Chapter 1

Computer Abstractions and Technology

The Computer Revolution

- Progress in computer technology
 - Underpinned by Moore’s Law
- Makes novel applications feasible
 - Computers in automobiles
 - Cell phones
 - Human genome project
 - World Wide Web
 - Search Engines
- Computers are pervasive
Classes of Computers

- Desktop computers
 - General purpose, variety of software
 - Subject to cost/performance tradeoff
- Server computers
 - Network based
 - High capacity, performance, reliability
 - Range from small servers to building sized
- Embedded computers
 - Hidden as components of systems
 - Stringent power/performance/cost constraints

The Processor Market
What You Will Learn

- How programs are translated into the machine language
 - And how the hardware executes them
- The hardware/software interface
- What determines program performance
 - And how it can be improved
- How hardware designers improve performance
- What is parallel processing

Understanding Performance

- Algorithm
 - Determines number of operations executed
- Programming language, compiler, architecture
 - Determine number of machine instructions executed per operation
- Processor and memory system
 - Determine how fast instructions are executed
- I/O system (including OS)
 - Determines how fast I/O operations are executed
Below Your Program

- Application software
 - Written in high-level language

- System software
 - Compiler: translates HLL code to machine code
 - Operating System: service code
 - Handling input/output
 - Managing memory and storage
 - Scheduling tasks & sharing resources

- Hardware
 - Processor, memory, I/O controllers

Levels of Program Code

- High-level language
 - Level of abstraction closer to problem domain
 - Provides for productivity and portability

- Assembly language
 - Textual representation of instructions

- Hardware representation
 - Binary digits (bits)
 - Encoded instructions and data
Components of a Computer

- Same components for all kinds of computer
 - Desktop, server, embedded
- Input/output includes
 - User-interface devices
 - Display, keyboard, mouse
 - Storage devices
 - Hard disk, CD/DVD, flash
 - Network adapters
 - For communicating with other computers

Anatomy of a Computer

Output device

Network cable

Input device

Input device
Anatomy of a Mouse

- Optical mouse
 - LED illuminates desktop
 - Small low-res camera
 - Basic image processor
 - Looks for x, y movement
 - Buttons & wheel
- Supersedes roller-ball mechanical mouse

Through the Looking Glass

- LCD screen: picture elements (pixels)
 - Mirrors content of frame buffer memory
Opening the Box

Inside the Processor (CPU)

- Datapath: performs operations on data
- Control: sequences datapath, memory, ...
- Cache memory
 - Small fast SRAM memory for immediate access to data
Inside the Processor

- AMD Barcelona: 4 processor cores

Abstractions

The BIG Picture

- Abstraction helps us deal with complexity
 - Hide lower-level detail
- Instruction set architecture (ISA)
 - The hardware/software interface
- Application binary interface
 - The ISA plus system software interface
- Implementation
 - The details underlying and interface
A Safe Place for Data

- Volatile main memory
 - Loses instructions and data when power off
- Non-volatile secondary memory
 - Magnetic disk
 - Flash memory
 - Optical disk (CDROM, DVD)

Networks

- Communication and resource sharing
- Local area network (LAN): Ethernet
 - Within a building
- Wide area network (WAN: the Internet
- Wireless network: WiFi, Bluetooth
Technology Trends

- Electronics technology continues to evolve
 - Increased capacity and performance
 - Reduced cost

<table>
<thead>
<tr>
<th>Year</th>
<th>Technology</th>
<th>Relative performance/cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951</td>
<td>Vacuum tube</td>
<td>1</td>
</tr>
<tr>
<td>1965</td>
<td>Transistor</td>
<td>35</td>
</tr>
<tr>
<td>1975</td>
<td>Integrated circuit (IC)</td>
<td>900</td>
</tr>
<tr>
<td>1995</td>
<td>Very large scale IC (VLSI)</td>
<td>2,400,000</td>
</tr>
<tr>
<td>2005</td>
<td>Ultra large scale IC</td>
<td>6,200,000,000</td>
</tr>
</tbody>
</table>

Defining Performance

- Which airplane has the best performance?
Response Time and Throughput

- Response time
 - How long it takes to do a task
- Throughput
 - Total work done per unit time
 - e.g., tasks/transactions/... per hour
- How are response time and throughput affected by
 - Replacing the processor with a faster version?
 - Adding more processors?
- We’ll focus on response time for now...

