor a(3) xor a(2)

xor a(1)xor a(0);

 y(7) <= a(7) xor a(6) xor a(5) xor a(4) xor a(3)

xor a(2)xor a(1) xor a(0);

end direct_arch;

This requires 28 xor gates if implemented un-optimized -- there are lots of common

sub-expressions that can be shared

Code that shares is very similar to the reduced-xor code given earlier except all inter-

mediate results are used as outputs

architecture shared1_arch of reduced_xor_vector is

signal p: std_logic_vector(7 downto 0);

begin

 p(0) <= a(0);

 p(1) <= p(0) xor a(1);

 p(2) <= p(1) xor a(2);

 p(3) <= p(2) xor a(3);

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 29 (10/2/09)

Layout-Related Circuits

 p(4) <= p(3) xor a(4);

 p(5) <= p(4) xor a(5);

 p(6) <= p(5) xor a(6);

 p(7) <= p(6) xor a(7);

 y <= p;

end shared1_arch;

As before, the pattern of assignments can be coded more efficiently

architecture shared_compact_ar of reduced_xor_vector is

constant WIDTH: integer := 8;

signal p: std_logic_vector(WIDTH-1 downto 0);

begin

 p <= (p(WIDTH-2 downto 0) & ’0’) xor a;

 y <= p;

end shared_compact_ar;

All of these designs specify a 1-D structure, with the critical path to y(7)

Text gives version with parenthesis to force 2-D tree-type design

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 30 (10/2/09)

Layout-Related Circuits

An ad hoc version that reduces both propagation delay to 3 gates AND uses only 12

xor gates

architecture optimal_tree_arch of reduced_xor_vector is

signal p01, p23, p45, p67, p012,

 p0123, p456, p4567: std_logic;

begin

 p01 <= a(0) xor a(1);

 p23 <= a(2) xor a(3);

 p45 <= a(4) xor a(5);

 p67 <= a(6) xor a(7);

 p012 <= p01 xor a(2);

 p0123 <= p01 xor p23;

 p456 <= p45 xor a(6);

 p4567 <= p45 xor p67;

 y(0) <= a(0);

 y(1) <= p01;

 y(2) <= p012;

 y(3) <= p0123;

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 31 (10/2/09)

Layout-Related Circuits

 y(4) <= p0123 xor a(4);

 y(5) <= p0123 xor p45;

 y(6) <= p0123 xor p456;

 y(7) <= p0123 xor p4567;

end optimal_tree_arch;

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 32 (10/2/09)

Layout-Related Circuits

Comparison of n-input reduced-xor-vector

• Cascading chain

Area: (n-1) xor gates, Delay: (n-1), Coding: easy to modify (scale)

• Multiple trees

Area: O(n2) xor gates, Delay: log2n, Coding: not so easy to modify

• Optimal tree

Area: O(nlog2n) xor gates, Delay: log2n, Coding: difficult to modify

Unlike the previous example, synthesis is not able to convert cascading chain to the

optimal tree (parallel-prefix)

Next consider a barrel shifter -- direct implementation

library ieee;

use ieee.std_logic_1164.all;

entity rotate_right is

port(

 a: in std_logic_vector(7 downto 0);

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 33 (10/2/09)

Layout-Related Circuits

(Barrel shifter)

 amt: in std_logic_vector(2 downto 0);

 y: out std_logic_vector(7 downto 0)

);

end rotate_right;

architecture direct_arch of rotate_right is

begin

with amt select

 y<= a when "000",

 a(0) & a(7 downto 1) when "001",

 a(1 downto 0) & a(7 downto 2) when "010",

 a(2 downto 0) & a(7 downto 3) when "011",

 a(3 downto 0) & a(7 downto 4) when "100",

 a(4 downto 0) & a(7 downto 5) when "101",

 a(5 downto 0) & a(7 downto 6) when "110",

 a(6 downto 0) & a(7) when others; -- 111

end direct_arch;

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 34 (10/2/09)

Layout-Related Circuits

The barrel shifter rotates the input a by the amount specified, from 0 to 7 rotates

The code is realized using eight 1-bit 8-to-1 MUXs

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 35 (10/2/09)

Layout-Related Circuits

Problems with this include

• Wide MUXs cannot be effectively mapped to certain device technologies

• Input wires, a, route to all MUXs, so loading and congestion grows as O(n2)

• The ’single narrow strip’ shape makes place and route difficult

Better to do the wiring in levels

In each level, each bit of the amt signal determines if we rotate or pass through

