
Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 1 (9/25/12)

 Sequential Circuit Design: Practice

Topics

• Poor design practice

• More counters

• Register as fast temporary storage

• Pipelining

Synchronous design is the most important for designing large, complex systems

In the past, some non-synchronous design practices were used to save chips/area

• Misuse of asynchronous reset

• Misuse of gated clock

• Misuse of derived clock

Misuse of asynchronous reset

• Rule: you should never use reset to clear register during normal operation

Here’s an example of a poorly designed mod-10 counter which clears the regis-

ter immediately after the counter reaches "1010"

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 2 (9/25/12)

Poor Sequential Circuit Design Practice

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity mod10_counter is

port(

 clk, reset: in std_logic;

 q: out std_logic_vector(3 downto 0)

);

end mod10_counter;

architecture poor_async_arch of mod10_counter is

signal r_reg: unsigned(3 downto 0);

signal r_next: unsigned(3 downto 0);

signal async_clr: std_logic;

 begin

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 3 (9/25/12)

Poor Sequential Circuit Design Practice

 -- register

process(clk, async_clr)

begin

if (async_clr = ’1’) then

 r_reg <= (others => ’0’);

elsif (clk’event and clk = ’1’) then

 r_reg <= r_next;

end if;

end process;

-- asynchronous clear

async_clr <= ’1’ when (reset = ’1’ or r_reg = "1010")

else ’0’;

-- next state and output logic

 r_next <= r_reg + 1;

 q <= std_logic_vector(r_reg);

end poor_async_arch;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 4 (9/25/12)

Poor Sequential Circuit Design Practice

Problem

• Transition from "1001" to "0000" goes through "1010" state (see timing diag.)

• Any glitches in combo logic driving aync_clr can reset the counter

• Can NOT apply timing analysis we did in last chapter to determine max. clk. freq.

Asynchronous reset should only be used for power-on initialization

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 5 (9/25/12)

Poor Sequential Circuit Design Practice

Remedy: load "0000" synchronously -- looked at this in last chapter

architecture two_seg_arch of mod10_counter is

signal r_reg: unsigned(3 downto 0);

signal r_next: unsigned(3 downto 0);

 begin

 -- register

process(clk, reset)

begin

if (reset = ’1’) then

 r_reg <= (others => ’0’);

elsif (clk’event and clk = ’1’) then

 r_reg <= r_next;

end if;

end process;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 6 (9/25/12)

Poor Sequential Circuit Design Practice

 -- next-state logic

 r_next <= (others => ’0’) when r_reg = 9 else

 r_reg + 1;

 -- output logic

 q <= std_logic_vector(r_reg);

end two_seg_arch;

Misuse of gated clock

Rule: you should not insert logic, e.g., an AND gate, to stop the clock from

clocking a new value into a register

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 7 (9/25/12)

Poor Sequential Circuit Design Practice

The clock tree is a specially designed structure (b/c it needs to drive potentially thou-

sands of FFs in the design) and should not be interfered with

Consider a counter with an enable signal

One may attempt to implement the enable by AND’ing the clk with it

There are several problems

• en does not change with clk, potentially narrowing the actual clk pulse to the FF

• If en is not glitch-free, counter may ’count’ more often then it is supposed to

• With the AND in the clock path, it interferes with construction and analysis of clock

distribution tree

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 8 (9/25/12)

Poor Sequential Circuit Design Practice

A POOR approach to solving this problem

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity binary_counter is

port(

 clk, reset: in std_logic;

 en: in std_logic;

 q: out std_logic_vector(3 downto 0)

);

end binary_counter;

architecture gated_clk_arch of binary_counter is

signal r_reg: unsigned(3 downto 0);

signal r_next: unsigned(3 downto 0);

signal gated_clk: std_logic;

 begin

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 9 (9/25/12)

Poor Sequential Circuit Design Practice

 -- register

process(gated_clk, reset)

begin

if (reset = ’1’) then

 r_reg <= (others => ’0’);

elsif (gated_clk’event and gated_clk = ’1’) then

 r_reg <= r_next;

end if;

end process;

 -- gated clock -- poor design practice

 gated_clk <= clk and en;

 -- next-state and output logic

 r_next <= r_reg + 1;

 q <= std_logic_vector(r_reg);

end gated_clk_arch;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 10 (9/25/12)

Poor Sequential Circuit Design Practice

A BETTER approach

architecture two_seg_arch of binary_counter is

signal r_reg: unsigned(3 downto 0);

signal r_next: unsigned(3 downto 0);

 begin

 -- register

process(clk, reset)

begin

if (reset = ’1’) then

 r_reg <= (others =>’0’);

elsif (clk’event and clk = ’1’) then

 r_reg <= r_next;

end if;

end process;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 11 (9/25/12)

Poor Sequential Circuit Design Practice

 -- next-state logic

 r_next <= r_reg + 1 when en = ’1’ else

 r_reg;

