
Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 1 (11/23/09)

Sequential Circuit Design: Principle

Outline:

• Overview of sequential circuits

• Synchronous circuits

• Danger of synthesizing asynchronous circuit

• Inference of basic memory elements

• Simple design examples

• Timing analysis

• Alternative one-segment coding style

• Use of variable for sequential circuit

Overview of sequential circuit

• Combinational vs sequential circuit

Sequential circuit: output is a function of current input and state (memory)

• Basic memory elements

D latch

D FF (Flip-Flop)

RAM (not possible to derive a portable, device-independent VHDL code to infer

a RAM module)

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 2 (11/23/09)

D Latch

D latch is a level sensitive memory element, while the D flip-flop (FF) is an edge

sensitive memory element

Note that for the D latch, next state q* is d when the control signal c (often clock) is

high, while q* is q when c is low

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 3 (11/23/09)

D Latch

Timing diagram for D-latch -- note that d is sampled and stored on falling edge of c.

Since the latch is "transparent" when c is asserted, it may cause racing if a loop exists

in the circuit

Cannot be used to swap data
because of loop

Not often used in synthesis because
of this

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 4 (11/23/09)

D Flip Flop (FF)

The D FF is only activated when the clk signal changes from 0 to 1.

Activation implies it samples the value on its d input, stores the value in its memory

and propagates the value to its output q

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 5 (11/23/09)

D Flip Flop (FF)

D FF have advantages

• glitches on d do not effect the state of the memory

• The is no race condition -- swap circuits actually work

D FF disadvantages

• About twice as large as a D latch

Timing behavior of a D FF:

• Clock-to-q delay (Tcq): Delay required for sampled d value to show up on q

Thold

Tsetup

Tcq

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 6 (11/23/09)

D Flip Flop (FF)

• Setup time (Tsetup): time interval that d must be stable for before the rising edge of

clock

• Hole time (Thold): time interval that d must be stable for after the rising edge.

Tcq is corresponds to the propagation delay of a combinational circuit, while Tsetup

and Thold are timing constraints -- d must be stable for a time interval around clk

If d changes during this interval, a setup time or hold time violation occurs and the D

FF may enter a metastable state (q is neither a 0 or 1)

Thold

Tsetup

Tcq

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 7 (11/23/09)

The Clock Signal

The clock signal plays a key role in sequential circuit design

Systems can be classified according to the clock signal arrangement

Globally synchronous circuit

All memory elements (D FFs) are controlled (synchronized) by a common glo-

bal clock signal (most popular)

Globally asynchronous but locally synchronous circuit (GALS)

Used in cases in which the components of the design are spread too far apart to

allow a single synchronous clock -- a globally asynchronous circuit results

However, the smaller subsystems use a synchronous clock internally

Special interface circuits needed between subsystems to ensure proper operation

Globally asynchronous circuits

No clock is used to coordinate the memory elements

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 8 (11/23/09)

The Clock Signal

Globally asynchronous circuits

There are two categories

• Systems that do not use the clock in a disciplined manner, for example, a ripple

counter: clock port of an FF is connected to the q output of previous FF

Poor design and not recommended

• Systems that contain ’clockless’ memory components such as the latch or a

combinational circuit with feedback loops (asynchronous circuit)

Proper design is entirely different to synchronous circuits not recommended

for HDL synthesis either

Synchronous circuit

State registers (state_reg)
represent the memory
elements

Next state logic
represent the combinational
circuit that determines
state_next

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 9 (11/23/09)

Synchronous Circuits

Operation is as follows:

• At the rising edge of the clock, state_next is sampled and stored into the register

(and becomes the new value of state_reg)

• The external inputs and state_reg signals propagate through next-state and output

logic to determines the new values of the state_next and output signals

• At the rising edge of the clock, the new value of state_next is sampled and stored

and the process repeats

Note that the clock period needs to be large enough to accommodate the propagation

delay of the next-state logic, the clock-to-q delay and the setup time of the FFs

