ECE 523/421 – Analog Electronics (Fall 2010) Exam 1

Name:

Date: Oct. 4, 2010

Note: Only calculator, pencils, and pens are allowed.

- **1.** (10 points) True or false:
 - (a) In a properly biased BJT, the input resistance looking at the emitter terminal has the lowest resistance. ()
 - (b) The voltage gain of a source-follower amplifier is slightly larger than 1. ()
 - (c) The source-degradation resistor improves the stability of the transistor's bias point. ()
 - (d) A BJT with $\beta \approx \infty$ is exactly equivalent to a MOSFET. ()
 - (e) The absolute maximum gain (intrinsic gain) of a BJT at room temperature can be expressed as $V_{\text{A}}/25\text{mv}.~($
- 2. (10 points) A PMOS is biased at 100µA. Calculate V_{OV} , g_m , and r_o . Assume that K'_p =50 µA/V², (W/L)=10, and V_A =-5V.

- **3.** (20 points) Consider the common emitter amplifier shown in the circuit below:
 - (a) Compute the transistor operating point (V_{CE} and I_C). Assume that β =100 for the transistor.
 - (b) Compute the voltage gain of the amplifier (V_{Out}/V_S). Assume that C_{C1}, C_{C2}, and C_e are very large.

- 4. (30 points) The following circuit is a transimpedance amplifier, where the input current is amplified into the output voltage. Assume that $K'_n=100 \ \mu A/V^2$, $V_T=1V$, and (W/L)=50. Ignore the channel length modulate effect.
 - (a) Find $V_{G},\,V_{S},\,V_{D},\,V_{OV},\,I_{D},\,and\,g_{m}$ at the bias point.
 - (b) Determine the transimpdenace gain V_{out}/i_{in} . (Hint: Use either the T model or the same technique that you learned in the class to directly find the gain)
 - (c) Compute $V_{out}(max)$ and $V_{out}(min)$ and the total swing. Is the V_D found in part (a) in the middle of the output swing?

- 5. (30 points) We would like to design the following CMOS Cascode circuit to implement a 100 μ A current source with the output resistance of 5 M Ω . Assume that K'_n=100 μ A/V², V_A=5V, and V_T=1V.
 - (a) Find r_o.
 - (b) From the output resistance equation in cascode and the result in part (a), determine the g_m that can give us the desired output resistance.
 - (c) From the result in part (b), find the overdrive voltage, V_{OV} .
 - (d) From the result in part (c), determine the transistor sizes $(W/L)_1$ and $(W/L)_2$.
 - (e) To get the maximum output swing, how do you determine the bias point for $V_{\rm G1}$ and $V_{\rm G2}?$
 - (f) What is the minimum output voltage that the current source can still work properly?