 -- output logic

 q <= std_logic_vector(r_reg);

end two_seg_arch;

Misuse of derived clock

• Subsystems may run at different clock rates

• Rule: do not use a derived slow clock for the slower subsystems

Poor Correct

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 12 (9/25/12)

Poor Sequential Circuit Design Practice

The basic problem with the diagram on the left is that the system is no longer syn-

chronous

This complicates timing analysis, i.e., we can not use the simple method we looked at

earlier

We must treat this as a two clock system with different frequencies and phases

Consider a design that implements a "second and minutes counter"

Assume the input clk rate is 1 MHz clock

An example of a POOR design that uses derived clocks is as follows

library ieee;

use ieee.std_logic_1164.cb;

Poor Correct

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 13 (9/25/12)

Poor Sequential Circuit Design Practice

use ieee.numeric_std.all;

entity timer is

port(

 clk, reset: in std_logic;

 sec,min: out std_logic_vector(5 downto 0)

);

end timer;

architecture multi_clock_arch of timer is

signal r_reg: unsigned(19 downto 0);

signal r_next: unsigned(19 downto 0);

signal s_reg, m_reg: unsigned(5 downto 0);

signal s_next, m_next: unsigned(5 downto 0);

signal sclk, mclk: std_logic;

 begin

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 14 (9/25/12)

Poor Sequential Circuit Design Practice

 -- register

process(clk, reset)

begin

if (reset = ’1’) then

 r_reg <= (others => ’0’);

elsif (clk’event and clk = ’1’) then

 r_reg <= r_next;

end if;

end process;

 -- next-state logic

 r_next <= (others => ’0’) when r_reg = 999999 else

 r_reg + 1;

 -- output logic -- clock has 50% duty cycle

 sclk <= ’0’ when r_reg < 500000 else

 ’1’;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 15 (9/25/12)

Poor Sequential Circuit Design Practice

 -- second divider

process(sclk, reset)

begin

if (reset = ’1’) then

 s_reg <= (others =>’0’);

elsif (sclk’event and sclk=’1’) then

 s_reg <= s_next;

end if;

end process;

 -- next-state logic

 s_next <= (others => ’0’) when s_reg = 59 else

 s_reg + 1;

 -- output logic (50% duty cycle)

 mclk <= ’0’ when s_reg < 30 else

 ’1’;

 sec <= std_logic_vector(s_reg);

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 16 (9/25/12)

Poor Sequential Circuit Design Practice

 -- minute divider

process(mclk, reset)

begin

if (reset = ’1’) then

 m_reg <= (others => ’0’);

elsif (mclk’event and mclk = ’1’) then

 m_reg <= m_next;

end if;

end process;

 -- next-state logic

 m_next <= (others => ’0’) when m_reg = 59 else

 m_reg + 1;

 -- output logic

 min <= std_logic_vector(m_reg);

end multi_clock_arch;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 17 (9/25/12)

Proper Sequential Circuit Design Practice

A BETTER approach is to use a synchronous 1-clock pulse

architecture single_clock_arch of timer is

signal r_reg: unsigned(19 downto 0);

signal r_next: unsigned(19 downto 0);

signal s_reg, m_reg: unsigned(5 downto 0);

signal s_next, m_next: unsigned(5 downto 0);

signal s_en, m_en: std_logic;

 begin

 -- register

process(clk, reset)

begin

if (reset = ’1’) then

 r_reg <= (others => ’0’);

 s_reg <= (others => ’0’);

 m_reg <= (others => ’0’);

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 18 (9/25/12)

Proper Sequential Circuit Design Practice

elsif (clk’event and clk = ’1’) then

 r_reg <= r_next;

 s_reg <= s_next;

 m_reg <= m_next;

end if;

end process;

 -- next-state/output logic for mod-1000000 counter

 r_next <= (others => ’0’) when r_reg = 999999 else

 r_reg + 1;

 s_en <= ’1’ when r_reg = 500000 else

 ’0’;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 19 (9/25/12)

Proper Sequential Circuit Design Practice

 -- next state logic/output logic for second divider

 s_next <= (others => ’0’) when

 (s_reg = 59 and s_en = ’1’) else

 s_reg + 1 when s_en = ’1’ else

 s_reg;

 m_en <= ’1’ when s_reg = 59 and s_en = ’1’ else

 ’0’;

 -- next-state logic for minute divider

 m_next <= (others => ’0’) when

 (m_reg = 59 and m_en = ’1’) else

 m_reg + 1 when m_en = ’1’ else

 m_reg;

 -- output logic

 sec <= std_logic_vector(s_reg);

 min <= std_logic_vector(m_reg);

end single_clock_arch;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 20 (9/25/12)

