ECE321 – Electronics I

Lecture 7: Basic Circuits with MOSFETs

Payman Zarkesh-Ha

Office: ECE Bldg. 230B
Office hours: Tuesday 2:00-3:00PM or by appointment
E-mail: payman@ece.unm.edu

ECE321 - Lecture 7

University of New Mexico

Slide: 1

Review of Last Lecture

☐ Threshold Voltage Equation

ECE321 - Lecture 7

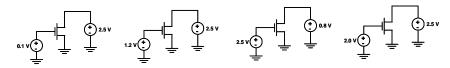
University of New Mexico

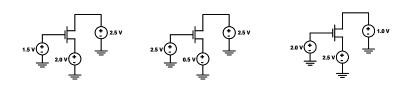
Today's Lecture

□ Some Example of MOS Circuits

ECE321 - Lecture 7

University of New Mexico

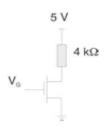

Slide: 3


Example 1: Region of Operation

In the circuit configurations below:

- 1) Identify Drain and Source terminals assuming the device is an NMOS
- 2) Identify operating region of each transistor (cutoff, linear, saturation)
 3) Write the drain current equation

Assume $V_T = 0.5 \ V_{\text{t...}} K_n^{\epsilon} \left(\frac{W}{L} \right) = 1 \ \frac{mA}{V^2}$. Ignore the body effect.

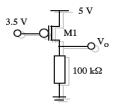


ECE321 - Lecture 7

University of New Mexico

Example 2: Gate Bias Problem

3.7. Given that $K_n = 250 \mu A$, $V_m = 0.5 \text{ V}$, and W/L = 3. What V_G makes transistor biased at the saturated/non-saturated boundary.

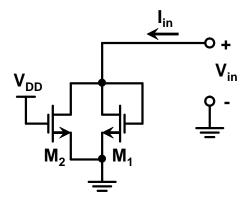

ECE321 - Lecture 7

University of New Mexico

Slide: 5

Example 3: PMOS Circuit

3.12. Calculate I_D and V_O for circuit where $V_{tp} = -0.8 \text{ V}$, $K_p = 30 \text{ } \mu\text{A/V}^2$, and W/L = 2.



ECE321 - Lecture 7

University of New Mexico

Example 4: Current Equation

☐ Find I_{in} as a function of V_{in} assuming $V_T < V_{in} < V_{DD}$ - V_T (assume long channel device and ignore channel length modulation)

ECE321 - Lecture 7

University of New Mexico