
Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 1 (9/14/09)

Sequential Statements

This slide set covers the sequential statements and the VHDL process (do NOT con-

fuse with sequential circuits)

Sequential statements are executed in sequence and allow a circuit to be described in

more abstract terms

A process is used to encapsulate them because they are not compatible with the con-

current execution model of VHDL

Unlike concurrent statements, there is NO clear mapping to hardware components

Some sequences and coding styles are difficult or impossible to synthesize

To use them for synthesis, coding must be done in a disciplined matter

A VHDL process contains a set of sequential statements that describe a circuit’s

behavior

The process itself is a concurrent statement and should be thought of as a cir-

cuit part enclosed inside a black box

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 2 (9/14/09)

VHDL Process Statement

The sequential statements that can be included in a process include

• wait stmt

• sequential signal assignment stmt

• if stmt

• case stmt

• simple for loop stmt

There are other sequential stmts, including more sophisticated loop stmts, the next

and exit statements, that are useful in simulations to be discussed later

Two basic forms of the process stmt

• A process with a sensitivity list

• A process with wait statement

The second form has one or more wait stmts but no sensitivity list

Commonly used in test benches for simulations

The first form is better for describing hardware

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 3 (9/14/09)

Process with Sensitivity List

Syntax

process(sensitivity_list)

 declarations;

begin

 sequential statement;

 sequential statement;

 ...

end process;

The sensitivity list is a list of signals to which the process responds and declarations

are local to the process

A process is NOT invoked (as in prog. lang) but is either

• Active (known as activated)

• Inactive (known as suspended)

A process is activated when a signal in the sensitivity list changes its value

Its statements will be executed sequentially until the end of the process

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 4 (9/14/09)

Process with Sensitivity List

It then suspends again, waiting on another signal in sensitivity list to change

signal a, b, c, y: std_logic;

process(a, b, c)

begin

 y <= a and b and c;

end process;

This process simply describes a 3-input AND gate

process(a)

begin

 y <= a and b and c;

end process;

This process has an incomplete sensitivity list, i.e., executes when a changes but

remain inactive for changes in b and c

This implies memory (y maintains its value when b and c change) and it describes a

circuit that is sensitive to the rising and falling edge on a (not realizable)

Although incorrect here, we will see other uses later for sequential circuits

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 5 (9/14/09)

Process with wait Statement

So for combinational circuits, ALL inputs MUST be included in sensitivity list

Process with wait statement(s) has no sensitivity list

Process continues the execution until a wait statement is reached and is then sus-

pended

There are several forms of the wait statement

wait on signals;

wait until boolean_expression;

wait for time_expression;

For example

process

begin

 y <= a and b and c;

wait on a, b, c;

end process;

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 6 (9/14/09)

Sequential Signal Assignment Statement

This process immediately executes and computes the output for y

It then waits for a change on a, b or c -- on a change it continues and resets the

output y to a new value based on the input signal change, and suspends again

Note this describes the 3-input AND gate as well, however, the process with the

sensitivity list is preferred for synthesis

A process can has multiple wait statements

Enables the modeling of complex timing behavior and sequential events

However, for synthesis, restrictions apply, e.g., only one wait stmt

Syntax of the sequential signal assignment statement

signal_name <= value_expression;

Syntax is identical to the simple concurrent signal assignment, however, inside a pro-

cess, a signal can be assigned multiple times

But only the last assignment takes effect

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 7 (9/14/09)

Sequential Signal Assignment Statement

For example

process(a, b, c, d)

begin -- yentry := y

 y <= a or c; -- yexit := a or c;

 y <= a and b; -- yexit := a and b;

 y <= c and d; -- yexit := c and d;

end process; -- y <= yexit

It is same as

process(a, b, c, d)

begin

 y <= c and d;

end process;

What happens if the 3 statements are concurrent statements (outside a process)?

Hint: the result is very different and is not likely something you would want to

build

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 8 (9/14/09)

Variable Assignment Statement

Syntax

variable_name := value_expression;

Note the use of ’:=’ instead of ’<=’, which indicates immediate assignment (no

propagation delay)

This behavior is similar to variables in C

process(a, b, c)

variable tmp: std_logic;

begin

 tmp := ’0’;

 tmp := tmp or a;

 tmp := tmp or b;

 y <= tmp;

end process;

Although easy to understand, this is difficult to map to hardware

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 9 (9/14/09)

Variable Assignment Statement

In order to realize the previous process in hardware, we need to re-code as

process(a, b, c)

variable tmp0, tmp1, tmp2: std_logic;

begin

 tmp0 := ’0’;

 tmp1 := tmp0 or a;

 tmp2 := tmp1 or b;

 y <= tmp2;

end process;

This re-coding allows us to interpret the variables as signals or nets.