Advantages of synchronous design

• A single global clock makes the task of satisfying the timing constraints of a design

with of thousands of FFs manageable and doable

• The synchronous model separates the combinational components from the memory

elements, making it possible to treat the combinational part by itself

• Propagation delay anomalies such as hazards can be dealt with easily by focusing

on the worst case timing behavior

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 10 (11/23/09)

Synchronous Circuits

Therefore, the synchronous model reduces a complex sequential circuit to a single

closed feedback loop and greatly simplifies the design process

Types of synchronous circuits

• Regular sequential circuit

State representation, transitions and next-state logic have a simple, regular pat-

tern, as in a incrementor or shift register

• Random sequential circuit (FSM)

More complicated state transitions and no special relationship between states

and their binary representations -- next-state logic is random

• Combined sequential circuit (FSM with a Data path, FSMD -- RTL)

Combines regular sequential circuit and an FSM, with FSM acting as control for

the sequential circuit

Danger of Synthesizing an Asynchronous Circuit

Consider the D Latch described earlier

We can write VHDL code as follows to represent it

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 11 (11/23/09)

Danger of Synthesizing an Asynchronous Circuit

library ieee;

use ieee.std_logic_1164.all;

entity dlatch is

port(

 c: in std_logic;

 d: in std_logic;

 q: out std_logic

);

end dlatch;

architecture demo_arch of dlatch is

signal q_latch: std_logic;

 begin

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 12 (11/23/09)

Danger of Synthesizing an Asynchronous Circuit

 process(c, d, q_latch)

begin

if(c=’1’) then

 q_latch <= d;

else

 q_latch <= q_latch;

end if;

end process;

 q <= q_latch;

end demo_arch;

Synthesis software will recognize this as the code for a D latch and should infer a

predesigned D-latch from the cell library

But what if we try to synthesis it from scratch, using simple gates?

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 13 (11/23/09)

Danger of Synthesizing an Asynchronous Circuit

Here we see the implementation is combinational except for that the output is looped

around as an input

Unfortunately, there is a serious timing problem with this circuit

Assume all gates have a propagation delay of T and c, d and q are initially ’1’

What happens when c changes
from ’1’ to ’0’ at time t0?

From the function table, q should

be latched to the value of d (’1’)

1) At t0, c changes to ’0’
2) At t1, (after delay T), dc and cn

change
3) At t2, (after delay 2T), qcn

changes (due to cn) and

4) At t3, (after delay 3T), q
changes (due to qcn) and qcn
changes (due to q)

q changes (due to dc)

Therefore, output q oscillates at period of 2T

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 14 (11/23/09)

Inference of Basic Memory Elements

You should use the following ’templates’ to create latches and FFs, so that the prede-

signed library cells are inferred by the synthesis tools.

D Latch

• Eliminate the else branch to create a latch

library ieee;

use ieee.std_logic_1164.all;

entity dlatch is

port(

 c: in std_logic;

 d: in std_logic;

 q: out std_logic

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 15 (11/23/09)

Inference of Basic Memory Elements

);

end dlatch;

architecture arch of dlatch is

 begin

 -- c and d in sens. list b/c process sens. to both

process(c, d)

begin

if (c=’1’) then

 q <= d;

end if;

end process;

end arch;

Pos Edge-Triggered D FF

• No else branch -- NOTE sensitivity list

library ieee;

use ieee.std_logic_1164.all;

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 16 (11/23/09)

Inference of Basic Memory Elements

entity dff is

port(

 clk: in std_logic;

 d: in std_logic;

 q: out std_logic

);

end dff;

architecture arch of dff is

 begin

process(clk) -- d not needed b/c process does nothing

begin -- when d changes (unlike latch)

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 17 (11/23/09)

Inference of Basic Memory Elements

-- ’event is true when clk changes, clk=’1’ is true when

-- NEW value of clk is ’1’ -- together means rising edge

if (clk’event and clk=’1’) then -- can also use

 q <= d; -- rising_edge(clk)

end if; -- if std_logic_logic_1164 incl.

end process;

end arch;

Neg Edge-Triggered D FF

...

if (clk’event and clk=’0’) then -- can also use

... -- falling_edge(clk)

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 18 (11/23/09)