Note that the rotate amounts are different depending on the bit’s position

After passing through all three levels, the number of rotations performed is equal to

the sum of those performed at each level

amt(2)*22 + amt(1)*21 + amt(0)*20

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 36 (10/2/09)

Layout-Related Circuits

architecture multi_level_arch of rotate_right is

signal le0_out, le1_out, le2_out:

 std_logic_vector(7 downto 0);

begin

 -- level 0, shift 0 or 1 bit

 le0_out <= a(0) & a(7 downto 1) when amt(0)=’1’ else

 a;

 -- level 1, shift 0 or 2 bits

 le1_out <= le0_out(1 downto 0) & le0_out(7 downto 2)

 when amt(1)=’1’ else le0_out;

 -- level 2, shift 0 or 4 bits

 le2_out <= le1_out(3 downto 0) & le1_out(7 downto 4)

when amt(2)=’1’ else le1_out;

 y <= le2_out;

end multi_level_arch;

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 37 (10/2/09)

Layout-Related Circuits

Comparison for n-bit shifter

• Direct implementation

n n-to-1 MUX

Vertical strip with O(n2) input wiring

Code not so easy to modify

• Staged implementation

n*log2n 2-to-1 MUX (8 2-to-1 MUXs at each level for a total of 24)

Rectangular shaped

Code easier to modify

General Examples

• Gray code counter

• Signed addition with status

• Simple combinational multiplier

Gray code is a special sequence of values where only one bit changes in any two suc-

cessive code.

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 38 (10/2/09)

Gray Code

Thus it minimizes the number of transitions that a signal switches between succes-

sive words

Need to implement the gray code incrementer on the right

Straightforward way is to translate the table into a selected signal assignment stmt

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 39 (10/2/09)

Gray Code

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity g_inc is

port(

 g: in std_logic_vector(3 downto 0);

 g1: out std_logic_vector(3 downto 0)

);

end g_inc ;

architecture table_arch of g_inc is

begin

with g select

 g1 <= "0001" when "0000",

 "0011" when "0001",

 "0010" when "0011",

 "0110" when "0010",

 "0111" when "0110",

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 40 (10/2/09)

Gray Code

 "0101" when "0111",

 "0100" when "0101",

 "1100" when "0100",

 "1101" when "1100",

 "1111" when "1101",

 "1110" when "1111",

 "1010" when "1110",

 "1011" when "1010",

 "1001" when "1011",

 "1000" when "1001",

 "0000" when others; -- "1000"

end table_arch;

Although this VHDL code is simple, it is not scalable b/c revisions take on order

O(n2)

Unfortunately, there is no easy algorithm to derive the next Gray code directly

However, an algorithm does exist to convert between binary and Gray code, and

therefore one implementation is to use a binary incrementer

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 41 (10/2/09)

Gray Code

So the algorithm is to 1) convert a Gray code to binary, 2) increment binary and 3)

covert back

The conversion is based on the following

The ith bit (gi) of the Gray code word is ’1’ if the ith bit and (i + 1)th bit, i.e., bi

and bi+1 of the corresponding binary word are different

g
i

b
i

b
i 1+

⊕=

Binary to Gray

b
i

g
i

b
i 1+

⊕=

Gray to Binary

Note recursive expansion is
possible

Very similar to
reduced-xor-vector

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 42 (10/2/09)

Gray Code

architecture compact_arch of g_inc is

constant WIDTH: integer := 4;

signal b, b1: std_logic_vector(WIDTH-1 downto 0);

begin

 -- Gray to binary

 b <= g xor (’0’ & b(WIDTH-1 downto 1));

 -- binary increment

 b1 <= std_logic_vector((unsigned(b)) + 1);

 -- binary to Gray

 g1<= b1 xor (’0’ & b1(WIDTH-1 downto 1));

end compact_arch;

This code is independent of the input size (revision time O(1)) and uses a binary

adder (of which there are many to choose from!)

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 43 (10/2/09)

Signed Addition with Status

The default ’+’ VHDL operator does not allow for status signals

Common status signals reflecting the result of the addition include

• zero: Is the result 0?

• sign: What is the sign of the result?

• overflow: Did the result overflow?

