ECE 338 – Advanced Logic Design
Assignment 1
Due Date: February 17, 2010

Design an adder for IEEE 32 bit floating point numbers. That is, design an adder system that will accept two values expressed in the IEEE 32 bit floating point number system, perform the addition, and generate an output that also conforms to the floating point format. All of the activity must take place without the use of clocks or clocked shifting. The one area that will be relaxed is the creation of answers that are un-normalized. When an answer is un-normalized, or when overflow/underflow occurs, create a value that is ±\infty.

The inputs to the system are:

- A_VAL 32 bit floating point value
- B_VAL 32 bit floating point value

The output is:

- F_VAL 32 bit floating point value

Do the design in a top-down fashion. That is, start with a simple block diagram, then create a more detailed version, and finally implement the blocks in VHDL. This system is to be implemented in a structural fashion, and each gate level costs one nanosecond.

A test bench will be provided. The entity statement for the unit should be:

```vhdl
entity FP_ADDER is
    port(
        A\_VAL : in STD\_LOGIC\_VECTOR (31 downto 0);
        B\_VAL : in STD\_LOGIC\_VECTOR (31 downto 0);
        F\_VAL : out STD\_LOGIC\_VECTOR (31 downto 0)
    );
end entity FP\_ADDER;
```