Inference of Basic Memory Elements

D FF with Asynchronous Reset

• No else branch -- NOTE sensitivity list

library ieee;

use ieee.std_logic_1164.all;

entity dffr is

port(

 clk: in std_logic;

 reset: in std_logic;

 d: in std_logic;

 q: out std_logic

);

end dffr;

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 19 (11/23/09)

Inference of Basic Memory Elements

architecture arch of dffr is

 begin

process(clk,reset)

begin

if (reset=’1’) then

 q <=’0’;

elsif rising_edge(clk) then

 q <= d;

end if;

end process;

end arch;

Register

• Multiple D FFs with same clock and reset

library ieee;

use ieee.std_logic_1164.all;

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 20 (11/23/09)

Inference of Basic Memory Elements

entity reg8 is

port(

 clk, reset: in std_logic;

 d: in std_logic_vector(7 downto 0);

 q: out std_logic_vector(7 downto 0)

);

end reg8;

architecture arch of reg8 is

 begin

process(clk, reset)

begin

if (reset=’1’) then

 q <= (others=>’0’);

elsif (clk’event and clk=’1’) then

 q <= d;

end if;

end process; end arch;

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 21 (11/23/09)

Simple Design Examples

Easiest way to create a sequential circuit is to follow the block diagram

• Build the register

• Code the next-state and output logic (combinational circuits)

D FF with Sync Enable

• Note that the en is sampled on rising edge of clock

If en is ’0’, or is changing

If en is ’1’, or is changing

q_next

from ’0’ to ’1’, FF keeps q

from ’1’ to ’0’, FF stores

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 22 (11/23/09)

Simple Design Examples

library ieee;

use ieee.std_logic_1164.all;

entity dff_en is

port(

 clk: in std_logic;

 reset: in std_logic;

 en: in std_logic;

 d: in std_logic;

 q: out std_logic

);

end dff_en;

architecture two_seg_arch of dff_en is

signal q_reg: std_logic;

signal q_next: std_logic;

 begin

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 23 (11/23/09)

Simple Design Examples

 -- D FF

process(clk, reset)

begin

if (reset=’1’) then

 q_reg <= ’0’;

elsif (clk’event and clk=’1’) then

 q_reg <= q_next;

end if;

end process;

 -- next-state logic

 q_next <= d when en =’1’ else

 q_reg;

 -- output logic

 q <= q_reg;

end two_seg_arch;

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 24 (11/23/09)

Simple Design Examples

Toggle (T) FF -- t is sampled at rising edge

library ieee;

use ieee.std_logic_1164.all;

entity tff is

port(

 clk: in std_logic;

 reset: in std_logic;

 t: in std_logic;

 q: out std_logic

);

end tff;

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 25 (11/23/09)

Simple Design Examples

architecture two_seg_arch of tff is

signal q_reg: std_logic;

signal q_next: std_logic;

begin

 -- D FF

process(clk, reset)

begin

if (reset=’1’) then

 q_reg <= ’0’;

elsif (clk’event and clk=’1’) then

 q_reg <= q_next;

end if;

end process;

 -- next-state logic

 q_next <= q_reg when t=’0’ else

not(q_reg);

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 26 (11/23/09)

Simple Design Examples

 -- output logic

 q <= q_reg;

end two_seg_arch;

Free-Running Shift Register (no control signals)

Can be used to carry out parallel-to-serial conversion

Conceptually, we can re-arrange the FFs into a column and treat them as a single

memory block (see below)

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 27 (11/23/09)

Simple Design Examples

Collapse into
memory blockCombinational

logic

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 28 (11/23/09)

Simple Design Examples

library ieee;

use ieee.std_logic_1164.all;

entity shift_right_register is

port(

 clk, reset: in std_logic;

 d: in std_logic;

 q: out std_logic

);

end shift_right_register;

architecture two_seg_arch of shift_right_register is

signal r_reg: std_logic_vector(3 downto 0);

signal r_next: std_logic_vector(3 downto 0);

begin

 -- register

process(clk, reset)

begin

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 29 (11/23/09)