Proper Sequential Circuit Design Practice

Timing Diagram

Clk

500000

s_en

r_reg

59

m_en

1 m_reg

500000

59

0

58 s_reg00

r_reg499999

s_reg

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 21 (9/25/12)

Power Concerns

Power is now a major design criteria

In CMOS technology

High clock rate implies high switching frequencies and dynamic power is pro-

portional to the switching frequency

Clock manipulation can reduce switching frequency but this should NOT be done at

RT level

The proper flow is

• Design/synthesize/verify the regular synchronous subsystems

• Use special circuit (PLL etc.) to obtain derived clocks

• Use "power optimization" software tools to add gated clocks to some of the regis-

ters

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 22 (9/25/12)

Counters

A counter circulates its internal state through a set of patterns

• Binary

• Gray counter

• Ring counter

• Linear Feedback Shift Register (LFSR)

• BCD counter

Binary counter

• State follows binary counting sequence

• Use an incrementer for the next-state logic

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 23 (9/25/12)

Counters

Gray counter

• State changes one-bit at a time

• Use a Gray incrementer

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 24 (9/25/12)

Counters

entity gray_counter4 is

port(

 clk, reset: in std_logic;

 q: out std_logic_vector(3 downto 0)

);

end gray_counter4;

architecture arch of gray_counter4 is

constant WIDTH: natural := 4;

signal g_reg: unsigned(WIDTH-1 downto 0);

signal g_next, b, b1: unsigned(WIDTH-1 downto 0);

 begin

 -- register

process(clk, reset)

begin

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 25 (9/25/12)

Counters

if (reset = ’1’) then

 g_reg <= (others => ’0’);

elsif (clk’event and clk = ’1’) cb

 g_reg <= g_next;

end if;

end process;

 -- next-state logic -- gray to binary

 b <= g_reg xor (’0’ & b(WIDTH-1 downto 1));

 b1 <= b+1; -- increment

 -- binary to gray

 g_next <= b1 xor (’0’ & b1(WIDTH-1 downto 1));

 -- output logic

 q <= std_logic_vector(g_reg);

end arch;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 26 (9/25/12)

Counters

Ring counter

• Circulates a single 1, e.g., in a 4-bit ring counter:

"1000", "0100", "0010", "0001"

There are n patterns for n-bit register where the output appears as an n-phase signal

In the non self-correcting design, "0001" is inserted at initialization and that’s it

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 27 (9/25/12)

Counters

library ieee;

use ieee.std_logic_1164.all;

entity ring_counter is

port(

 clk, reset: in std_logic;

 q: out std_logic_vector(3 downto 0)

);

end ring_counter;

architecture reset_arch of ring_counter is

constant WIDTH: natural := 4;

signal r_reg: std_logic_vector(WIDTH-1 downto 0);

signal r_next: std_logic_vector(WIDTH-1 downto 0);

 begin

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 28 (9/25/12)

Counters

 -- register

process(clk, reset)

begin

if (reset = ’1’) then

 r_reg <= (0 => ’1’, others => ’0’);

elsif (clk’event and clk = ’1’) then

 r_reg <= r_next;

end if;

end process;

 -- next-state logic

 r_next <= r_reg(0) & r_reg(WIDTH-1 downto 1);

 -- output logic

 q <= r_reg;

end reset_arch;

This simple design makes this a very fast counter (much faster than a binary cnter)

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 29 (9/25/12)

Counters

A self-correcting design ensures at a ’1’ is always circulating in the ring

This is accomplished by inspecting the 3 MSBs -- if "000", then the combo. logic

inserts a ’1’ into the low order bit

architecture self_correct_arch of ring_counter is

constant WIDTH: natural := 4;

signal r_reg, r_next:

 std_logic_vector(WIDTH-1 downto 0);

signal s_in: std_logic;

 begin

 -- register

process(clk, reset)

begin

if (reset = ’1’) then

-- no special input pattern is needed in this version

-- since the ’1’ is not circulated - its generated

 r_reg <= (others => ’0’);

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 30 (9/25/12)

Counters

elsif (clk’event and clk = ’1’) then

 r_reg <= r_next;

end if;

end process;

 -- next-state logic

s_in <= ’1’ when r_reg(WIDTH-1 downto 1) = "000" else

 ’0’;

 r_next <= s_in & r_reg(WIDTH-1 downto 1);

 -- output logic

 q <= r_reg;

end self_correct_arch;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 31 (9/25/12)

Counters

Linear Feedback Shift Register (LFSR)

An LFSR is a shifter register that contains an XOR feedback network that deter-

mines the next serial input value

Only a subset of the register bits are used in the XOR operation

By carefully selecting the bits, an LFSR can be designed to circulate through all

2n-1 states for an n-bit register

Consider a 4-bit LFSR

Note that the state "0000" is excluded -- if it ever shows up, the LFSR becomes stuck

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 32 (9/25/12)

