ECE321 – Electronics I

Lecture 8: MOSFET Threshold Voltage and Parasitic Capacitances

Payman Zarkesh-Ha

Office: ECE Bldg. 230B
Office hours: Tuesday 2:00-3:00PM or by appointment
E-mail: payman@ece.unm.edu

ECE321 - Lecture 8

University of New Mexico

Slide: 1

Review of Last Lecture

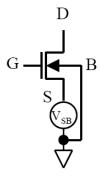
- □ Device Model for Linear Region
- □ Device Model for Saturation Region
- □ Channel Length Modulation

ECE321 - Lecture 8

University of New Mexico

Today's Lecture

- ☐ Threshold Voltage Equation
- ☐ "Dynamic Parameters of Long Channel MOSFET"
- MOSFET Parasitic Capacitances
 - Overlap capacitances
 - Channel capacitances
 - Junction capacitances


ECE321 - Lecture 8

University of New Mexico

Slide: 3

Threshold Voltage Equation

- MOSFET is a four terminal device; Gate, Source, Drain, and Bulk.
- ☐ The Bulk may not be always connected to the Source.

ECE321 - Lecture 8

University of New Mexico

Threshold Voltage Equation

- □ We normally assume that the bulk of the MOSFET is connected to source. However, sometimes the bulk and source are in different potentials ($V_{SB} \neq 0$). V_{SB} is called "body bias".
- \Box The applied V_{SB} changes the threshold voltage as shown below:

$$oldsymbol{V_T} = oldsymbol{V_{T0}} + \gamma igg(\sqrt{ig| 2arphi_F + oldsymbol{V_{SB}}ig|} - \sqrt{ig| 2arphi_Fig|} igg)$$

 \Box In this equation, $V_{\tau 0}$ is the zero bias threshold voltage, γ is the body bias coefficient, and ϕ_F is:

$$\varphi_{F} = \frac{KT}{q} Ln \left(\frac{N_{A}}{n_{i}} \right)$$

 \Box Where N_A is the doping concentration in the substrate.

ECE321 - Lecture 8

University of New Mexico

Slide: 5

Example: Threshold Voltage & Body Bias

 \Box Assume that V_{T0}=0.8V, γ =0.6 V^{1/2}, ϕ_F = 0.4 V. Find V_T if V_{SB}= 2.5 V

$$V_{T} = V_{T0} + \gamma \left(\sqrt{2\varphi_{F} + V_{SB}} - \sqrt{2\varphi_{F}} \right)$$

$$V_{\tau} = 0.8 + 0.6 \times \left(\sqrt{|2 \times 0.4 + 2.5|} - \sqrt{|2 \times 0.4|} \right) = 0.8 + 0.55 = 1.35$$

Observations:

- 1) Body bias is normally reverse bias. (why?)
- 2) More reverse body bias increases the threshold voltage.

ECE321 - Lecture 8

University of New Mexico

MOSFET Threshold Voltage

- The gate potential at which the channel inverts is called the threshold voltage (V_T)
- V_T is always referenced in relation to the gate to source potential V_{GS} (this is because the surface potential needs to exceed the source to "lure" electrons away into the channel)
- V_T is comprised of four main components:
 - Work function difference between the gate and substrate $\phi_F(substrate) \phi_F(gate)$
 - V_{GS} component required to change the surface potential of $2\varphi_{F}$
 - V_{GS} needed to offset the depletion region charge
 - V_{GS} needed to offset charges trapped in the gate oxide

ECE321 - Lecture 8

University of New Mexico

Slide: 7

More Detail on MOSFET Threshold Voltage

Zero body bias threshold voltage: $V_{T0} = \varphi_{ms} + 2\varphi_F + \frac{\sqrt{2qN_A\varepsilon_{si}}|2\varphi_F|}{C_{ox}} - \frac{Q_{ox}}{C_{ox}}$

Where: $\varphi_F = \frac{KT}{q} Ln \left(\frac{N_A}{n_i} \right)$ and $C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$

Threshold voltage with body bias: $V_T = V_{T0} + \gamma \left(\sqrt{|2\varphi_F + V_{SB}|} - \sqrt{|2\varphi_F|} \right)$

Where: $\gamma = \frac{\sqrt{2qN_A \epsilon_{si}}}{C_{ox}}$

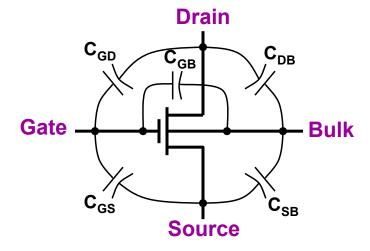
Important Facts:

- · Body bias increases threshold voltage
- Threshold voltage is positive for normal NMOS
- Threshold voltage is negative for normal PMOS

