ECE321 – Electronics I

Lecture 28: DRAM & Flash Memories

Payman Zarkesh-Ha

Office: ECE Bldg. 230B
Office hours: Tuesday 2:00-3:00PM or by appointment
E-mail: payman@ece.unm.edu

ECE321 - Lecture 28

University of New Mexico

Slide: 1

Review of Last Lecture

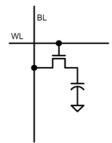
- ☐ Static Random-Access Memory (SRAM)
 - SRAM cell
 - SRAM architecture
 - Sense amplifier

ECE321 - Lecture 28

University of New Mexico

Today's Lecture

- □ Dynamic Random-Access Memory (DRAM)
 - DRAM cells
 - DRAM Capacitor implementation
 - DRAM Sense amplifier
- Nonvolatile Memories
 - EPROM
 - EEPROM
 - Flash


ECE321 - Lecture 28

University of New Mexico

Slide: 3

1T DRAM Cell

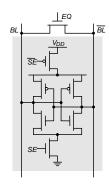
- ☐ Stored bit is held dynamically on a capacitor
- □ Very small storage cell only 1 transistor
 - Originally the capacitance was just the drain capacitance
- ☐ Unfortunately, charge doesn't scale key to technology is packing more capacitance into a smaller area over time
 - Tow main approaches: (1) Trench capacitor, (2) stacked capacitor

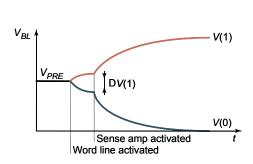
ECE321 - Lecture 28

University of New Mexico

DRAM Cell Observations

- ☐ 1T DRAM requires a sense amplifier for each bit line, due to charge redistribution read-out
- ☐ DRAM memory cells are single ended in contrast to SRAM cells
- ☐ The read-out of the 1T DRAM cell is destructive; read and refresh operations are necessary for correct operation
- ☐ When writing a "1" into a DRAM cell, a threshold voltage is lost. This charge loss can be circumvented by bootstrapping the word lines to a higher value than VDD

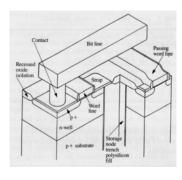

ECE321 - Lecture 28

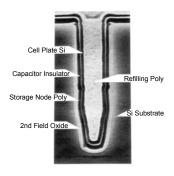

University of New Mexico

Slide: 5

Sense Amplifier in DRAM

- □ sense amp enabled with SE
- ☐ Initialized in its meta-stable point with EQ
- □ Once adequate voltage gap created, positive feedback quickly forces output to a stable operating point

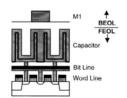


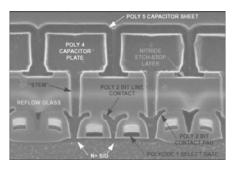

ECE321 - Lecture 28

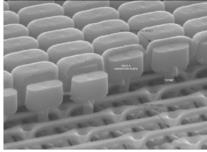
University of New Mexico

DRAM Technology - Trench Capacitor

- ☐ Capacitor is the trench under select line
- $oldsymbol{\square}$ The sidewalls and bottom of the trench are used for capacitor
- ☐ Trench is up to 5um deep

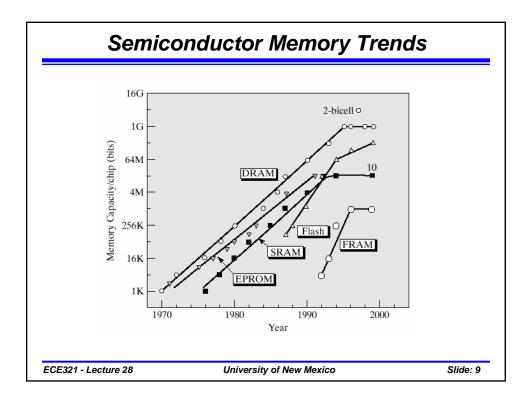

ECE321 - Lecture 28

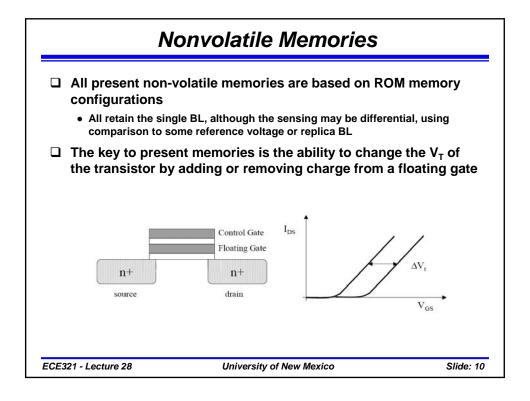

University of New Mexico


Slide: 7

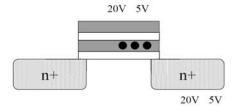
DRAM Technology – Stacked Capacitor

- ☐ Capacitor is above select transistor
- □ Polysilicon vias to polysilicon Plates



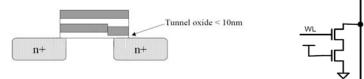


ECE321 - Lecture 28


University of New Mexico

Erasable Programmable ROM (EPROM)

- \Box Uses the same ROM NOR topology but can electrically increase the V_T of a cell via hot electron injection to a floating gate
- ☐ Erase is by UV light: Energetic photons knock the charge off the floating gate
 - This is an off-line operation and requires expensive packages with windows
 - Windowless packages are used for one time program (OTP)


ECE321 - Lecture 28

University of New Mexico

Slide: 11

Electrically Erasable PROM (EEPROM)

- ☐ EEPROM allows electrical erase of the cells
 - By providing a thin oxide at the drain end, the proper voltage can remove the charge via Fowler-Nordheim tunneling
 - The cells require two transistors per cell however
- □ A drawback of this cell is V_T drift when exposed to read voltages A separate access transistor helps to alleviate this problem, but at a significant density penalty

ECE321 - Lecture 28

University of New Mexico

Flash Memories

- ☐ Flash memories also allow electrical erase but at better granularity and speed
- ☐ A single thin oxide is used and a one transistor cell is possible
- ☐ Flash is available in NOR and NAND varieties
 - Flash is faster so can be main memory still very slow compared to SRAM
 - It is impractical to directly run code from NAND so it is primarily popular as data storage, e.g., photos, USB drives, etc.
- Multiple level cells are possible with choices of 4 V_Ts
 - This requires multiple sense amplifiers or multiple passes
 - Programming precise values is difficult and "over-erase" must be avoided
- □ Scaling flash transistors is very difficult since the oxide cannot scale
 - About 1 electron per month is the allowable loss

ECE321 - Lecture 28

University of New Mexico