ECE321 – Electronics I

Lecture 12: CMOS Inverter: Noise Margin & Delay Model

Payman Zarkesh-Ha

Office: ECE Bldg. 230B
Office hours: Tuesday 2:00-3:00PM or by appointment
E-mail: payman@ece.unm.edu

ECE321 - Lecture 12

University of New Mexico

Slide: 1

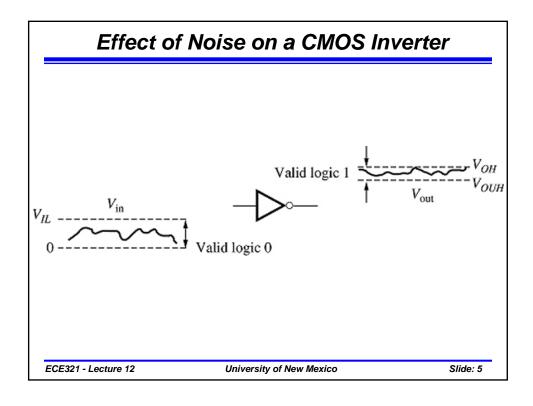
Review of Last Lecture

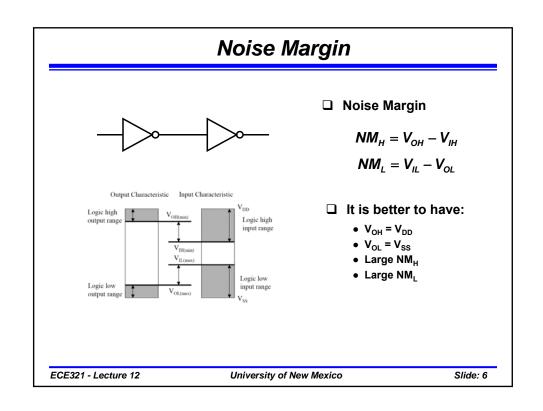
- □ CMOS Inverter
- □ Voltage Transfer Characteristics (VTC)
 - Switching threshold voltage
 - Output high voltage
 - Output low voltage
 - Input high voltage
 - Input low voltage
- □ Current Transfer Characteristics (ITC)
 - Peak current

ECE321 - Lecture 12

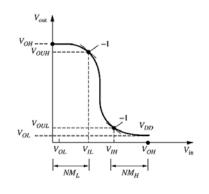
University of New Mexico

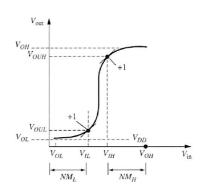
Today's Lecture


- Noise Margin Definition
- □ Approximation of Noise Margin for CMOS Inverter
- □ Propagation Delay
- □ Rise and Fall Times
- ☐ Input and Self Loading (Load) Capacitances
- □ Delay Approximation


ECE321 - Lecture 12

University of New Mexico


Slide: 3


Review: Voltage Transfer Characteristics Low gain Important Parameters on VTC: V_{OUH} Switching Threshold Voltage $V_{\rm S}$ or $V_{\rm M}$ Gain at V_S or V_M Output High Voltage V_{OH} Output Low Voltage Vol V_{OUL} Input High Voltage VIH V_{IL} V_{IH} Input Low Voltage V_{IL} V_S V_{OH} V_{IH} X (unknown) X (unknown) 0 Input range Output range ECE321 - Lecture 12 University of New Mexico Slide: 4

VTC of an inverter

VTC of a buffer

ECE321 - Lecture 12

University of New Mexico

Slide: 7

Example: Noise Margin Calculation

An IC with $V_{DD}=1.5$ V shows $V_{OH}=1.35$ V, $V_{OL}=0.2$ V, $V_{IH}=1.2$ V, and $V_{IL}=0.3$ V. Calculate the NM_L and NM_H for this IC.

Sketch the NM rectangles

$$NM_H = 1.35 - 1.2 = 150 \text{ mV}$$

 $NM_L = 0.3 - 0.2 = 100 \text{ mV}$

ECE321 - Lecture 12

University of New Mexico

Noise Margin Approximation

 V_{OH}

 V_{OL}

- ☐ How to compute Noise Margin
 - Usually it is harder to compute the exact value of NM
 - Use approximation (gain factor)
 - Determine gain at V_M
 - Extrapolate V_{IL} and V_{IH}
 - $\bullet~V_{\text{OL}}$ and V_{OH} are easy to compute
- □ Example:
 - NM_L and NM_H in CMOS inverter

$$\begin{split} V_{IH} - V_{IL} &= -\frac{(V_{OH} - V_{OL})}{g} = \frac{-V_{DD}}{g} \\ V_{IH} &= V_{M} - \frac{V_{M}}{g} \qquad V_{IL} &= V_{M} + \frac{V_{DD} - V_{M}}{g} \\ NM_{H} &= V_{DD} - V_{IH} \qquad NM_{L} &= V_{IL} \end{split}$$

where

ECE321 - Lecture 12

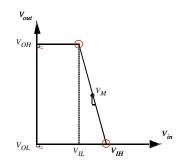
$$g = \frac{-2}{\lambda_n + |\lambda_p|} \left(\frac{1}{V_M - V_{T_n}} + \frac{1}{V_{DD} - V_M - |V_{T_p}|} \right)$$

