NAND Flash Memory
MT29F2G08AABWP/MT29F2G16AABWP
MT29F4G08BABWP/MT29F4G16BABWP
MT29F8G08FABWP

Features

• Organization:
 • Page size:
 x8: 2,112 bytes (2,048 + 64 bytes)
 x16: 1,056 words (1,024 + 32 words)
 • Block size: 64 pages (128K + 4K bytes)
 • Device size: 2Gb: 2,048 blocks; 4Gb: 4,096 blocks; 8Gb: 8,192 blocks
• Read performance:
 • Random read: 25µs
 • Sequential read: 30ns (3V x8 only)
• Write performance:
 • Page program: 300µs (TYP)
 • Block erase: 2ms (TYP)
• Endurance: 100,000 PROGRAM/ERASE cycles
• Data retention: 10 years
• First block (block address 00h) guaranteed to be valid without ECC (up to 1,000 PROGRAM/ERASE cycles)
• VCC: 2.7V–3.6V
• Automated PROGRAM and ERASE
• Basic NAND command set:
 • PAGE READ, RANDOM DATA READ, READ ID,
 • READ STATUS, PROGRAM PAGE, RANDOM DATA INPUT, PROGRAM PAGE CACHE MODE, INTERNAL DATA MOVE, INTERNAL DATA MOVE with RANDOM DATA INPUT, BLOCK ERASE, RESET
• New commands:
 • PAGE READ CACHE MODE
 • READ UNIQUE ID (contact factory)
 • READ ID2 (contact factory)
• Operation status byte provides a software method of detecting:
 • PROGRAM/ERASE operation completion
 • PROGRAM/ERASE pass/fail condition
• Write-protect status
• Ready/busy# (R/B#) pin provides a hardware method of detecting PROGRAM or ERASE cycle completion
• PRE pin: prefetch on power up
• WP# pin: hardware write protect

Figure 1: 48-Pin TSOP Type 1

Options

• Density:
 2Gb (single die) MT29F2GxxAAB
 4Gb (dual-die stack) MT29F4GxxBAB
 8Gb (quad-die stack) MT29F8GxxFAB
• Device width:
 x8 MT29Fxx08x
 x16 MT29Fxx16x
• Configuration:
<table>
<thead>
<tr>
<th># of die</th>
<th># of CE#</th>
<th># of R/B#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
• VCC: 2.7V–3.6V
• Second generation die
• Package:
 • 48 TSOP type I (lead-free) WP
 • 48 TSOP type I (NEW version, 8Gb device only, lead-free) WA
 • 48 TSOP type I (contact factory) WG
• Operating temperature:
 • Commercial (0°C to 70°C) None
 • Extended temperature (-40°C to +85°C) ET

Marking

MT29F2GxxAAB
MT29F4GxxBAB
MT29F8GxxFAB
Part Numbering Information

Micron® NAND Flash devices are available in several different configurations and densities. (See Figure 2.)

Figure 2: Part Number Chart

Valid Part Number Combinations

After building the part number from the part numbering chart above, verify that the part number is valid using the Micron Parametric Part Search Web site at http://www.micron.com/partsearch to verify that the part number is offered and valid. If the device required is not on this list, contact the factory.
Table of Contents

Features .. 1
Part Numbering Information 2
 Valid Part Number Combinations 2
General Description 7
Architecture ... 10
Addressing ... 10
Bus Operation ... 16
 Control Signals .. 16
Commands ... 16
Address Input .. 16
Data Input .. 17
READs .. 17
Ready/Busy# ... 17
Minimum Rp ... 18
Power-On AUTO-READ 21
Command Definitions 22
READ Operations 23
 PAGE READ 00h-30h 23
 RANDOM DATA READ 05h-0Eh 24
 PAGE READ CACHE MODE START 31h; PAGE READ CACHE MODE START LAST 3Fh 24
 READ ID 90h .. 26
 READ STATUS 70h 27
PROGRAM Operations 29
 PROGRAM PAGE 80h-10h 29
 SERIAL DATA INPUT 80h 29
 RANDOM DATA INPUT 85h 29
 PROGRAM PAGE CACHE MODE 80h-15h 30
Internal Data Move 31
 READ FOR INTERNAL DATA MOVE 00h-35h 31
 INTERNAL DATA MOVE 85h-10h 31
BLOCK ERASE Operation 33
 BLOCK ERASE 60h-D0h 33
RESET Operation 34
 RESET FFh ... 34
WRITE PROTECT Operation 35
Error Management 37
Electrical Characteristics 38
 VCC Power Cycling 38
Timing Diagrams ... 42
Package Dimensions 56
List of Figures