Simple Design Examples

if (reset=’1’) then

 r_reg <= (others=>’0’);

elsif (clk’event and clk=’1’) then

 r_reg <= r_next;

end if;

end process;

 -- next-state logic (shift right 1 bit)

 r_next <= d & r_reg(3 downto 1);

 -- output

 q <= r_reg(0);

end two_seg_arch;

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 30 (11/23/09)

Simple Design Examples

Universal Shift Register

• Designed to implement 4 ops: parallel load, shift right, shift left, pause

library ieee;

use ieee.std_logic_1164.all;

entity shift_register is

port(

 clk, reset: in std_logic;

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 31 (11/23/09)

Simple Design Examples

 ctrl: in std_logic_vector(1 downto 0);

 d: in std_logic_vector(3 downto 0);

 q: out std_logic_vector(3 downto 0)

);

end shift_register;

architecture two_seg_arch of shift_register is

signal r_reg: std_logic_vector(3 downto 0);

signal r_next: std_logic_vector(3 downto 0);

begin

 -- register

process(clk, reset)

begin

if (reset=’1’) then

 r_reg <= (others=>’0’);

elsif (clk’event and clk=’1’) then

 r_reg <= r_next;

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 32 (11/23/09)

Simple Design Examples

end if;

end process;

 -- next-state logic

with ctrl select

 r_next <=

r_reg when "00", -- no op

 r_reg(2 downto 0) & d(0) when "01", -- sft left

 d(3) & r_reg(3 downto 1) when "10", -- sft rght

 d when others;

 -- output

 q <= r_reg;

end two_seg_arch;

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 33 (11/23/09)

Simple Design Examples

Arbitrary Sequence Counter

library ieee;

use ieee.std_logic_1164.all;

entity arbi_seq_counter4 is

port(

 clk, reset: in std_logic;

 q: out std_logic_vector(2 downto 0)

);

end arbi_seq_counter4;

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 34 (11/23/09)

Simple Design Examples

architecture two_seg_arch of arbi_seq_counter4 is

signal r_reg: std_logic_vector(2 downto 0);

signal r_next: std_logic_vector(2 downto 0);

 begin

 -- register

process(clk, reset)

begin

if (reset=’1’) then

 r_reg <= (others=>’0’);

elsif (clk’event and clk=’1’) then

 r_reg <= r_next;

end if;

end process;

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 35 (11/23/09)

Simple Design Examples

 -- next-state logic

 r_next <= "011" when r_reg="000" else

 "110" when r_reg="011" else

 "101" when r_reg="110" else

 "111" when r_reg="101" else

 "000"; -- r_reg="111"

 -- output logic

 q <= r_reg;

end two_seg_arch;

Free-Running Binary Counter

•With a max_pulse output: asserted when counter is all ’1’s

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 36 (11/23/09)

Simple Design Examples

entity binary_counter4_pulse is

port(

 clk, reset: in std_logic;

 max_pulse: out std_logic;

 q: out std_logic_vector(3 downto 0)

);

end binary_counter4_pulse;

architecture two_seg_arch of binary_counter4_pulse is

signal r_reg: unsigned(3 downto 0);

signal r_next: unsigned(3 downto 0);

 begin

 -- register

process(clk, reset)

begin

if (reset=’1’) then

 r_reg <= (others=>’0’);

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 37 (11/23/09)

Simple Design Examples

elsif (clk’event and clk=’1’) then

 r_reg <= r_next;

end if;

end process;

 -- next-state logic

 r_next <= r_reg + 1;

 -- output logic

 q <= std_logic_vector(r_reg);

 max_pulse <= ’1’ when (r_reg="1111") else

 ’0’;

end two_seg_arch;

Note that it ’wraps’ automatically

Poor practice -- may confuse some synthesis tools b/c mod op is not synthesiz-

able

r_next <= (r_reg + 1) mod 16;

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 38 (11/23/09)

Simple Design Examples

RTL schematic of free running binary counter

Binary Counter

• Bells & whistles

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 39 (11/23/09)

Simple Design Examples

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity binary_counter4_feature is

port(

 clk, reset: in std_logic;

 syn_clr, en, load: in std_logic;

 d: in std_logic_vector(3 downto 0);

 q: out std_logic_vector(3 downto 0)