What happens if we replace the variables with signals?

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 10 (9/14/09)

Variable Assignment Statement

signal a, b, y, tmp: std_logic; -- ’globally’ declared

...

process(a, b, c, tmp)

begin -- tmpentry := tmp

 tmp <= ’0’; -- tmpexit := ’0’;

 tmp <= tmp or a; -- tmpexit := tmpentry or a;

 tmp <= tmp or b; -- tmpexit := tmpentry or b;

end process; -- tmp <= tmpexit

Same as:

process(a, b, c, tmp)

begin

 tmp <= tmp or b;

end process;

This specifies a combinational loop, i.e., the output of an or gate is connected to one

of its inputs!

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 11 (9/14/09)

If Statement

Syntax

if boolean_expr_1 then

 sequential_statements;

elsif boolean_expr_2 then

 sequential_statements;

elsif boolean_expr_3 then

 sequential_statements;

...

else

 sequential_statements;

end if;

Consider an if stmt description of the MUX, decoder, priority decoder and simple

ALU from concurrent signal assignment chapter

architecture if_arch of mux4 is

begin

 process(a, b, c, d, s)

begin

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 12 (9/14/09)

If Statement

if (s="00") then

 x <= a;

elsif (s="01")then

 x <= b;

elsif (s="10")then

 x <= c;

else

 x <= d;

end if;

end process;

architecture if_arch of decoder4 is

begin

process(s)

begin

if (s="00") then

 x <= "0001";

elsif (s="01")then

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 13 (9/14/09)

If Statement

 x <= "0010";

elsif (s="10")then

 x <= "0100";

else

 x <= "1000";

end if;

end process;

end if_arch;

architecture if_arch of prio_encoder42 is

begin

process(r)

begin

if (r(3)=’1’) then

 code <= "11";

elsif (r(2)=’1’)then

 code <= "10";

elsif (r(1)=’1’)then

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 14 (9/14/09)

If Statement

 code <= "01";

else

 code <= "00";

end if;

end process;

 active <= r(3) or r(2) or r(1) or r(0);

end if_arch;

architecture if_arch of simple_alu is

signal src0s, src1s: signed(7 downto 0);

begin

 src0s <= signed(src0);

 src1s <= signed(src1);

process(ctrl, src0, src1, src0s, src1s)

begin

if (ctrl(2)=’0’) then

 result <= std_logic_vector(src0s + 1);

elsif (ctrl(1 downto 0)="00")then

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 15 (9/14/09)

If Statement

 result <= std_logic_vector(src0s + src1s);

elsif (ctrl(1 downto 0)="01")then

 result <= std_logic_vector(src0s - src1s);

elsif (ctrl(1 downto 0)="10")then

 result <= src0 and src1;

else

 result <= src0 or src1;

end if;

end process;

end if_arch;

The if stmt and the conditional signal assignment stmt are identical if only one signal

assignment statement is present in each if branch

The if stmt is more flexible, however, because sequential statements can be used in

then, elsif and else branches:

Multiple statements

Nested if stmts

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 16 (9/14/09)

If Statement

For example, to find the max of a, b and c

process(a, b, c)

begin

if (a > b) then

if (a > c) then

 max <= a;

else

 max <= c;

end if;

else

if (b > c) then

 max <= b;

else

 max <= c;

end if;

end if;

end process;

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 17 (9/14/09)

If Statement

We need three conditional signal assignments to accomplish the same task

signal ac_max, bc_max: std_logic;

...

ac_max <= a when (a > c) else c;

bc_max <= b when (b > c) else c;

max <= ac_max when (a > b) else bc_max;

It can also be written as one conditional signal assignment stmt if we ’flatten’ the

Boolean conditions

max <= a when ((a > b) and (a > c)) else

 c when (a > b) else

 b when (b > c) else

 c;

Although shorter, it is more difficult to understand

Another situation that if stmts are good for is when many operations are controlled by

the same Boolean conditions

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 18 (9/14/09)

If Statement

process(a, b)

begin

if (a > b and op="00") then

 y <= a - b;

 z <= a - 1;

 status <= ’0’;

else

 y <= b - a;

 z <= b - 1;

 status <= ’1’;

end if;

end process;

We would need to repeat the Boolean expression in the if stmt in all three of the

equivalent conditional signal assignment stmts

What happens when there is no elsif or else stmt or one or more signals are not

assigned to within an if, elsif or else branch?

