1-21. Using analysis by inspection, write the expression for the voltage across the $2 k\Omega$ resistor and solve for its value. Mixing Voltage and Current Divider Analysis ## 1-22. Find I_{6k} . *Hint*: When we have two power supplies and a linear (resistive) network, we solve in three steps. - (1) Set one power supply to 0 V and calculate current in the 6 $k\Omega$ resistor from the nonzero power supply. - (2) Reverse the power supply roles and recalculate I_{6k} . - (3) The final answer is the sum of the two currents. This is known as the superposition theorem and can be applied only for linear elements. **1-23.** Solve for V_O using a method of inspection (current divider, voltage-divider, or both). ## Capacitors **1-24.** Find the equivalent capacitance at the input nodes and calculate the charge–discharge energy *W* for the parallel capacitors. - **1-25.** (a) What is the energy Wneeded to charge the circuit? - **(b)** Write the capacitance voltage divider expression for V_O and solve for the value. **1-26.** Find C_1 and the energy to charge C_1 . **1-27.** The 2 nF capacitors are precharged to 3 V, and the 5 nF capacitor is precharged to 1.2 V. At t = 0, switch S1 closes. What is the final voltage? Diodes **1-28.** Calculate V_O and the current through each resistor. Assume that the forward bias diode voltage is 0.7 V. **1-29.** Given that $I_S = 10$ nA. Calculate I_D and V_D for (a) $V_{BB} = 1$ V and (b) $V_{BB} = 10$ V. **1-30.** Calculate V_O given that the reverse bias saturation current $I_S = 1$ nA and you are at room temperature. **1-31.** Diode D_1 has a reverse bias saturation current of $I_{s1} = 1$ nA, and diode D_2 has $I_{s2} = 4$ nA. At room temperature, what is V_O ? **1-32.** Calculate the voltage across the diodes given that the reverse bias saturation current in D_1 is $I_{s1} = 175$ nA, and $I_{s2} = 100$ nA. 1-33. Giv I_{D1} 1-34. Cal +10 V