ECE321 - Lecture 8

University of New Mexico

MOS Capacitance

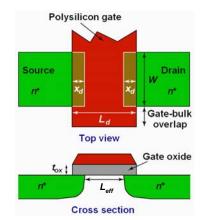

- □ Delay of digital CMOS circuits depends of capacitance of MOS device
- ☐ There is a trade off between parasitic capacitance and drive strength of MOS device
 - $\bullet~$ Larger \mathbf{C}_{ox} increases the drive strength (I_{DS} equation)
 - $\bullet\,$ However, larger \mathbf{C}_{ox} increases the device parasitic capacitance
- MOS parasitic capacitance includes
 - Overlap capacitances
 - · Channel capacitances
 - Junction capacitances
- Between almost every two terminals of MOS device, there is a source of parasitic capacitance

ECE321 - Lecture 8

University of New Mexico

Slide: 9

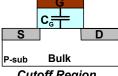
MOS Parasitic Capacitances

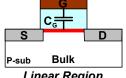

ECE321 - Lecture 8

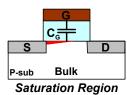
University of New Mexico

- □ Because of the lateral S/D diffusion, there is an overlap between gate and S/D junctions
- ☐ This overlap capacitance is a constant linear capacitance

$$C_{GSOV} = C_{GDOV} = WC_{ox}X_{d}$$


ECE321 - Lecture 8


University of New Mexico


Slide: 11

Channel Capacitances

☐ Channel capacitance is a voltage dependent and non-linear capacitance

0

Cutoff Region

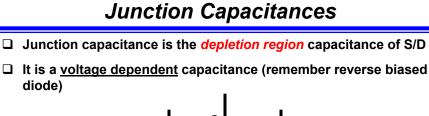
Operation Region

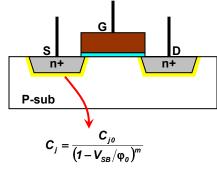
Cutoff

Linear

Saturation

Linear Region


 C_{GBCH} C_{GSCH} C_{GDCH} $C_{ox}WL_{eff}$ 0 0 C_{ox}WL_{eff} $C_{ox}WL_{eff}$ 0


C_{ox}WL_{eff}

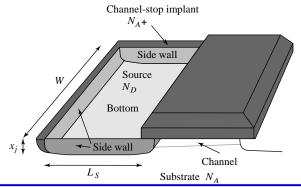
ECE321 - Lecture 8

University of New Mexico

0

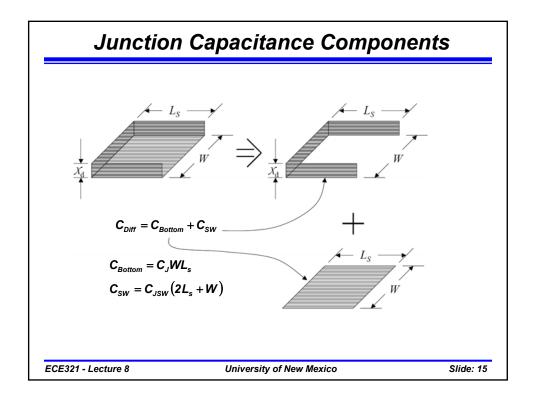
$$C_{jo} = A_D \sqrt{\left(\frac{\varepsilon_{si} q}{2} \frac{N_A N_D}{N_A + N_D}\right) \varphi_o^{-1}} \qquad \qquad \varphi_o = \frac{KT}{q} Ln \left(\frac{N_D}{N_D} \right)$$

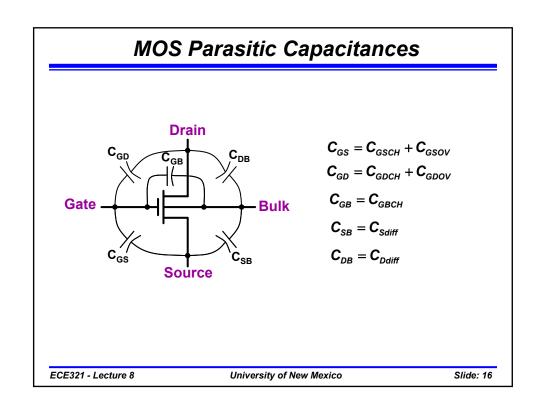
ECE321 - Lecture 8


diode)

University of New Mexico

Slide: 13


Junction Capacitance Components


- The Junction capacitance of bottom plate is treated separately from the three non-gate edges
- The gate edge is often ignored since it is part of the conducting channel
- The bottom plate is usually step graded with m=0.5
- The sidewall are step graded with m=0.33 and face the channel-stop implant which has much higher doping than substrate

ECE321 - Lecture 8

University of New Mexico