Relative Performance

- Define Performance = 1/Execution Time
- “X is n time faster than Y”

\[
\text{Performance}_X / \text{Performance}_Y = \frac{\text{Execution time}_Y}{\text{Execution time}_X} = n
\]

- Example: time taken to run a program
 - 10s on A, 15s on B
 - Execution Time$_B$ / Execution Time$_A$
 \[
 = \frac{15s}{10s} = 1.5
 \]
 - So A is 1.5 times faster than B
Measuring Execution Time

- Elapsed time
 - Total response time, including all aspects
 - Processing, I/O, OS overhead, idle time
 - Determines system performance
- CPU time
 - Time spent processing a given job
 - Discounts I/O time, other jobs’ shares
 - Comprises user CPU time and system CPU time
 - Different programs are affected differently by CPU and system performance

CPU Clocking

- Operation of digital hardware governed by a constant-rate clock

- Clock period: duration of a clock cycle
 - e.g., 250ps = 0.25ns = 250×10^{-12}s
- Clock frequency (rate): cycles per second
 - e.g., 4.0GHz = 4000MHz = 4.0×10^9Hz
CPU Time

CPU Time = CPU Clock Cycles \times \text{Clock Cycle Time}

= \frac{\text{CPU Clock Cycles}}{\text{Clock Rate}}

- Performance improved by
 - Reducing number of clock cycles
 - Increasing clock rate
 - Hardware designer must often trade off clock rate against cycle count

CPU Time Example

- Computer A: 2GHz clock, 10s CPU time
- Designing Computer B
 - Aim for 6s CPU time
 - Can do faster clock, but causes 1.2 \times \text{clock cycles}
- How fast must Computer B clock be?

\begin{align*}
\text{Clock Rate}_B &= \frac{\text{Clock Cycles}_B}{\text{CPU Time}_B} = \frac{1.2 \times \text{Clock Cycles}_A}{6s} \\
\text{Clock Cycles}_A &= \text{CPU Time}_A \times \text{Clock Rate}_A \\
&= 10s \times 2GHz = 20 \times 10^9 \\
\text{Clock Rate}_B &= \frac{1.2 \times 20 \times 10^9}{6s} = \frac{24 \times 10^9}{6s} = 4GHz
\end{align*}
Instruction Count and CPI

Clock Cycles = Instruction Count \times \text{Cycles per Instruction}

CPU Time = \frac{\text{Instruction Count} \times \text{CPI} \times \text{Clock Cycle Time}}{\text{Clock Rate}}

- Instruction Count for a program
 - Determined by program, ISA and compiler

- Average cycles per instruction
 - Determined by CPU hardware
 - If different instructions have different CPI
 - Average CPI affected by instruction mix

CPI Example

- Computer A: Cycle Time = 250\,\text{ps}, \text{CPI} = 2.0
- Computer B: Cycle Time = 500\,\text{ps}, \text{CPI} = 1.2
- Same ISA
- Which is faster, and by how much?

\[
\begin{align*}
\text{CPU Time}_A &= \text{Instruction Count} \times \text{CPI}_A \times \text{Cycle Time}_A \\
&= l \times 2.0 \times 250\,\text{ps} = l \times 500\,\text{ps} \quad \text{A is faster...}
\end{align*}
\]

\[
\begin{align*}
\text{CPU Time}_B &= \text{Instruction Count} \times \text{CPI}_B \times \text{Cycle Time}_B \\
&= l \times 1.2 \times 500\,\text{ps} = l \times 600\,\text{ps}
\end{align*}
\]

\[
\begin{align*}
\frac{\text{CPU Time}_B}{\text{CPU Time}_A} &= \frac{l \times 600\,\text{ps}}{l \times 500\,\text{ps}} = 1.2 \\
\text{...by this much}
\end{align*}
\]
CPI in More Detail

- If different instruction classes take different numbers of cycles

\[
\text{Clock Cycles} = \sum_{i=1}^{n} (\text{CPI}_i \times \text{Instruction Count}_i)
\]

- Weighted average CPI

\[
\text{CPI} = \frac{\text{Clock Cycles}}{\text{Instruction Count}} = \sum_{i=1}^{n} \left(\frac{\text{CPI}_i \times \text{Instruction Count}_i}{\text{Instruction Count}} \right)
\]

Relative frequency

CPI Example

- Alternative compiled code sequences using instructions in classes A, B, C

<table>
<thead>
<tr>
<th>Class</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPI for class</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>IC in sequence 1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>IC in sequence 2</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Sequence 1: IC = 5
 - Clock Cycles
 \[
 = 2 \times 1 + 1 \times 2 + 2 \times 3
 = 10
 \]
 - Avg. CPI = 10/5 = 2.0

- Sequence 2: IC = 6
 - Clock Cycles
 \[
 = 4 \times 1 + 1 \times 2 + 1 \times 3
 = 9
 \]
 - Avg. CPI = 9/6 = 1.5
Performance Summary