Counters

The properties of an LFSR are derived from the theory of finite fields

The term linear is used because the feedback expression is described using

AND and XOR operations, which define a linear system in algebra

In addition to the ’2n -1 states’ properties, the following are also true

• The feedback circuit to generate a maximal number of states exists for any n

• The output sequence is pseudorandom, i.e., it exhibits certain statistical properties

and appears random

The ’taps’ for the XOR gates are
defined using primitive polynomials

These examples show that very little
logic is needed in the feedback circuit -
only between 1 and 3 XOR gates

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 33 (9/25/12)

Counters

Applications of LFSRs

• Pseudorandom: used in testing, data encryption/decryption

• A counter with simple next-state logic

For example, a 128-bit LFSR using 3 XOR gates will circulate 2128-1 patterns --

which takes 1012 years for a 100 GHz system

library ieee;

use ieee.std_logic_1164.all;

entity lfsr4 is

port(

 clk, reset: in std_logic;

 q: out std_logic_vector(3 downto 0)

);

end lfsr4;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 34 (9/25/12)

Counters

architecture no_zero_arch of lfsr4 is

signal r_reg, r_next: std_logic_vector(3 downto 0);

signal fb: std_logic;

constant SEED: std_logic_vector(3 downto 0):="0001";

 begin

 -- register

process(clk, reset)

begin

if (reset = ’1’) then

 r_reg <= SEED;

elsif (clk’event and clk = ’1’) then

 r_reg <= r_next;

end if;

end process;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 35 (9/25/12)

Counters

 -- next-state logic

 fb <= r_reg(1) xor r_reg(0);

 r_next <= fb & r_reg(3 downto 1);

 -- output logic

 q <= r_reg;

end no_zero_arch;

Text covers design that includes "00..00" state

Text covers BCD counter, which is similar in design to the second/minute counter

Pulse Width Modulation (PWM)

• Duty cycle: percentage of time that the signal is asserted

• PWM uses a signal, w, to specify the duty cycle

Duty cycle is w/16 if w is not "0000"

Duty cycle is 16/16 if w is "0000"

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 36 (9/25/12)

Counters

Implemented by a binary counter with a special output circuit

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity pwm is

port(

 clk, reset: in std_logic;

 w: in std_logic_vector(3 downto 0);

 pwm_pulse: out std_logic

);

end pwm;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 37 (9/25/12)

Counters

architecture two_seg_arch of pwm is

signal r_reg: unsigned(3 downto 0);

signal r_next: unsigned(3 downto 0);

signal buf_reg: std_logic;

signal buf_next: std_logic;

 begin

 -- register & output buffer

process(clk, reset)

begin

if (reset = ’1’) then

 r_reg <= (others => ’0’);

 buf_reg <= ’0’;

elsif (clk’event and clk = ’1’) then

 r_reg <= r_next;

 buf_reg <= buf_next;

end if;

end process;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 38 (9/25/12)

Counters

-- next-state logic

 r_next <= r_reg + 1;

-- output logic

 buf_next <=

 ’1’ when (r_reg<unsigned(w)) or (w="0000") else

 ’0’;

-- buffered to remove glitches

 pwm_pulse <= buf_reg;

end two_seg_arch;

Register as Fast Temporary Storage

Registers are too large to serve as mass storage -- RAMs are better b/c they are

smaller (they are designed at transistor level and use minimal area)

Registers are usually used to construct small, fast temporal storage in digital

systems, for example, as

Register file, fast FIFO, Fast CAM (content addressable memory)

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 39 (9/25/12)

Register File

Register file

• Registers arranged as a 1-D array

• Each register is identified with an address

• Normally has 1 write port (with write enable signal) and two or more read ports

For example, a 4-word register file with 1 write port and two read ports

Decoder used to route the write enable signal, MUXs used to create ports

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 40 (9/25/12)

Register File

Write decoding circuit behaves as follows

• Outputs "0000" if wr_en is ’0’

• Asserts one bit according to w_addr if wr_en is ’1’

A 2-D data type is needed here

library ieee;

use ieee.std_logic_1164.all;

entity reg_file is

port(

 clk, reset: in std_logic;

 wr_en: in std_logic;

 w_addr: in std_logic_vector(1 downto 0);

 w_data: in std_logic_vector(15 downto 0);

r_addr0, r_addr1: in std_logic_vector(1 downto 0);

 r_data0, r_data1: out

 std_logic_vector(15 downto 0));

end reg_file;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 41 (9/25/12)

Register File

architecture no_loop_arch of reg_file is

constant W: natural := 2; -- # of bits in address

constant B: natural := 16; -- # of bits in data

type reg_file_type is array (2**W-1 downto 0) of

 std_logic_vector(B-1 downto 0);

signal array_reg: reg_file_type;

signal array_next: reg_file_type;

signal en: std_logic_vector(2**W-1 downto 0);

 begin

 -- register

process(clk, reset)

begin

if (reset = ’1’) then

 array_reg(3) <= (others => ’0’);

 array_reg(2) <= (others => ’0’);

 array_reg(1) <= (others => ’0’);

 array_reg(0) <= (others => ’0’);