);

end binary_counter4_feature;

architecture two_seg_arch of binary_counter4_feature is

signal r_reg: unsigned(3 downto 0);

signal r_next: unsigned(3 downto 0);

 begin

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 40 (11/23/09)

Simple Design Examples

 -- register

process(clk, reset)

begin

if (reset=’1’) then

 r_reg <= (others=>’0’);

elsif (clk’event and clk=’1’) then

 r_reg <= r_next;

end if;

end process;

 -- next-state logic

 r_next <= (others=>’0’) when syn_clr=’1’ else

 unsigned(d) when load=’1’ else

 r_reg + 1 when en =’1’ else

 r_reg;

 -- output logic

 q <= std_logic_vector(r_reg);

end two_seg_arch;

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 41 (11/23/09)

Simple Design Examples

Decade (mod-10) Counter

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity mod10_counter is

port(

 clk, reset: in std_logic;

 q: out std_logic_vector(3 downto 0)

);

end mod10_counter;

architecture two_seg_arch of mod10_counter is

constant TEN: integer := 10;

signal r_reg: unsigned(3 downto 0);

signal r_next: unsigned(3 downto 0);

 begin

 -- register

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 42 (11/23/09)

Simple Design Examples

process(clk, reset)

begin

if (reset=’1’) then

 r_reg <= (others=>’0’);

elsif (clk’event and clk=’1’) then

 r_reg <= r_next;

end if;

end process;

 -- next-state logic

 r_next <= (others=>’0’) when r_reg=(TEN-1) else

 r_reg + 1;

 -- output logic

 q <= std_logic_vector(r_reg);

end two_seg_arch;

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 43 (11/23/09)

Simple Design Examples

RTL schematic

Programmable mod-m Counter

• Can be modified to use a constant m between "0010" and "1111"

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity prog_counter is

port(

 clk, reset: in std_logic;

 m: in std_logic_vector(3 downto 0);

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 44 (11/23/09)

Simple Design Examples

 q: out std_logic_vector(3 downto 0)

);

end prog_counter;

architecture two_seg_clear_arch of prog_counter is

signal r_reg: unsigned(3 downto 0);

signal r_next: unsigned(3 downto 0);

begin

 -- register

process(clk, reset)

begin

if (reset=’1’) then

 r_reg <= (others=>’0’);

elsif (clk’event and clk=’1’) then

 r_reg <= r_next;

end if;

end process;

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 45 (11/23/09)

Simple Design Examples

 -- next-state logic

 r_next <= (others=>’0’) when

 r_reg=(unsigned(m)-1) else

 r_reg + 1;

 -- output logic

 q <= std_logic_vector(r_reg);

end two_seg_clear_arch;

Contains a incrementor, a decrementor and comparator but note that the statement

r_reg = (unsigned(m) - 1);

can be written as

(r_reg + 1) = unsigned(m)

architecture two_seg_effi_arch of prog_counter is

signal r_reg: unsigned(3 downto 0);

signal r_next, r_inc: unsigned(3 downto 0);

 begin

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 46 (11/23/09)

Simple Design Examples

 -- register

process(clk, reset)

begin

if (reset=’1’) then

 r_reg <= (others=>’0’);

elsif (clk’event and clk=’1’) then

 r_reg <= r_next;

end if;

end process;

 -- next-state logic

 r_inc <= r_reg + 1;

 r_next <= (others=>’0’) when r_inc=unsigned(m) else

 r_inc;

 -- output logic

 q <= std_logic_vector(r_reg);

end two_seg_effi_arch;

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 47 (11/23/09)

Simple Design Examples

RTL schematics

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 48 (11/23/09)

Timing Analysis

Combinational circuit:

Characterized by propagation delay

 Sequential circuit:

Has to satisfy setup/hold time constraint and is characterized by maximal clock

rate (e.g., 200 MHz counter, 2.4 GHz Pentium II)

Setup time and clock-to-q delay of register and the propagation delay of next-

state logic are embedded in clock rate

state_next signal must satisfy the timing constraints for the FFs

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 49 (11/23/09)