The BIG Picture

CPU Time = \frac{\text{Instructions}}{\text{Program}} \times \frac{\text{Clock cycles}}{\text{Instructions}} \times \frac{\text{Seconds}}{\text{Clock cycle}}

- Performance depends on
 - Algorithm: affects IC, possibly CPI
 - Programming language: affects IC, CPI
 - Compiler: affects IC, CPI
 - Instruction set architecture: affects IC, CPI, T_c

Power Trends

- In CMOS IC technology

\[\text{Power} = \text{Capacitive load} \times \text{Voltage}^2 \times \text{Frequency} \]

\times 30 \quad 5V \to 1V \quad \times 1000
Reducing Power

- Suppose a new CPU has
 - 85% of capacitive load of old CPU
 - 15% voltage and 15% frequency reduction

\[
P_{\text{new}} = \frac{C_{\text{old}} \times 0.85 \times (V_{\text{old}} \times 0.85)^2 \times F_{\text{old}} \times 0.85}{C_{\text{old}} \times V_{\text{old}}^2 \times F_{\text{old}}} = 0.85^4 = 0.52
\]

- The power wall
 - We can’t reduce voltage further
 - We can’t remove more heat

- How else can we improve performance?

Uniprocessor Performance

Constrained by power, instruction-level parallelism, memory latency
Multiprocessors

- Multicore microprocessors
 - More than one processor per chip
- Requires explicitly parallel programming
 - Compare with instruction level parallelism
 - Hardware executes multiple instructions at once
 - Hidden from the programmer
- Hard to do
 - Programming for performance
 - Load balancing
 - Optimizing communication and synchronization

Manufacturing ICs

- Yield: proportion of working dies per wafer

§1.7 Real Stuff: The AMD Opteron X4
AMD Opteron X2 Wafer

- X2: 300mm wafer, 117 chips, 90nm technology
- X4: 45nm technology

Integrated Circuit Cost

\[
\text{Cost per die} = \frac{\text{Cost per wafer}}{\text{Dies per wafer} \times \text{Yield}}
\]

- Dies per wafer \approx \text{Wafer area/Die area}
- \[\text{Yield} = \frac{1}{(1 + (\text{Defects per area} \times \text{Die area}/2))^2}\]

- Nonlinear relation to area and defect rate
 - Wafer cost and area are fixed
 - Defect rate determined by manufacturing process
 - Die area determined by architecture and circuit design
SPEC CPU Benchmark

- Programs used to measure performance
 - Supposedly typical of actual workload
- Standard Performance Evaluation Corp (SPEC)
 - Develops benchmarks for CPU, I/O, Web, …
- SPEC CPU2006
 - Elapsed time to execute a selection of programs
 - Negligible I/O, so focuses on CPU performance
 - Normalize relative to reference machine
 - Summarize as geometric mean of performance ratios
 - CINT2006 (integer) and CFP2006 (floating-point)

```
\sqrt[n]{\prod_{i=1}^{n} \text{Execution time ratio}_i}
```

CINT2006 for Opteron X4 2356

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>IC×10^9</th>
<th>CPI</th>
<th>Tc (ns)</th>
<th>Exec time</th>
<th>Ref time</th>
<th>SPECratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>perl</td>
<td>Interpreted string processing</td>
<td>2,118</td>
<td>0.75</td>
<td>0.40</td>
<td>637</td>
<td>9,777</td>
<td>5.3</td>
</tr>
<tr>
<td>bzip2</td>
<td>Block-sorting compression</td>
<td>2,389</td>
<td>0.85</td>
<td>0.40</td>
<td>817</td>
<td>9,650</td>
<td>11.8</td>
</tr>
<tr>
<td>gcc</td>
<td>GNU C Compiler</td>
<td>1,050</td>
<td>1.72</td>
<td>0.47</td>
<td>24</td>
<td>8,050</td>
<td>11.1</td>
</tr>
<tr>
<td>mcf</td>
<td>Combinatorial optimization</td>
<td>336</td>
<td>10.00</td>
<td>0.40</td>
<td>1,345</td>
<td>9,120</td>
<td>6.8</td>
</tr>
<tr>
<td>go</td>
<td>Go game (AI)</td>
<td>1,658</td>
<td>1.09</td>
<td>0.40</td>
<td>721</td>
<td>10,490</td>
<td>14.6</td>
</tr>
<tr>
<td>hmmer</td>
<td>Search gene sequence</td>
<td>2,783</td>
<td>0.80</td>
<td>0.40</td>
<td>890</td>
<td>9,330</td>
<td>10.5</td>
</tr>
<tr>
<td>sjeng</td>
<td>Chess game (AI)</td>
<td>2,176</td>
<td>0.96</td>
<td>0.48</td>
<td>37</td>
<td>12,100</td>
<td>14.5</td>
</tr>
<tr>
<td>libquantum</td>
<td>Quantum computer simulation</td>
<td>1,623</td>
<td>1.61</td>
<td>0.40</td>
<td>1,047</td>
<td>20,720</td>
<td>19.8</td>
</tr>
<tr>
<td>h264avc</td>
<td>Video compression</td>
<td>3,102</td>
<td>0.80</td>
<td>0.40</td>
<td>993</td>
<td>22,130</td>
<td>22.3</td>
</tr>
<tr>
<td>omnetpp</td>
<td>Discrete event simulation</td>
<td>587</td>
<td>2.94</td>
<td>0.40</td>
<td>690</td>
<td>6,250</td>
<td>9.1</td>
</tr>
<tr>
<td>astar</td>
<td>Games/path finding</td>
<td>1,082</td>
<td>1.79</td>
<td>0.40</td>
<td>773</td>
<td>7,020</td>
<td>9.1</td>
</tr>
<tr>
<td>xalanbmk</td>
<td>XML parsing</td>
<td>1,058</td>
<td>2.70</td>
<td>0.40</td>
<td>1,143</td>
<td>6,900</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Geometric mean: 11.7