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 42 (9/25/12)

Register File

elsif (clk’event and clk = ’1’) then

 array_reg(3) <= array_next(3);

 array_reg(2) <= array_next(2);

 array_reg(1) <= array_next(1);

 array_reg(0) <= array_next(0);

end if;

end process;

 -- enable logic for register

process(array_reg, en, w_data)

begin

 array_next(3) <= array_reg(3);

 array_next(2) <= array_reg(2);

 array_next(1) <= array_reg(1);

 array_next(0) <= array_reg(0);

if (en(3) = ’1’) then

 array_next(3) <= w_data;

end if;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 43 (9/25/12)

Register File

if (en(2) = ’1’) then

 array_next(2) <= w_data;

end if;

if (en(1) = ’1’) then

 array_next(1) <= w_data;

end if;

if (en(0) = ’1’) then

 array_next(0) <= w_data;

end if;

end process;

 -- decoding for write address

process(wr_en, w_addr)

begin

if (wr_en = ’0’) then

 en <= (others => ’0’);

else

case w_addr is

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 44 (9/25/12)

Register File

when "00" => en <= "0001";

when "01" => en <= "0010";

when "10" => en <= "0100";

when others => en <= "1000";

end case;

end if;

end process;

 -- read multiplexing

with r_addr0 select

 r_data0 <= array_reg(0) when "00",

 array_reg(1) when "01",

 array_reg(2) when "10",

 array_reg(3) when others;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 45 (9/25/12)

Register File

with r_addr1 select

 r_data1 <= array_reg(0) when "00",

 array_reg(1) when "01",

 array_reg(2) when "10",

 array_reg(3) when others;

end no_loop_arch;

FIFO Buffer

• A first-in-first out buffer acts as "Elastic" storage between two subsystems

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 46 (9/25/12)

FIFO Buffer

• Circular queue implementation

• Use two pointers and a "generic storage"

Write pointer: points to the empty slot before the head of the queue

Read pointer: points to the first element at the tail of the queue

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 47 (9/25/12)

FIFO Buffer

FIFO controller

• The read and write pointers are defined using 2 counters

• Tricky part is distinguishing between full and empty status because in both cases,

the pointers are equal

Design 1: Augmented binary counter

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 48 (9/25/12)

FIFO Buffer

Augmented binary counter:

• Increase the size of the counter by 1 bit

• Use LSBs for as register address

• Use MSB to distinguish full or empty

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 49 (9/25/12)

FIFO Buffer

entity fifo_sync_ctrl4 is

port(

 clk, reset: in std_logic;

 wr, rd: in std_logic;

 full, empty: out std_logic;

 w_addr, r_addr: out std_logic_vector(1 downto 0)

);

end fifo_sync_ctrl4;

-- merge this code with register file code to complete,

-- use component instantiation

architecture enlarged_bin_arch of fifo_sync_ctrl4 is

constant N: natural:=2;

signal w_ptr_reg, w_ptr_next: unsigned(N downto 0);

signal r_ptr_reg, r_ptr_next: unsigned(N downto 0);

signal full_flag, empty_flag: std_logic;

 begin

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 50 (9/25/12)

FIFO Buffer

 -- register

process(clk, reset)

begin

if (reset = ’1’) then

 w_ptr_reg <= (others => ’0’);

 r_ptr_reg <= (others => ’0’);

elsif (clk’event and clk = ’1’) then

 w_ptr_reg <= w_ptr_next;

 r_ptr_reg <= r_ptr_next;

end if;

end process;

-- write pointer next-state logic. Nothing special is

-- done here, just add 1, MSB is set automatically

 w_ptr_next <=

 w_ptr_reg + 1 when wr=’1’ and full_flag=’0’ else

 w_ptr_reg;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 51 (9/25/12)

FIFO Buffer

-- compare MSBs, when different and addresses are the

-- same, then FIFO is full

 full_flag <=

 ’1’ when r_ptr_reg(N) /= w_ptr_reg(N) and

 r_ptr_reg(N-1 downto 0) =

 w_ptr_reg(N-1 downto 0)

 else ’0’;

-- write port output

 w_addr <= std_logic_vector(w_ptr_reg(N-1 downto 0));

 full <= full_flag;

-- read pointer next-state logic

 r_ptr_next <=

 r_ptr_reg + 1 when rd=’1’ and empty_flag=’0’ else

 r_ptr_reg;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 52 (9/25/12)

FIFO Buffer

-- FIFO is empty when MSBs are equal and address bits

-- are the same

 empty_flag <= ’1’ when r_ptr_reg = w_ptr_reg else

 ’0’;

