Review

• Introductory Material
 – Truth tables
 – K-Maps
 – Logic implementations
 • Standard / special
 • Tri-state vs 2 state
 • Signal characteristics (Tsu, Thold, Tdly, sum)
 – Shape of gates & Logical State Indicators

More Stuff

• Signal integrity: can cause problems
• Programmable logic: FPGA vs PLD vs CPLD vs PAL
• Boolean algebra & system representation
Steps for Combinational Design

• Understand { requirements, solutions, algorithms, number representations, etc.}
• Create a basic block diagram
 – Identify Ins and Outs as necessary
 – Identify assertion levels
• Partition problem as needed
• Define OUTS = fn(INS)
• Reduce, implement, check out

Hardware Description Language: VHDL

• Review basic VHDL techniques
 – Signal assignment
 • Conditional signal assignment statement
 • Selected signal assignment statement
 – Process
 • Sequential statements: signal assignment, variable assignment, if statement, case statement, loop statement
 – Concurrent vs sequential
 – Checking edges
Info Representation

- Unsigned Binary
- Two’s complement
- Fixed point with both UB and 2C
- Excess codes
- Floating Point Representations
- Arithmetic in different representations

Coding for Errors

- Simple Parity
- Hamming techniques
Addition/Subtraction

- Basic ripple technique
- Concepts involved in look-ahead
- How to build larger systems by repeated application of look-ahead elements

More Math: Multiplication and Division

- Basic algorithms
 - Gradeschool
 - Modified gradeschool algorithms
 - Divide with direct
- Faster stuff
 - Row reduction units – high speed multiply
 - High speed divide
- Math for Floating Point
Clocked Sequential Systems

• Use of clock for synchronization
• Creation of register type elements
• Creation of state machines
 – VHDL (simplest)
 – Classical
 – One-Hot
 – Others
• Use of Register Transfers