High cache miss rates
SPEC Power Benchmark

- Power consumption of server at different workload levels
 - Performance: ssj_ops/sec
 - Power: Watts (Joules/sec)

Overall ssj_ops per Watt = \(\frac{\sum_{i=0}^{10} \text{ssj_ops}_i}{\sum_{i=0}^{10} \text{power}_i} \)

SPECpower_ssj2008 for X4

<table>
<thead>
<tr>
<th>Target Load %</th>
<th>Performance (ssj_ops/sec)</th>
<th>Average Power (Watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>231,867</td>
<td>295</td>
</tr>
<tr>
<td>90%</td>
<td>211,282</td>
<td>286</td>
</tr>
<tr>
<td>80%</td>
<td>185,803</td>
<td>275</td>
</tr>
<tr>
<td>70%</td>
<td>163,427</td>
<td>265</td>
</tr>
<tr>
<td>60%</td>
<td>140,160</td>
<td>256</td>
</tr>
<tr>
<td>50%</td>
<td>118,324</td>
<td>246</td>
</tr>
<tr>
<td>40%</td>
<td>920,35</td>
<td>233</td>
</tr>
<tr>
<td>30%</td>
<td>70,500</td>
<td>222</td>
</tr>
<tr>
<td>20%</td>
<td>47,126</td>
<td>206</td>
</tr>
<tr>
<td>10%</td>
<td>23,066</td>
<td>180</td>
</tr>
<tr>
<td>0%</td>
<td>0</td>
<td>141</td>
</tr>
<tr>
<td>Overall sum</td>
<td>1,283,590</td>
<td>2,605</td>
</tr>
</tbody>
</table>

\(\frac{\sum \text{ssj_ops}}{\sum \text{power}} = 493 \)
Pitfall: Amdahl’s Law

- Improving an aspect of a computer and expecting a proportional improvement in overall performance

\[
T_{\text{improved}} = \frac{T_{\text{affected}}}{\text{improvement factor}} + T_{\text{unaffected}}
\]

- Example: multiply accounts for 80s/100s
 - How much improvement in multiply performance to get 5× overall?

\[
20 = \frac{80}{n} + 20
\]

- Can’t be done!

- Corollary: make the common case fast

Fallacy: Low Power at Idle

- Look back at X4 power benchmark
 - At 100% load: 295W
 - At 50% load: 246W (83%)
 - At 10% load: 180W (61%)

- Google data center
 - Mostly operates at 10% – 50% load
 - At 100% load less than 1% of the time

- Consider designing processors to make power proportional to load
Pitfall: MIPS as a Performance Metric

- MIPS: Millions of Instructions Per Second
 - Doesn’t account for
 - Differences in ISAs between computers
 - Differences in complexity between instructions

\[
\text{MIPS} = \frac{\text{Instruction count}}{\text{Execution time} \times 10^6} = \frac{\text{Instruction count}}{\text{Instruction count} \times \text{CPI} \times 10^8} = \frac{\text{Clock rate}}{\text{CPI} \times 10^5}
\]

- CPI varies between programs on a given CPU

Concluding Remarks

- Cost/performance is improving
 - Due to underlying technology development
- Hierarchical layers of abstraction
 - In both hardware and software
- Instruction set architecture
 - The hardware/software interface
- Execution time: the best performance measure
- Power is a limiting factor
 - Use parallelism to improve performance