
VLSI Synthesis Stylus FlowKit ECE 595

ECE UNM 1 (10/24/24)

Introduction

Stylus is a Cadence tool designed to help designer define a proper CAD tool flow

from behavioral to GDSII

The flowtool is the core function for

• Automatically generating a set of scripts, with PLACE_HOLDERS, for designers

to configure with design and foundry references

• Executing the tool flow, with many knobs for controlling which elements are run,

and for inspecting and debugging the sequence of Cadence tools that are run

Cadence tools include:

• Genus: Behavioral synthesis tool

• Innovus: Place&Route tool

• Tempus: Static timing analysis tool

• Voltus: Full-chip electromigration, IR drop and power analysis tool

• Quantus: Parasitic extraction tool

• Conformal: Formal verification via equivalence checking tool

VLSI Synthesis Stylus FlowKit ECE 595

ECE UNM 2 (10/24/24)

FlowTool Definitions

Flows are defined with

• Flow steps (flow_step): Associate a set of (tcl) commands to a label

Flow steps are created with create_flow_step

• Flow objects: Flow objects specify a set of actions for a CAD tool to execute

Typically, one of the Cadence tools are referred with ’-tool genus’

Non-Cadence tools are allowed using the ’-tool_options’ switch

• Flow scheduling: Adds additonal flow actions to the current flow

The keyword schedule_flow is used inside a create_flow_step definition

Stylus supports generating a generic flow environment with write_flow_template

write_flow_template -list gives a list of templates that can be generated for con-

figuring new flows for a design and/or foundry

The command write_flow_template MUST be run within a Cadence UI

It generates YAML files, e.g., flow.yaml and TCL files, e.g., design_config.tcl

VLSI Synthesis Stylus FlowKit ECE 595

ECE UNM 3 (10/24/24)

FlowTool Components

You MUST run the command within Cadence genus
@genus:root: 1> write_flow_template -tools "genus" -describe stylus
Features for flow templates matching ’stylus’

Template stylus

Provider : tool
Max version : 1
Description : Standard flow for block implementation defined using YAML and TCL
This is the default template
+----------------+---+---------+-------+
| Feature | Description | Default | Valid |
+----------------+---+---------+-------+
--- the following features are mutually exclusive (dft_style group)
| dft_compressor | Add flow support for scan chains with compression insertion | | 0 1 {} |
| dft_simple | Add flow support for scan chain insertion | | 0 1 {} |

dynamic_view	single dynamic analysis_view to activate		
ff_setup	Enable reading design config from legacy FF flow setup.tcl file		0 1 {}
flow_express	Enable express synthesis and implementation flow		0 1 {}
hold_views	list of hold analysis_views to activate		
leakage_view	single leakage analysis_view to activate		
report_clp	Add CLP dofile generation and checks to the flow		0 1 {}
--- the following features are mutually exclusive (report_style group)			
report_defer	Defer report generation		0 1 {}
report_inline	Run report generation as part of parent flow versus schedule_flow		0 1 {}
report_none	Disable report generation		0 1 {}

| report_lec | Add LEC dofile generation and checks to the flow | | 0 1 {} |
| setup_views | list of setup analysis_views to activate | | |
--- the following features are mutually exclusive (synth_style group)
synth_hybrid	Physically aware synthesis flow with logical final optimization		0 1 {}
synth_ispatial	Physically aware synthesis flow with ispatial final optimization		0 1 {}
synth_physical	Full physically aware synthesis flow		0 1 {}
synth_spatial	Physically aware synthesis flow with spatial final optimization		0 1 {}

| use_common_db | Enable using common DB format for synth and implementation flows | | 0 1 {} |
+----------------+---+---------+-------+

VLSI Synthesis Stylus FlowKit ECE 595

ECE UNM 4 (10/24/24)

YAML

YAML is a standard string processing language for describing data serialization, i.e.,

a series of data processing tasks, using high-level, user-friendly constructs

It describes the flow process in an outline style format

• Comments are indicated with ’#’

• Key-value pairs are created using ’:’

• Collections of actions are created using ’-’

Note that YAML uses spaces to create dependencies among statements, like python

Stylus creates flow control extensions in YAML using:

• CMD_<NAME>: Automatically encapsulates content in a flow_step with NAME

CMD_write_def: write_def out.def

• FILE_<NAME>: Automatically encapsultes file contents in a flow_step via NAME

FILE_floorplan: floorplan.tcl

• SCHEDULE: Method to schedule new flows in YAML, similar to schedule_flow

SCHEDULE: -flow report_prects

VLSI Synthesis Stylus FlowKit ECE 595

ECE UNM 5 (10/24/24)

YAML

Portion of flow.yaml in scripts directory generated by write_flow_template
flows:

#---
synthesis
#---
 synthesis:
 args: -tool genus -owner cadence -skip_metric -tool_options -disable_user_startup
 features:
 steps:
 - syn_generic:
 args: -owner cadence
 features:
 steps:
 - block_start:
 - init_elaborate:
 - init_design:
 args: -owner cadence
 features:
 steps:
 - read_mmmc:
 - read_physical:
 - read_hdl:
 - read_power_intent:
 - run_init_design:
 - read_def:
 enabled: "synth_spatial || synth_ispatial || synth_physical || synth_hybrid"
 - init_genus:
 - set_dont_use:
 - init_dft:
 - commit_power_intent:
 - create_cost_group:
 - run_syn_generic:
 - block_finish:
 - SCHEDULE:
 args: -flow report_synth -include_in_metrics
 enabled: "!report_none && !report_inline && !report_defer"
 - syn_map:
 ...

VLSI Synthesis Stylus FlowKit ECE 595

ECE UNM 6 (10/24/24)

YAML

Note that syn_generic and syn_map are genus commands

The items ’-’ are collections of actions to execute for these genus commands

The scripts file, setup.yaml, flow_config.tcl and design_config.tcl contain most of the

PLACEHOLDER keywords that need to be filled in for a new design/foundry

In setup.yaml, the following are needed:

• library_sets: List of xxx.lib files

• opconds: Process, temperature, voltage files

• timing_conditions: library_set objects to associate to a timing_condition

• rc_corners: qrc_tech files for RC corners

• delay_corners: early and late RC corner and timing_condition names

• constraint_modes: Constraint files to associate with a constraint_mode

• analysis_views: name of contraint_mode and delay_corner + others for view

• lef_files/oa_ref_libs/oa_search_libs: Files for read_physical command

• init_power_nets/init_ground_nets + others: Net names to assign

• design_name/design_process_node/design_flow_effort, etc: Design attributes

• add_fillers_cells/add_tieoffs_cells, etc: Names of std cells

VLSI Synthesis Stylus FlowKit ECE 595

ECE UNM 7 (10/24/24)

FlowTool Commands

Validate the setup.yaml by running flowtool, but only for init_design

flowtool -predict summary -flow init_design

flowtool takes many arguments:

• flowtool -run_tag synthesis_only -to syn_opt.block_finish

• flowtool -from prects.block_start -to prects.block_finish -predict verbose

From within the Cadence UIs, you can run flows:

• run_flow -step init_design

To run the entire flow, just use:

• flowtool

Viewing the results:

reports directory: Run your browser and point it to the qor.html

reports directory: For genus, text reports in syn_generic, syn_map and syn_opt

json: Use write_metric -format json -file run1.json

logs directory: Use vim to view, look for ’errors’ and ’warnings’