University of New Mexico

Slide: 9

Example: Noise Margin Approximation

□ A CMOS inverter has V_{DD} =5V is designed to have V_{M} =2.9V. If V_{Tn} =0.7, V_{Tp} =-0.5, λ_{n} =0.05 V⁻¹ and λ_{p} =-0.08 V⁻¹. Find the noise margins NMH and NML.

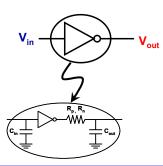

$$g = \frac{-2}{0.05 + 0.08} \left(\frac{1}{2.9 - 0.7} + \frac{1}{5 - 2.9 - 0.5} \right) = -16.6$$

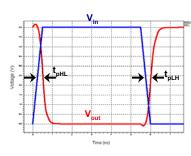
$$V_{IL} = 2.9 + \frac{5 - 2.9}{-16.6} = 2.77 V$$

$$V_{IH} = 2.9 - \frac{2.9}{-16.6} = 3.1V$$

$$NMH = 5 - 3.1 = 1.9 V$$

$$NML = 2.77 - 0 = 2.77 V$$

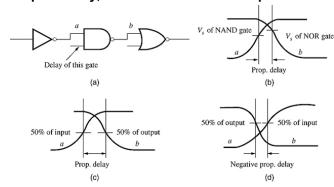



ECE321 - Lecture 12

University of New Mexico

Dynamic Behavior of CMOS Inverter

- ☐ Changing of the input doesn't instantaneously change the out pf an inverter
- ☐ This is mostly due to the time it takes to chrgae or dischage the output/load capacitor
- ☐ It is important to know how long it takes to get the signal out of the inverter or any CMOS logic gate

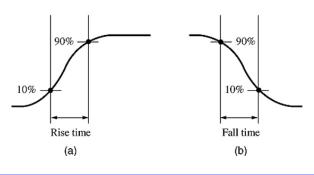

ECE321 - Lecture 12

University of New Mexico

Slide: 11

Definition: Propagation Delay

- Definition of propagation delay
 - is delay from where input crosses 50%Vdd to where output crosses 50%Vdd
 - ullet Remember: the value of 50%Vdd is from switching threshold voltage (V_M)
 - t_{pHL} is propagation delay when <u>output</u> switches from "High to Low"
 - t_{pLH} is propagation delay when <u>output</u> switches from "Low to High"
- ☐ To compute delay, the inverter must be simplified

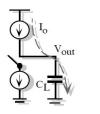


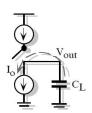
ECE321 - Lecture 12

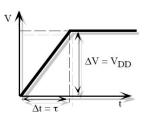
University of New Mexico

Definition: 10%-90% Rise/Fall Times

- ☐ Definition of 10%-90% rise time
 - is delay from 10%Vdd to 90%Vdd in the output
 - t, is the rise time when output switches from "Low to High"
- ☐ Definition of 90%-10% fall time
 - is delay from 90%Vdd to 10%Vdd in the output
 - t_f is the fall time when output switches from "High to Low"


ECE321 - Lecture 12

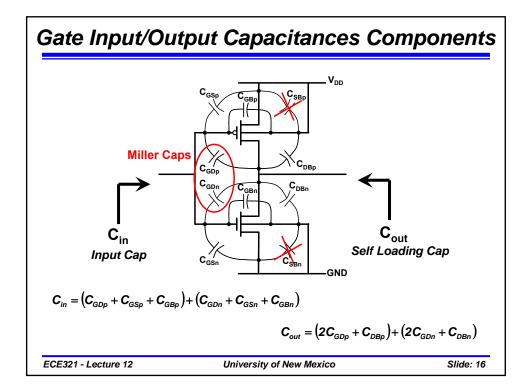

University of New Mexico


Slide: 13

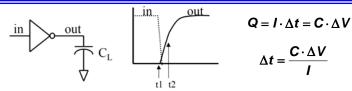
Definition: Linear Rise/Fall Times

- ☐ Definition of rise time (Hawkin's book)
 - is delay from 0 to Vdd in the output assuming a constant current source model
 - t_r is the rise time when *output* switches from "Low to High"
- □ Definition of fall time (Hawkin's book)
 - is delay from Vdd to 0 in the output assuming a constant current source model.
 - t_f is the fall time when output switches from "High to Low"