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 19 (9/14/09)

If Statement

The signal that is unassigned keeps the previous value (implying memory)

process(a, b)

begin

if (a = b) then

 eq <= ’1’;

end if;

end process;

No else, no action is taken when a does not equal b -- is equivalent to

process(a, b)

begin

if (a = b) then

 eq <= ’1’;

else

 eq <= eq;

end if;

end process;

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 20 (9/14/09)

If Statement

For combo logic, the else branch MUST be included as shown below to avoid

unwanted memory or a latch

process(a, b)

begin

if (a = b) then

 eq <= ’1’;

else

 eq <= ’0’;

end if;

end process;

A similar situation occurs when a signal is assigned in some branches but not others

process(a, b)

begin

if (a > b) then

 gt <= ’1’;

elsif (a = b) then

 eq <= ’1’;

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 21 (9/14/09)

If Statement

else

 lt <= ’1’;

end if;

end process;

VHDL semantics indicate a signal will keep its previous value if it is not assigned,

so ALL three assignments MUST be made in each branch, or

process(a, b)

begin

 gt <= ’0’;

 eq <= ’0’;

 lt <= ’0’;

if (a > b) then

 gt <= ’1’; -- last assignment takes precedence

elsif (a = b) then

 eq <= ’1’; -- last assignment takes precedence

else

 lt <= ’1’; -- last assignment takes precedence

end if; end process;

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 22 (9/14/09)

If Statement: Conceptual Implementation

When the if stmt consists of a single assignment, the hardware is identical to the con-

ditional signal assignment stmt

When there are multiple assignments, the implementation can be constructed recur-

sively

For nested if stmts, the conceptual diagram is constructed in a hierarchal manner

if (boolean_expr) then

 sig_a <= value_expr_a_1;

 sig_b <= value_expr_b_1;

else

 sig_a <= value_expr_a_2;

 sig_b <= value_expr_b_2;

end if;

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 23 (9/14/09)

If Statement: Conceptual Implementation

First derive the routing structure for the outer if stmt

A priority structure can also be constructed using a default assignment and a

sequence of ’if ... end if’ stmts (see text for alternate version of priority encoder)

if bool_expr_1 then

if bool_expr_2 then

 sig_a <= value_expr_1;

else

 sig_a <= value_expr_2;

end if;

else

if bool_expr_3 then

 sig_a <= value_expr_3;

else

 sig_a <= value_expr_4;

end if;

end if;

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 24 (9/14/09)

Case Statement

Syntax

case case_expression is

when choice_1 =>

 sequential statements;

when choice_2 =>

 sequential statements;

 ...

when choice_n =>

 sequential statements;

end case;

The case_expression term functions just like the select_expression term in a selected

signal assignment stmt

Its data type MUST be a discrete tpe or 1-D array

As was true for selected signal assignment, choice_i terms must be mutually exclu-

sive and all inclusive (keyword others may be used to cover all unused values)

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 25 (9/14/09)

Case Statement

The case stmt applied to the MUX, decoder, priority decoder and simple ALU

architecture case_arch of mux4 is

 begin

process(a, b, c, d, s)

begin

case s is

when "00" =>

 x <= a;

when "01" =>

 x <= b;

when "10" =>

 x <= c;

when others =>

 x <= d;

end case;

end process;

end case_arch;

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 26 (9/14/09)

Case Statement

architecture case_arch of decoder4 is

 begin

process(s)

begin

case s is

when "00" =>

 x <= "0001";

when "01" =>

 x <= "0010";

when "10" =>

 x <= "0100";

when others =>

 x <= "1000";

end case;

end process;

end case_arch;

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 27 (9/14/09)

Case Statement

architecture case_arch of prio_encoder42 is

 begin

process(r)

begin

case r is

when "1000"|"1001"|"1010"|"1011"|

 "1100"|"1101"|"1110"|"1111" =>

 code <= "11";

when "0100"|"0101"|"0110"|"0111" =>

 code <= "10";

when "0010"|"0011" =>

 code <= "01";

when others =>

 code <= "00";

end case;

end process;

 active <= r(3) or r(2) or r(1) or r(0);

end case_arch;

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 28 (9/14/09)

Case Statement

architecture case_arch of simple_alu is

signal src0s, src1s: signed(7 downto 0);

 begin

 src0s <= signed(src0);

 src1s <= signed(src1);

process(ctrl, src0, src1, src0s, src1s)

begin

case ctrl is

when "000"|"001"|"010"|"011" =>

 result <= std_logic_vector(src0s + 1);

when "100" =>

 result <= std_logic_vector(src0s + src1s);

when "101" =>

 result <= std_logic_vector(src0s - src1s);

when "110" =>

 result <= src0 and src1;

when others => -- "111"

 result <= src0 or src1;

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 29 (9/14/09)

Case Statement

end case;

end process;

end case_arch;

Comparison to selected signal assignment stmt:

Two statements are the same if there is only one output signal in case statement

with select_expression select

 sig <= value_expr_1 when choice_1,

 value_expr_2 when choice_2,

 value_expr_3 when choice_3,

 ...

 value_expr_n when choice_n;

