ECE321 – Electronics I

Lecture 6: MOSFET I-V Characteristics

Payman Zarkesh-Ha

Office: ECE Bldg. 230B
Office hours: Tuesday 2:00-3:00PM or by appointment
E-mail: payman@ece.unm.edu

ECE321 - Lecture 6

University of New Mexico

Slide: 1

Review of Last Lecture

- □ Basic MOS Transistor
- MOSFET Operations
- ☐ Cutoff, Linear, and Saturation Regions in MOSFET
- NMOS and PMOS Structures

ECE321 - Lecture 6

University of New Mexico

Today's Lecture

- □ Device Model for Linear Region
- □ Device Model for Saturation Region
- □ Channel Length Modulation

ECE321 - Lecture 6

University of New Mexico

Device Operation: Linear (Ohmic) Region Question: What is the MOS current equation in linear (or ohmic) region? $V_{GS} > V_{T}$ $V_{DS} > 0$ $V_{GS} > V_{T}$ $V_{DS} > 0$ $V_{GS} > V_{T}$ $V_{DS} > 0$ $V_{DS} > 0$ $V_{DS} > 0$ $V_{DS} > 0$ $V_{DS} = \mu_{n}C_{ox} \frac{W}{L} \Big[(V_{CS} - V_{T})V_{DS} - \frac{V_{DS}^{2}}{2} \Big]$ $V_{DS} = \mu_{n}C_{ox} \frac{W}{L} \Big[(V_{CS} - V_{T})V_{DS} - \frac{V_{DS}^{2}}{2} \Big]$

$$Q(y) = C_{ox} \Delta V(y) = C_{ox} (V_{GS} - V_T - V(y))$$
$$0 < y < L$$

ECE321 - Lecture 6

University of New Mexico

Slide: 7

Device Operation: Linear Region

$$I_{D} = \mu_{n} Q(y) E(y) W = \mu_{n} C_{ox} W (V_{GS} - V_{T} - V(y)) E(y) = \mu_{n} C_{ox} W (V_{GS} - V_{T} - V(y)) \frac{dV}{dy}$$

$$I_D dy = \mu_n C_{ox} W (V_{GS} - V_T - V(y)) dV \implies \int_0^L I_D dy = \int_0^L \mu_n C_{ox} W (V_{GS} - V_T - V(y)) dV$$

$$I_{D} = \mu_{n} C_{ox} \frac{W}{L} \left((V_{GS} - V_{T}) V_{DS} - \frac{V_{DS}^{2}}{2} \right)$$

ECE321 - Lecture 6

University of New Mexico

Device Operation: Saturation

- $V_{\text{GD}} = V_{\text{GS}} V_{\text{DS}}$; so as V_{DS} increases V_{GD} will no longer exceed V_{T} , thus the charge density in the channel near the drain will decrease.
- If $V_{DS} = V_{GS} V_{T}$ then $V_{GD} = V_{T}$. At this operating point the charge density in the channel would diminish to zero right at the drain.
- When $V_{DS} = V_{GS} V_{T}$ the device is transitioning to saturation mode.

ECE321 - Lecture 6

University of New Mexico

Device Operation: Saturation

- As V_{DS} increases beyond $V_{\text{GS}}-V_{\text{T}}$ the charge density in the channel reaches zero prior to reaching the drain. At this point mobile charges are injected into the depletion region and swept to the drain.
- The early termination of the channel is termed "pinch off".
- I_{DS} stops increasing with $V_{DS},$ and the device is said to be "saturated".

ECE321 - Lecture 6 University of New Mexico

> Saturation Region Analogy Linear

Slide: 11

Slide: 12

channel

ECE321 - Lecture 6 University of New Mexico

6

Device Current in Saturation Region

• Since I_{DS} does not increase with increasing V_{DS} beyond $V_{DS} = V_{GS}$ - V_{T} one can find the equation for I_{DS} in saturation by substituting $V_{DS} = V_{GS}$ - V_{T} into the I_{DS} equation for linear mode:

$$I_{DS} = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_T)(V_{GS} - V_T) - \frac{(V_{GS} - V_T)^2}{2} \right]$$

$$I_{DS} = \mu_n C_{ox} \frac{W}{2L} (V_{GS} - V_T)^2$$

ECE321 - Lecture 6

University of New Mexico

Slide: 13

Channel Length Modulation

- Our previous view of saturation is too simple. I_{DS} will still have some V_{DS} dependence for V_{DS} values greater than V_{GS} - V_T
- As V_{DS} increases beyond V_{GS} - V_{T} more and more of the channel becomes "pinched off". Thus the effective channel length (L') is reduced by ΔL .
- This ΔL is proportional to: $\sqrt{V_{DS} V_{DSAT}}$; However one will discover that _____ is a fairly linear function. Therefore ...

ECE321 - Lecture 6

University of New Mexico

Channel Length Modulation

- The effect of channel length modulation is typically modeled with an empirical linear factor λ .
- Thus the equation for I_{DS} in saturation becomes:

$$I_{DS} = \mu_n C_{ox} \frac{W}{2L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$$

where λ = "channel length modulation factor"

ECE321 - Lecture 6

University of New Mexico