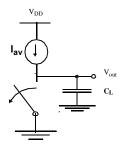
ECE321 - Lecture 12


University of New Mexico

Delay Calculation in CMOS Inveretr


- ☐ It is not easy to accurately calculate delay in CMOS inverter, because
 - CMOS inverter is a non-linear circuit, therefore exact delay calculation requires solving a non-linear differential equation
 - Most of the elements in the circuit is voltage dependent (transistor drive current, parasitic capacitances, channel length modulation, etc.)
- □ A simplified model is required for basic calculations and design process
- □ Note that SPICE actually does solve the non-linear circuit accurately, but is only good for final verification, not the design

ECE321 - Lecture 12


University of New Mexico

Propagation Delay Model

- □ Propagation delay is defined as the time between the input reaching $V_{DD}/2$ and the output reaching $V_{DD}/2$
- \Box To simplify the model, let's assume I is a constant I_{av}

 $t_{pLH} = t_2 - t_1 = \frac{C_L \cdot \left(V_{DD}/2\right)}{I_{av}}$


ECE321 - Lecture 12

University of New Mexico

Slide: 17

Propagation Delay Model

- \square How to compute I_{av} ?
 - Assume step input
 - . NMOS goes into cutoff and stays there
 - PMOS goes into saturation at first because $|V_{DS}| > |V_{GS}| |V_T|$
 - ullet PMOS will transition to linear, however, before V_{out} reaches $V_{DD}/2$

$$I_{av} = \frac{I_{DS}(V_{out} = 0) + I_{DS}(V_{out} = V_{DD}/2)}{2}$$
pLH

$$I_{av} = \left(\frac{K_p'}{2}\right) \left(\frac{W_p}{L_p}\right) \left(\frac{\left(V_{DD} - \left|V_{vp}\right|\right)^2}{2} + \frac{V_{DD}\left(V_{DD} - \left|V_{vp}\right|\right)}{2} - \frac{{V_{DD}}^2}{8}\right)$$

ECE321 - Lecture 12

University of New Mexico

Propagation Delay Model

□ A simpler model for I_{av} can be obtained by assuming that the PMOS stays in saturation the whole time, therefore acts as an ideal current source

$$I_{av} = \left(\frac{K_p'}{2}\right) \left(\frac{W_p}{L_p}\right) \left(V_{DD} - \left|V_{tp}\right|\right)^2$$

$$t_{pLH} = t_2 - t_1 = \frac{C_L \cdot (V_{DD}/2)}{I_{av}} \quad \Rightarrow \quad t_{pLH} = \frac{C_L \cdot V_{DD}}{K_p' \left(\frac{W_p}{L_p}\right) (V_{DD} - |V_{Tp}|)^2}$$

 \square Assuming $V_{DD} >> V_{Tp}$

$$t_{pLH} = \frac{C_L}{K_p' \left(\frac{W_p}{L_p}\right) V_{DD}}$$

☐ Same arguments hold for t_{pHL}

ECE321 - Lecture 12

University of New Mexico

Slide: 19

Minimum Delay Design Techniques

- □ Reduce C_{in} and C_{out} Careful layout, keep drain diffusion area as small as possible
- □ Reduce wiring capacitance Careful layout, keep devices as close as possible
- □ Increase (W/L) of devices Need to be careful not to get into self-loading effect
- □ Increase V_{DD} Need to be careful not to get into V_{DSAT} or velocity saturation

ECE321 - Lecture 12

University of New Mexico

Example: CMOS Inverter Delay

- □ A CMOS inverter has V_{DD} =5V is designed such that $(W/L)_n$ =10 and $(W/L)_p$ =20. Assume that V_{Tn} =0.7, V_{Tp} =-0.6, K'_n =100 uA/V², K'_p =-60 uA/V², and the load capacitance is 100fF.
 - 1) Use I $_{\rm av}$ model to find $t_{\rm pHL},\,t_{\rm pLH},\,t_{\rm r(10\%-90\%)},$ and $t_{\rm f(90\%-10\%)}.$
 - 2) Use constant current source model to find $t_{pHL},\,t_{pLH},\,t_{r(10\%-90\%)},\,t_{f(90\%-10\%)},\,t_r,$ and $t_f.$
- □ Answers:
 - 1) t_{pHL} =29.64 ps, t_{pLH} =23.73 ps, $t_{r(10\%-90\%)}$ =56.71 ps, and $t_{f(90\%-10\%)}$ =70.98 ps
 - 2) t_{pHL} =27.04 ps, t_{pLH} =21.52 ps, $t_{r(10\%-90\%)}$ =34.43 ps, and $t_{r(90\%-10\%)}$ =43.27 ps, t_r =43.04 ps and t_r =54.98 ps.

ECE321 - Lecture 12

University of New Mexico