Can be written as

case case_expression is

when choice_1 =>

 sig <= value_expr_1;

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 30 (9/14/09)

Comparison of Case Statement with Selected Signal Assignment Statement

when choice_2 =>

 sig <= value_expr_2;

when choice_3 =>

 sig <= value_expr_3;

 ...

when choice_n =>

 sig <= value_expr_n;

end case;

Case statement is more flexible because multiple sequential statements can be

included in each of the branches

Incomplete Signal Assignment

Any ’incomplete when clause’ is a syntax error

However, no such restriction exists for signal assignments, i.e., signals do not

need to be assigned in every ’choice_i’ case

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 31 (9/14/09)

Incomplete Signal Assignment in Case Statement

When a signal is unassigned, it keeps the previous value, which implies memory

process(a)

begin

case a is

when "100" | "101" | "110" | "111" =>

 high <= ’1’;

when "010" | "011" =>

 middle <= ’1’;

when others =>

 low <= ’1’;

end case;

end process;

This does not behave as expected, e.g., if a is "111", then high gets assigned ’1’ but

middle and low are left unassigned.

This infers three unwanted memory elements for high, middle and low

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 32 (9/14/09)

Incomplete Signal Assignment in Case Statement

You can fix by assigning to high, middle and low in EVERY case or

process(a)

begin

 high <= ’0’;

 middle <= ’0’;

 low <= ’0’;

case a is

when "100" | "101" | "110" | "111" =>

 high <= ’1’;

when "010" | "011" =>

 middle <= ’1’;

when others =>

 low <= ’1’;

end case;

end process;

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 33 (9/14/09)

Case Statement: Conceptual Implementation

Same as selected signal assignment stmt if the case stmt consists of

• One output signal

• One sequential signal assignment in each branch

Multiple sequential statements can be constructed recursively

Consider

case case_exp is

when c0 =>

 sig_a <= value_expr_a_0;

 sig_b <= value_expr_b_0;

when c1 =>

 sig_a <= value_expr_a_1;

 sig_b <= value_expr_b_1;

when others =>

 sig_a <= value_expr_a_n;

 sig_b <= value_expr_b_n;

end case;

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 34 (9/14/09)

Case Statement: Conceptual Implementation

case stmts can include other case stmts inside a when clause, and therefore a recur-

sive application of the following is required

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 35 (9/14/09)

Simple For Loop Statement

VHDL provides a variety of loop constructs including the simple infinite loop, for

loop and while loop, as well as mechanisms to terminate a loop (exit and next)

However, only a restricted form of a loop can be synthesized

Syntax

for index in loop_range loop

 sequential statements;

end loop;

loop_range must be static, and index assumes value of loop_range from left to right

index assumes data type of loop_range and does not need to be declared

Flexible and versatile but can be difficult or impossible to synthesize

4-bit xor circuit (NOTE: This is easily accomplished alternatively using ’y <= a xor

b;’)

library ieee;

use ieee.std_logic_1164.all;

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 36 (9/14/09)

Simple For Loop Statement

entity bit_xor is

port(

 a, b: in std_logic_vector(3 downto 0);

 y: out std_logic_vector(3 downto 0)

);

end bit_xor;

architecture demo_arch of bit_xor is

constant WIDTH: integer := 4;

begin

process(a, b)

begin

for i in (WIDTH-1) downto 0 loop

 y(i) <= a(i) xor b(i);

end loop;

end process;

end demo_arch;

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 37 (9/14/09)

Simple For Loop Statement

reduced-xor: performs an xor operation over a group of signals

For example, the reduced-xor of a3, a2, a1, and a0 is a3 xor a2 xor ... a0

library ieee;

use ieee.std_logic_1164.all;

entity reduced_xor_demo is

port(

 a: in std_logic_vector(3 downto 0);

 y: out std_logic

);

end reduced_xor_demo;

architecture demo_arch of reduced_xor_demo is

constant WIDTH: integer := 4;

signal tmp: std_logic_vector(WIDTH-1 downto 0);

begin

Hardware Design with VHDL Sequential Stmts ECE 443

ECE UNM 38 (9/14/09)

Simple For Loop Statement

process(a, tmp)

begin

 tmp(0) <= a(0); -- boundary bit

for i in 1 to (WIDTH-1) loop

 tmp(i) <= a(i) xor tmp(i-1);

end loop;

end process;

 y <= tmp(WIDTH-1);

end demo_arch;

For a conceptual implementation, unroll the loop and replicate the code inside the

loop

tmp(0) <= a(0);

tmp(1) <= a(1) xor tmp(0);

tmp(2) <= a(2) xor tmp(1);

tmp(3) <= a(3) xor tmp(2);

y <= tmp(3);

Will be extremely useful in parameterized design