-- read port output

 r_addr <= std_logic_vector(r_ptr_reg(N-1 downto 0));

 empty <= empty_flag;

end enlarged_bin_arch;

Design 2: Use 2 extra status FFs

• full_reg/empty_reg track the status of the FIFO and are initialized to ’0’ and ’1’

• The are updated according to the current request given by the wr and rd signals:

"00": no change

"11": advance both read and write ptrs -- no change to full/empty status

"10": advance write ptr; de-assert empty -- assert full when write_ptr=read_ptr

"01": advance read ptr; de-assert full -- assert empty when write_ptr=read_ptr

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 53 (9/25/12)

FIFO Buffer

architecture lookahead_bin_arch of fifo_sync_ctrl4 is

constant N: natural := 2;

signal w_ptr_reg, w_ptr_next: unsigned(N-1 downto 0);

signal w_ptr_succ: unsigned(N-1 downto 0);

signal r_ptr_reg, r_ptr_next: unsigned(N-1 downto 0);

signal r_ptr_succ: unsigned(N-1 downto 0);

signal full_reg, empty_reg: std_logic;

signal full_next, empty_next: std_logic;

signal wr_op: std_logic_vector(1 downto 0);

 begin

 -- register

process(clk, reset)

begin

if (reset = ’1’) then

 w_ptr_reg <= (others => ’0’);

 r_ptr_reg <= (others => ’0’);

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 54 (9/25/12)

FIFO Buffer

elsif (clk’event and clk = ’1’) then

 w_ptr_reg <= w_ptr_next;

 r_ptr_reg <= r_ptr_next;

end if;

end process;

 -- status FF

process(clk, reset)

begin

if (reset = ’1’) then

 full_reg <= ’0’;

 empty_reg <= ’1’;

elsif (clk’event and clk = ’1’) then

 full_reg <= full_next;

 empty_reg <= empty_next;

end if;

end process;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 55 (9/25/12)

FIFO Buffer

-- next values of the write and read pointers

 w_ptr_succ <= w_ptr_reg + 1;

 r_ptr_succ <= r_ptr_reg + 1;

-- next-state logic

 wr_op <= wr & rd;

process(w_ptr_reg, w_ptr_succ, r_ptr_reg,

 r_ptr_succ, wr_op, empty_reg, full_reg)

begin

 w_ptr_next <= w_ptr_reg;

 r_ptr_next <= r_ptr_reg;

 full_next <= full_reg;

 empty_next <= empty_reg;

case wr_op is

when "00" => -- no change

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 56 (9/25/12)

FIFO Buffer

when "10" => -- write

if (full_reg /= ’1’) then -- not full

 w_ptr_next <= w_ptr_succ;

 empty_next <= ’0’;

if (w_ptr_succ = r_ptr_reg) then

 full_next <=’1’;

end if;

end if;

when "01" => -- read

if (empty_reg /= ’1’) then -- not empty

 r_ptr_next <= r_ptr_succ;

 full_next <= ’0’;

if (r_ptr_succ = w_ptr_reg) then

 empty_next <=’1’;

end if;

end if;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 57 (9/25/12)

FIFO Buffer

-- write/read -- status not affected

when others =>

 w_ptr_next <= w_ptr_succ;

 r_ptr_next <= r_ptr_succ;

end case;

end process;

-- write port output

 w_addr <= std_logic_vector(w_ptr_reg);

 full <= full_reg;

 r_addr <= std_logic_vector(r_ptr_reg);

 empty <= empty_reg;

end lookahead_bin_arch;

Can also use an LFSR, works b/c write_ptr and read_ptr follow the same pat.

w_ptr_succ <= (w_ptr_reg(1) xor w_ptr_reg(0)) &

 w_ptr_reg(3 downto 1);

r_ptr_succ <= (r_ptr_reg(1) xor r_ptr_reg(0)) &

 r_ptr_reg(3 downto 1);

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 58 (9/25/12)

Pipelines

Pipelines are used to increase system performance by overlapping operations

Systems performance can be measured using two metrics

Delay: required time to complete one task

Throughput: number of tasks completed per unit time

Pipelining increases throughput by overlapping operations

Basic idea is to divide the combinational logic into a set of stages, with buffers (regis-

ters or latches) inserted between each stage

Pipelined laundry

Sequential laundry

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 59 (9/25/12)

Pipelines

Non-pipelined: Delay: 60 min, Throughput 1/60 load per min

Pipelined: Delay: 60 min, Throughput of 4 loads is 4/(40 + 4*20) loads per min

where 40 is the time to load the first two stages

This yields 2/60, twice the throughput

In practice, stages are often not of equal length

Clock cycle time set by longest stage in a pipelined combinational circuit

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 60 (9/25/12)