Timing Analysis

state_next delay is effected by three sources

• state_reg output -- part of the same loop and sync’ed by same clock (timing below)

• synchronized external input from a subsystem that uses the same clock

• unsynchronized external input -- must use synchronization circuit

For the first 2 items, we can adjust clock rate to prevent timing violations

From the timing diagram below (which shows the timing behavior of the closed loop

system), at time t0, the clock changes from ’0’ to ’1’

We assume state_next does not change within the setup and hold periods

After the clock-to-q delay (Tcq), the register’s output, state_reg, stabilizes at time t1

(which is t0 + Tcq)

Since state_reg is input to the next-state logic, the output of next-state logic changes

at times Tnext(min) and Tnext(max) which represent fastest and slowest paths through it

Therefore, state_next changes at t2 (t1 + Tnext(min)) and stabilizes at t3 (t1 + Tnext(max))

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 50 (11/23/09)

Timing Analysis

At time t5, a new rising clock edge arrives and the current clock cycle ends

next_state is sampled at t5 which is t0 + Tc -- the clock period

Next consider the setup time constraint

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 51 (11/23/09)

Timing Analysis

The setup time constraint indicates that state_next MUST be stabilized at least Tsetup

before the next sampling edge at t5 -- given by t4 in the timing diagram

t3 < t4

From timing diagram

t3 = t0 + Tcq + Tnext(max)

t4 = t5 - Tsetup = t0 + Tc - Tsetup

The inequality above can be re-written as

t0 + Tcq + Tnext(max) < t0 + Tc - Tsetup

which simplifies to

Tcq + Tnext(max) + Tsetup < Tc

Therefore, minimal clock period is

Tc(min) = Tcq + Tnext(max) + Tsetup

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 52 (11/23/09)

Timing Analysis

For a given technology, Tcq and Tsetup of a D FF are obtained a data sheet

Therefore, we can determine the minimum clock period (maximum clock rate)

once the propagation delay of the next-state logic

Let Tcq = 1 ns and Tsetup = 0.5 ns

Since 1 bit shift logic only involves routing (no gates) -- assuming 0 delay associated

with the wires, then max frequency is 1/1.5 ns = 666.7 MHz

Text goes over other examples which incorporate combinational blocks where delay

is > 0.

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 53 (11/23/09)

Timing Analysis

Hold Time Violation

Period of time that the input signal must be stabilized after the sampling edge

start_next must be stable between t0 and th (t0 + Thold)

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 54 (11/23/09)

Timing Analysis

The earliest time that state_next changes is t2

th < t2

And

t2 = t0 + Tcq + Tnext(min)

th = t0 + Thold

Then

t0 + Thold < t0 + Tcq + Tnext(min)

Simplifying

Thold < Tcq + Tnext(min)

In cases in which the output of one FF drives the input to the next (no gate delays),

Tnext(min) can be close to 0 and

Thold < Tcq

Manufacturers usually guarantee this relationship holds on these intrinsic parameters

of the FF, but one concern is related to clock skew to be discussed

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 55 (11/23/09)

Timing Analysis

We need to also consider the timing characteristics of external inputs and outputs

(in addition to the closed loop just discussed)

The outputs of a circuit can be divided into Moore outputs and Mealy outputs.

For Moore outputs, the output signal is a function of system state, i.e., the state regis-

ters only, while Mealy outputs depend on both the state and external inputs

The two types can co-exist in the same circuit

The main timing parameter for both types is Tco -- the time required to obtain a valid

output signal after the rising edge of the clock

Mealy outputs

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 56 (11/23/09)

Timing Analysis

Tco is the sum of the clock-to-q delay of the FF and propagation delay of the output

logic

Tco = Tcq + Toutput

Note that for Mealy, the input can affect the output directly

Text covers timing issues related to external synchronized inputs

Alternative One-Segment Coding Style

Although it is possible to combine the memory elements with next-state and output

logic into one segment, you should avoid this coding practice b/c it is error prone