Also, carry signals (carry in and out) pass information between successive additions

Needed, for example, when you build a 64-bit adder from 8-bit adders

Given these status signals, it is important to note that overflow must be checked first

because the other status signals are invalid in this case

The following deductions can be made

• If the two operands have different sign bits, then overflow is NOT possible

• If the two operands and the result have the same sign, then overflow did not occur

• If the two operands have the same sign but the result has a different sign, overflow

occurred

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 44 (10/2/09)

Signed Addition with Status

The following logic expression captures the last condition, with sa, sb and ss repre-

senting the signs of the a and b operands and the sign of the sum, s

Note that zero may be true when it shouldn’t be if overflow occurred, e.g., summing

"1000" and "1000" using a 4-bit adder produces "0000"

Similar arguments hold for sign -- sign of the above is ’0’ but it should be ’1’, there-

fore, if overflow occurs, then the sign signal should be inverted

The carry_in and carry_out signals are appended to the right and left, resp.

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity adder_status is

port (

 a,b: in std_logic_vector(7 downto 0);

overflow s
a

s
b

s
s

••() s
a

s
b

s
s

••()+=

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 45 (10/2/09)

Signed Addition with Status

 cin: in std_logic;

 sum: out std_logic_vector(7 downto 0);

 cout, zero, overflow, sign: out std_logic

);

end adder_status;

architecture arch of adder_status is

signal a_ext, b_ext, sum_ext: signed(9 downto 0);

signal ovf: std_logic;

alias sign_a: std_logic is a_ext(8);

alias sign_b: std_logic is b_ext(8);

alias sign_s: std_logic is sum_ext(8);

begin

-- bit extend the operands on both sides

 a_ext <= signed(’0’ & a & ’1’);

 b_ext <= signed(’0’ & b & cin);

 sum_ext <= a_ext + b_ext;

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 46 (10/2/09)

Signed Addition with Status

 ovf <= (sign_a and sign_b and (not sign_s)) or

 ((not sign_a) and (not sign_b) and sign_s);

 cout <= sum_ext(9);

-- Invert sign if overflow occurred

 sign <= sum_ext(8) when ovf=’0’ else

not sum_ext(8);

-- zero is invalid is overflow occurred

 zero <= ’1’ when (sum_ext(8 downto 1)=0 and ovf=’0’)

else ’0’;

 overflow <= ovf;

 sum <= std_logic_vector(sum_ext(8 downto 1));

end arch;

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 47 (10/2/09)

Simple Combinational Multiplier

A simple multiplier can be constructed using first principles

Simple algorithm:

• Multiply the digits of the multiplier, b3b2b1b0 by the multiplicand by A, one at a

time to obtain b3*A, b2*A, b1*A and b0*A

Given bi can only be ’0’ or ’1’, the product can only be ’0’ or A

Multiplication is performed using the and operation, i.e., bi*A = (a3bi, a2bi,

a1bi, a0bi)

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 48 (10/2/09)

Simple Combinational Multiplier

Simple algorithm:

• Shift bi*A to the left i positions

• Add the shifted bi*A terms to obtain the final product

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity mult8 is

port(

 a, b: in std_logic_vector(7 downto 0);

 y: out std_logic_vector(15 downto 0)

);

end mult8;

architecture comb1_arch of mult8 is

constant WIDTH: integer:=8;

signal au, bv0, bv1, bv2, bv3, bv4, bv5, bv6, bv7:

 unsigned(WIDTH-1 downto 0);

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 49 (10/2/09)

Simple Combinational Multiplier

signal p0,p1,p2,p3,p4,p5,p6,p7,prod:

 unsigned(2*WIDTH-1 downto 0);

begin

 au <= unsigned(a);

 bv0 <= (others=>b(0));

 bv1 <= (others=>b(1));

 bv2 <= (others=>b(2));

 bv3 <= (others=>b(3));

 bv4 <= (others=>b(4));

 bv5 <= (others=>b(5));

 bv6 <= (others=>b(6));

 bv7 <= (others=>b(7));

 p0 <="00000000" & (bv0 and au);

 p1 <="0000000" & (bv1 and au) & "0";

 p2 <="000000" & (bv2 and au) & "00";

 p3 <="00000" & (bv3 and au) & "000";

 p4 <="0000" & (bv4 and au) & "0000";

Hardware Design with VHDL Combinational Circuit Design ECE 443

ECE UNM 50 (10/2/09)

Simple Combinational Multiplier

 p5 <="000" & (bv5 and au) & "00000";

 p6 <="00" & (bv6 and au) & "000000";

 p7 <="0" & (bv7 and au) & "0000000";

 prod <= ((p0+p1)+(p2+p3))+((p4+p5)+(p6+p7));

 y <= std_logic_vector(prod);

end comb1_arch;

See text for alternative architecture, as well as examples of a Hamming distance cir-

cuit and programmable priority encoder

