ECE321 – Electronics I

Lecture 17: Interconnect Modeling I

Payman Zarkesh-Ha

Office: ECE Bldg. 230B
Office hours: Tuesday 2:00-3:00PM or by appointment
E-mail: payman@ece.unm.edu

ECE321 - Lecture 17

University of New Mexico

Slide: 1

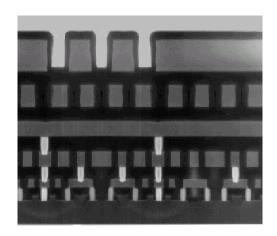
Review of Last Lecture

☐ Gate Sizing (Inverter Chain)

ECE321 - Lecture 17

University of New Mexico

| Interconnect Resistance | Interconnect Capacitance | Interconnect Inductance | Interconnect In

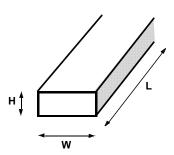

Interconnect Modeling Interconnect parasitics reduce reliability (crosstalk noise) affect performance and power consumption Interconnect Modeling Parasitic Capacitance Parasitic Resistance Parasitic Inductance

Example: Intel 0.25um backend process

5 metal layers Ti/Al - Cu/Ti/TiN Polysilicon dielectric

LAYER	PITCH	THICK	A.R.
Isolation	0.67	0.40	-
Polysilicon	0.64	0.25	-
Metal 1	0.64	0.48	1.5
Metal 2	0.93	0.90	1.9
Metal 3	0.93	0.90	1.9
Metal 4	1.60	1.33	1.7
Metal 5	2.56	1.90	1.5
	μm	μm	

Layer pitch, thickness and aspect ratio


ECE321 - Lecture 17

University of New Mexico

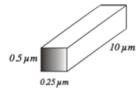
Slide: 5

Interconnect Resistance

- □ Extraction of interconnect capacitance is simpler except for special cases (test chips where accurate resistance of a pattern is needed)
- □ Sheet resistance is an easy method of resistance measurement in layout (Only the metal aspect ratio is needed, no thickness information)

$$R = \frac{\rho L}{W h}$$

$$R = \left(\frac{\rho}{H}\right) \frac{L}{W} = R_{\square} \frac{L}{W}$$


Sheet Resistance

ECE321 - Lecture 17

University of New Mexico

Example: Interconnect Resistance

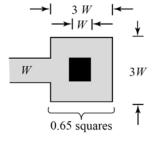
If the line is made of Cu, calculate the line resistance using sheet resistance at $T=20^{\circ}$ C.

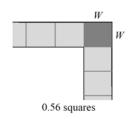
The sheet resistance is $R_{square} = \frac{\rho}{t} = \frac{1.72 \,\mu\Omega \cdot \text{cm}}{0.5 \,\mu m} \times \frac{10^4 \,\mu m}{\text{cm}} = \frac{33.99 \,\text{m}\Omega}{\text{square}}$

And the total number of squares is 1/w = 10 μ m/0.25 μ m = 40 squares. The total resistance is then

$$R=33.99~m\Omega\times40=1.360~\Omega$$

You get the same result from Eq (1), but deal with one less constant in the sheet resistance calculation.

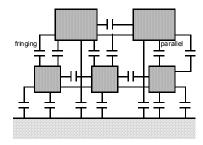

ECE321 - Lecture 17


University of New Mexico

Slide: 7

Sheet Resistance

■ Measurement shows that the effective number of squares of the "dog bone" style contact region is 0.65 and for a 90° corner is 0.56

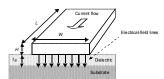


ECE321 - Lecture 17

University of New Mexico

Interconnect Capacitance

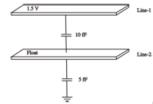
- □ Extraction of interconnect capacitance in modern VLSI technology is very complicated because of
 - Non-homogenous dielectric (etch stop, barrier liner, etc.)
 - Complex pattern of neighboring interconnects (need 3D modeling)
- ☐ There are two types of capacitances:
 - Ground capacitances
 - Coupling capacitances


ECE321 - Lecture 17

University of New Mexico

Slide: 9

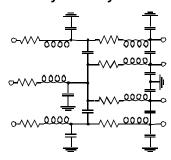
Interconnect Capacitance Modeling


☐ Often simple parallel plate model is used for hand calculation

$$c_{int} = \frac{\varepsilon_{di}}{t_{di}} WL$$

Example:

Consider the static situation in the figure where line-1 is at 1.5 V and line-2 is floating. What is the induced voltage on line-2?


 $V_2 = \left[\frac{10}{10+5}\right] 1.5 \text{ V} = 1.0 \text{ V}$

ECE321 - Lecture 17

University of New Mexico

Interconnect Inductance

- Extraction and modeling of interconnect inductance is extremely hard because of
 - Non-identified return path
 - Unlike capacitance, the effect of inductance goes beyond nearest neighbors
- ☐ It is used only for specific nets such as clock and power supply interconnects
- ☐ Has not yet been used by industry for timing analysis

ECE321 - Lecture 17

University of New Mexico

Slide: 11

Example: Inductance in Power Supply

The inductance in a particular IC connecting metal is 200 pH. What is the inductive voltage generated during a current rise time of 10^9 A/s?

$$v_L = L \frac{di}{dt} = 200 \times 10^{-12} \times 10^9 = 200 \text{ mV}$$

Many ICs use power supply voltages on the order of 1.0~V and less. A 200~mV inductive bite is a severe temporary weakening of the normal voltage that drives logic circuitry.

ECE321 - Lecture 17

University of New Mexico

Dealing with Interconnect Parasitics

- ☐ Reduce interconnect Capacitance
 - Use better dielectric material (low-K dielectric)
 - Reduce wire-length (efficient layout)
 - Increase wire spacing
- **☐** Reduce Interconnect Resistance
 - Use better conductor material (Copper)
 - Reduce wire-length (efficient layout)
 - Increase wire width
- □ Reduce Interconnect Inductance
 - Use proper return path
 - Slow down the ramp time

ECE321 - Lecture 17

University of New Mexico