Consider the D FF with Sync Enable covered earlier

architecture one_seg_arch of dff_en is

 begin

process(clk, reset)

begin

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 57 (11/23/09)

Alternative One-Segment Coding Style

if (reset=’1’) then

 q <=’0’;

elsif (clk’event and clk=’1’) then

if (en=’1’) then

 q <= d;

end if;

end if;

end process;

end one_seg_arch;

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 58 (11/23/09)

Alternative One-Segment Coding Style

The difference is the addition of the if (en = ’1’) then statement added inside the elsif

branch

We interpret this as "at the rising edge of clk, if en is ’1’, q gets the value of the d

input"

The absence of the else implies that if en is not ’1’, the q keeps its previous value

This correctly describes the function of the en signal

Consider the T FF discussed earlier

architecture one_seg_arch of tff is

signal q_reg: std_logic;

 begin

process(clk, reset)

begin

if (reset=’1’) then

 q_reg <= ’0’;

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 59 (11/23/09)

Alternative One-Segment Coding Style

elsif (clk’event and clk=’1’) then

if (t=’1’) then

 q_reg <= not q_reg;

end if;

end if;

end process;

 q <= q_reg;

end one_seg_arch;

Here, the internal signal q_reg represents both the content and the output of a FF

The following statement appears strange at first glance

q_reg <= not q_reg;

The interpretation is that the q_reg on the right side represents the current value of the

FF and (not q_reg) represents the new value

On the rising edge of clk, the new value is stored into the FF named q_reg

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 60 (11/23/09)

Alternative One-Segment Coding Style

Consider the Free-Running Binary Counter

The following code is an INCORRECT one-segment version

architecture not_work_one_seg_glitch_arch

of binary_counter4_pulse is

signal r_reg: unsigned(3 downto 0);

 begin

process(clk, reset)

begin

if (reset=’1’) then

 r_reg <= (others=>’0’);

CORRECT VERSION

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 61 (11/23/09)

Alternative One-Segment Coding Style

elsif (clk’event and clk=’1’) then

 r_reg <= r_reg + 1;

if (r_reg = "1111") then

 max_pulse <= ’1’;

else

 max_pulse <= ’0’;

end if;

end if;

end process;

 q <= std_logic_vector(r_reg);

end not_work_one_seg_glitch_arch;

This does NOT work as expected because the following is INSIDE the if (clk’event...

if (r_reg = "1111") then

 max_pulse <= ’1’;

else

 max_pulse <= ’0’;

end if;

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 62 (11/23/09)

Alternative One-Segment Coding Style

This creates a 1-bit register for max_pulse -- which works as a buffer and creates a 1

clock signal delay of the output pulse

max_pulse will be asserted with r_reg = "0000"

To correct, you must move the output logic outside the process

architecture work_one_seg_glitch_arch

of binary_counter4_pulse is

signal r_reg: unsigned(3 downto 0);

 begin

INCORRECT VERSION

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 63 (11/23/09)

Alternative One-Segment Coding Style

process(clk, reset)

begin

if (reset=’1’) then

 r_reg <= (others=>’0’);

elsif (clk’event and clk=’1’) then

 r_reg <= r_reg + 1;

end if;

end process;

 q <= std_logic_vector(r_reg);

 max_pulse <= ’1’ when r_reg = "1111" else

 ’0’;

end work_one_seg_glitch_arch;

One more example -- consider the Programmable Counter

architecture not_work_one_arch of prog_counter is

signal r_reg: unsigned(3 downto 0);

 begin

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 64 (11/23/09)

Alternative One-Segment Coding Style

process(clk, reset)

begin

if (reset=’1’) then

 r_reg <= (others=>’0’);

elsif (clk’event and clk=’1’) then

 r_reg <= r_reg + 1;

if (r_reg = unsigned(m)) then

 r_reg<= (others=>’0’);

end if;

end if;

end process;

 q <= std_logic_vector(r_reg);

end not_work_one_arch;

Does NOT work as expected because a signal is NOT updated until the end of the

process.

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 65 (11/23/09)

Alternative One-Segment Coding Style

Thus r_reg is updated to r_reg+1 at the end, and not when if (r_reg = unsigned(m))

then is performed.