Pipelines

Given a pipeline with stage delays of T1, T2, T3 and T4, clock cycle time is bounded

by the

Tmax = max(T1, T2, T3, T4)

AND the setup and clock-to-q delays of the pipeline registers

Tc = Tmax + Tsetup + Tcq

In non-pipelined version, delay to process one item is

Tcomb = T1 + T2 + T3 + T4

For the pipelined version, its actually longer

Tpipe = 4Tc = 4*Tmax + 4*(Tsetup + Tcq)

The win is actually w.r.t. the throughput metric

TPcomb = 1/Tcomb

For pipelined version, it takes 3*Tc time to fill the pipeline and the time to process k

items is 3*Tc + kTc yielding TP = k/(3*Tc + kTc) which approaches 1/Tc

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 61 (9/25/12)

Pipelines

Not all circuits are amenable to pipelines -- if the circuit meets the following criteria,

then it is a candidate for a pipeline

Data is always available for the pipelined circuit’s inputs

System throughput is an important performance characteristic

Combinational circuit can be divided into stages with similar propagation delays

Propagation delay of a stage is much larger than the Tsetup and Tcq of the regis-

ter

Procedure to Add a Pipeline

• Derive the block diagram of the original combinational circuit and arrange the cir-

cuit as a cascading chain

• Identify the major components and estimate the relative propagation delays of these

components

• Divide the chain into stages of similar propagation delays

• Identify the signals that cross the boundary of the chain and insert registers

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 62 (9/25/12)

Pipelines

Consider a pipelined combinational multiplier

The two major components are the adder and bit-product generation circuit

Arrange this components in cascade as shown on the next slide, with the bit-product

labeled as BP

The bit-product circuit is simply an AND operation and therefore has a small delay

We combine it with the adder to define a stage

The horizontal lines in the combinational version on the next slide define the

stages

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 63 (9/25/12)

Pipelines

Since no addition occurs
in the zeroth stage, we will
merge it with the first stage

Pipeline registers

Pipeline registers

Pipeline registers

Pipeline registers

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 64 (9/25/12)

Pipelines

There are two types of pipeline registers

• One type to accommodate the computation flow and to store the intermediate results

(partial products pp1, ... pp4)

• Second type to preserve the info needed in each stage, i.e., a1, a2, a3, b1, b2, and b3

Since there are different multiplications occurring in each stage, the operands for any

given multiplication must move along with the partial products

NON-pipelined version

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity mult5 is

port(

 clk, reset: in std_logic;

 a, b: in std_logic_vector(4 downto 0);

 y: out std_logic_vector(9 downto 0));

end mult5;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 65 (9/25/12)

Pipelines

architecture comb_arch of mult5 is

constant WIDTH: integer:=5;

signal a0, a1, a2, a3:

 std_logic_vector(WIDTH-1 downto 0);

signal b0, b1, b2, b3:

 std_logic_vector(WIDTH-1 downto 0);

signal bv0, bv1, bv2, bv3, bv4:

 std_logic_vector(WIDTH-1 downto 0);

signal bp0, bp1, bp2, bp3, bp4:

 unsigned(2*WIDTH-1 downto 0);

signal pp0, pp1, pp2, pp3, pp4:

 unsigned(2*WIDTH-1 downto 0);

 begin

-- stage 0 (signal names are for use later when we

-- show the pipelined version

 bv0 <= (others => b(0)); -- a * MSB of b

 bp0 <=unsigned("00000" & (bv0 and a));

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 66 (9/25/12)

Pipelines

 pp0 <= bp0;

 a0 <= a; -- not needed here but this is what we’ll

 b0 <= b; -- end up doing in the pipelined version

-- stage 1

 bv1 <= (others => b0(1));

 bp1 <=unsigned("0000" & (bv1 and a0) & "0");

 pp1 <= pp0 + bp1;

 a1 <= a0;

 b1 <= b0;

-- stage 2

 bv2 <= (others => b1(2));

 bp2 <=unsigned("000" & (bv2 and a1) & "00");

 pp2 <= pp1 + bp2;

 a2 <= a1;

 b2 <= b1;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 67 (9/25/12)

Pipelines

-- stage 3

 bv3 <= (others => b2(3));

 bp3 <=unsigned("00" & (bv3 and a2) & "000");

 pp3 <= pp2 + bp3;

 a3 <= a2;

 b3 <= b2;

-- stage 4

 bv4 <= (others => b3(4));

 bp4 <=unsigned("0" & (bv4 and a3) & "0000");

 pp4 <= pp3 + bp4;

-- output

 y <= std_logic_vector(pp4);

end comb_arch;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 68 (9/25/12)

Pipelines

To implement the pipeline, we replace

 pp2 <= pp1 + bp2; -- stage 2

 pp3 <= pp2 + bp3; -- stage 3

with a pipeline register so these values are stored

-- register

if (reset = ’1’) then

 pp2_reg <= (others => ’0’);

elsif (clk’event and clk=’1’) then

 pp2_reg <= pp2_next;

end if;