The comparison uses the OLD VALUE of r_reg

Thus, you actually built a mod-(m+1) counter instead

To fix, move incrementing operation outside the process

architecture work_one_arch of prog_counter is

signal r_reg: unsigned(3 downto 0);

signal r_inc: unsigned(3 downto 0);

 begin

process(clk, reset)

begin

if (reset=’1’) then

 r_reg <= (others=>’0’);

elsif (clk’event and clk=’1’) then

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 66 (11/23/09)

Alternative One-Segment Coding Style

if (r_inc = unsigned(m)) then

 r_reg <= (others=>’0’);

else

 r_reg <= r_inc;

end if;

end if;

end process;

 r_inc <= r_reg + 1;

 q <= std_logic_vector(r_reg);

end work_one_arch;

Using Variables in Sequential Circuit Descriptions

A variable can also be assigned under the clk’event and clk = ’1’ condition, but

whether a FF is created or not depends on how it is used

If a variable is assigned a value before it is used, it will get a value on each invocation

of the process and therefore, there is not need to remember its previous value

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 67 (11/23/09)

Using Variables in Sequential Circuit Descriptions

If, on the other hand, it is read before being assigned to, it needs to use the value

stored from the previous process execution, and therefore needs to be stored

Using a variable to infer memory is error prone -- you should use signals instead

The proper use of variables is to use them to store intermediate results (the first sce-

nario above)

Consider these three uses

library ieee;

use ieee.std_logic_1164.all;

entity varaible_ff_demo is

port(

 a,b,clk: in std_logic;

 q1,q2,q3: out std_logic

);

end varaible_ff_demo;

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 68 (11/23/09)

Using Variables in Sequential Circuit Descriptions

architecture arch of varaible_ff_demo is

signal tmp_sig1: std_logic;

 begin

 -- attempt 1

process(clk)

begin

if (clk’event and clk=’1’) then

 tmp_sig1 <= a and b;

 q1 <= tmp_sig1;

end if;

end process;

 -- attempt 2

process(clk)

variable tmp_var2: std_logic;

begin

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 69 (11/23/09)

Using Variables in Sequential Circuit Descriptions

if (clk’event and clk=’1’) then

 tmp_var2 := a and b;

 q2 <= tmp_var2;

end if;

end process;

 -- attempt 3

process(clk)

variable tmp_var3: std_logic;

begin

if (clk’event and clk=’1’) then

 q3 <= tmp_var3;

 tmp_var3 := a and b;

end if;

end process;

end arch;

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 70 (11/23/09)

Using Variables in Sequential Circuit Descriptions

The first attempt uses signals with the assignment occurring before the use

However, this DOES NOT MATTER for signals -- a register is INFERRED because

the assignments occur within the if stmt

Interpretation: on the rising edge of clk

• The value of a and b will be sampled and stored into a FF named tmp_sig1

• The old value (not the current value) of a AND b from the tmp_sig1 signal will be

stored into FF named q1

D QAND
a

b

D Q

clk

tmp_sig1/3

q1/3

D QANDb

clk

q2
a

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 71 (11/23/09)

Using Variables in Sequential Circuit Descriptions

Attempt 2 is the proper way of using a variable -- yields the circuit on the right

Attempt 3 references the variable before using it, and generates the circuit on the left

We can use a variable to fix the problem we had with the one-segment version of the

mod-m counter

architecture variable_arch of prog_counter is

signal r_reg: unsigned(3 downto 0);

begin

process(clk, reset)

begin

if (reset = ’1’) then

 r_reg <= (others => ’0’);

elsif (clk’event and clk’ = ’1’) then

 q_tmp := r_reg + 1;

if (q_tmp = unsigned(m)) then

 r_reg <= (others => ’0’);

Hardware Design with VHDL Sequential Circuit Design I ECE 443

ECE UNM 72 (11/23/09)

Using Variables in Sequential Circuit Descriptions

else

 r_reg <= q_tmp;

end if;

end if;

end process;

 q <= std_logic_vector(r_reg);

end variable_arch;