-- stage 2

 pp2_next <= pp1_reg + bp2;

-- stage 3

 pp3_next <= pp2_reg + bp3;

The complete code is given below

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 69 (9/25/12)

Pipelines

architecture four_stage_pipe_arch of mult5 is

constant WIDTH: integer:=5;

signal a1_reg, a2_reg, a3_reg:

 std_logic_vector(WIDTH-1 downto 0);

signal a0, a1_next, a2_next, a3_next:

 std_logic_vector(WIDTH-1 downto 0);

signal b1_reg, b2_reg, b3_reg:

 std_logic_vector(WIDTH-1 downto 0);

signal b0, b1_next, b2_next, b3_next:

 std_logic_vector(WIDTH-1 downto 0);

signal bv0, bv1, bv2, bv3, bv4:

 std_logic_vector(WIDTH-1 downto 0);

signal bp0, bp1, bp2, bp3, bp4:

 unsigned(2*WIDTH-1 downto 0);

signal pp1_reg, pp2_reg, pp3_reg, pp4_reg:

 unsigned(2*WIDTH-1 downto 0);

signal pp0, pp1_next, pp2_next, pp3_next, pp4_next:

 unsigned(2*WIDTH-1 downto 0);

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 70 (9/25/12)

Pipelines

begin

-- pipeline registers (buffers)

process(clk, reset)

begin

if (reset = ’1’) then

 pp1_reg <= (others => ’0’);

 pp2_reg <= (others => ’0’);

 pp3_reg <= (others => ’0’);

 pp4_reg <= (others => ’0’);

 a1_reg <= (others => ’0’);

 a2_reg <= (others => ’0’);

 a3_reg <= (others => ’0’);

 b1_reg <= (others => ’0’);

 b2_reg <= (others => ’0’);

 b3_reg <= (others => ’0’);

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 71 (9/25/12)

Pipelines

elsif (clk’event and clk = ’1’) then

 pp1_reg <= pp1_next;

 pp2_reg <= pp2_next;

 pp3_reg <= pp3_next;

 pp4_reg <= pp4_next;

 a1_reg <= a1_next;

 a2_reg <= a2_next;

 a3_reg <= a3_next;

 b1_reg <= b1_next;

 b2_reg <= b2_next;

 b3_reg <= b3_next;

end if;

end process;

-- merged stage 0 & 1 for pipeline

 bv0 <= (others => b(0));

 bp0 <=unsigned("00000" & (bv0 and a));

 pp0 <= bp0;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 72 (9/25/12)

Pipelines

 a0 <= a;

 b0 <= b;

 -- merged with above

 bv1 <= (others => b0(1));

 bp1 <=unsigned("0000" & (bv1 and a0) & "0");

 pp1_next <= pp0 + bp1;

 a1_next <= a0;

 b1_next <= b0;

 -- stage 2

 bv2 <= (others => b1_reg(2));

 bp2 <=unsigned("000" & (bv2 and a1_reg) & "00");

 pp2_next <= pp1_reg + bp2;

 a2_next <= a1_reg;

 b2_next <= b1_reg;

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 73 (9/25/12)

Pipelines

 -- stage 3

 bv3 <= (others => b2_reg(3));

 bp3 <=unsigned("00" & (bv3 and a2_reg) & "000");

 pp3_next <= pp2_reg + bp3;

 a3_next <= a2_reg;

 b3_next <= b2_reg;

 -- stage 4

 bv4 <= (others => b3_reg(4));

 bp4 <=unsigned("0" & (bv4 and a3_reg) & "0000");

 pp4_next <= pp3_reg + bp4;

 -- output

 y <= std_logic_vector(pp4_reg);

end four_stage_pipe_arch;

Shizzam -- your first pipeline!

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 74 (9/25/12)

Pipelines

There are several improvements we can make

• We can use a smaller (n+1)-bit adder to replace the 2n-bit adder

• We can reduce the size of the partial-product register b/c the LSBs actually grow

from n+1 bits to 2n bits

Therefore, the MSBs of the initial partial products are wasted (they are always

’0’)

For example, we can use a 5-bit register for the initial partial product (pp0 sig-

nal) and increase the size by 1 in each stage.

• We can reduce the size of the registers that hold the b signal since only the ith bit of

b is needed in the ith stage

See text for VHDL code

You can also reduce the delay of the n-bit combinational multiplier from n-1 adders

to ceiling(log2n) using a tree-shaped network

This also works for the pipelined version by computing the bit-products in par-

allel and feeding them into tree-shaped network

Hardware Design with VHDL Sequential Circuit Design II ECE 443

ECE UNM 75 (9/25/12)

Pipelines

Non-pipelined and pipelined version of tree adder network (see text for VHDL)