Figure 1: 48-Pin TSOP Type 1 ... 1
Figure 2: Part Number Chart ... 2
Figure 3: NAND Flash Functional Block Diagram 8
Figure 4: Pin Assignment (Top View) 48-Pin TSOP Type 1 8
Figure 5: Memory Map x8 .. 11
Figure 6: Memory Map x16 ... 11
Figure 7: Array Organization for MT29F2G08AxB (x8) 12
Figure 8: Array Organization for MT29F2G16AxB (x16) 12
Figure 9: Array Organization for MT29F4G08BxB and MT29F8G08Fx(B (x8) 14
Figure 10: Array Organization for MT29F4G16BxB (x16) 15
Figure 11: Time Constants .. 17
Figure 12: READY/BUSY# Open Drain ... 18
Figure 13: tR and tF .. 18
Figure 14: Iol vs. Rp .. 19
Figure 15: TC vs. Rp ... 19
Figure 16: First Page Power-On AUTO-READ (3V Vcc only) 21
Figure 17: AC Waveforms During Power Transitions 21
Figure 18: PAGE READ Operation .. 23
Figure 19: RANDOM DATA READ Operation 24
Figure 20: PAGE READ CACHE MODE ... 25
Figure 21: READ ID Operation .. 26
Figure 22: Status Register Operation .. 28
Figure 23: PROGRAM and READ STATUS Operation 29
Figure 24: RANDOM DATA INPUT .. 29
Figure 25: PROGRAM PAGE CACHE MODE Example 30
Figure 26: INTERNAL DATA MOVE .. 32
Figure 27: INTERNAL DATA MOVE with RANDOM DATA INPUT 32
Figure 28: BLOCK ERASE Operation .. 33
Figure 29: RESET Operation .. 34
Figure 30: ERASE Enable ... 35
Figure 31: ERASE Disable ... 35
Figure 32: PROGRAM Enable .. 35
Figure 33: PROGRAM Disable .. 36
Figure 34: COMMAND LATCH Cycle .. 42
Figure 35: ADDRESS LATCH Cycle ... 42
Figure 36: INPUT DATA LATCH .. 43
Figure 37: SERIAL ACCESS Cycle After READ 43
Figure 38: STATUS READ Cycle ... 44
Figure 39: PAGE READ ... 44
Figure 40: READ Operation with CE# “Don’t Care” 45
Figure 41: RANDOM DATA READ .. 45
Figure 42: PAGE READ CACHE MODE Timing Diagram, Part 1 of 2 46
Figure 43: PAGE READ CACHE MODE Timing Diagram, Part 2 of 2 47
Figure 44: PAGE READ CACHE MODE Timing without R/B#, Part 1 of 2 48
Figure 45: PAGE READ CACHE MODE Timing without R/B#, Part 2 of 2 49
Figure 46: READ ID Operation .. 50
Figure 47: Program Operation with CE# “Don’t Care” 50
Figure 48: PROGRAM PAGE Operation .. 51
Figure 49: PROGRAM PAGE Operation with RANDOM DATA INPUT 52
Figure 50: INTERNAL DATA MOVE .. 52
Figure 51: PROGRAM PAGE CACHE MODE 53
List of Figures

Figure 52: PROGRAM PAGE CACHE MODE Ending on 15h ..54
Figure 53: BLOCK ERASE Operation ...55
Figure 54: RESET Operation ..55
Figure 55: 48-Pin TSOP Type I ...56
General Description

NAND technology provides a cost-effective solution for applications requiring high-density solid-state storage. The MT29F2G08AxB and MT29F2G16AxB are 2Gb NAND Flash memory devices. The MT29F4G08BxB and MT29F4G16BxB are two-die stacks that operate as a single 4Gb device. The MT29F8G08FAB is a four-die stack that operates as two independent 4Gb devices (MT29F4G08BxB), providing a total storage capacity of 8Gb in a single, space-saving package. Micron NAND Flash devices include standard NAND features as well as new features designed to enhance system-level performance.

Micron NAND Flash devices use a highly multiplexed 8- or 16-bit bus (I/O[7:0] or I/O[15:0]) to transfer data, addresses, and instructions. The five command pins (CLE, ALE, CE#, RE#, WE#) implement the NAND command bus interface protocol. Three additional pins control hardware write protection (WP#), monitor device status (R/B#), and initiate the auto-read feature (PRE—3V device only). Note that the PRE function is not supported on extended-temperature devices.

This hardware interface creates a low-pin-count device with a standard pinout that is the same from one density to another, allowing future upgrades to higher densities without board redesign.

MT29F2G and MT29F4G devices contain 2,048 and 4,096 erasable blocks respectively. Each block is subdivided into 64 programmable pages. Each page consists of 2,112 bytes (x8) or 1,056 words (x16). The pages are further divided into a 2,048-byte data storage region with a separate 64-byte area on the x8 device; and on the x16 device, separate 1,024-word and 32-word areas. The 64-byte and 32-word areas are typically used for error management functions.

The contents of each 2,112-byte page can be programmed in 300µs, and an entire 132K-byte/66K word block can be erased in 2ms. On-chip control logic automates PROGRAM and ERASE operations to maximize cycle endurance. ERASE/PROGRAM endurance is specified at 100,000 cycles when using appropriate error correcting code (ECC) and error management.
Figure 3: NAND Flash Functional Block Diagram

Note: The PRE function is not supported on extended-temperature devices.

Figure 4: Pin Assignment (Top View) 48-Pin TSOP Type 1

Notes:
1. CE2# and R/B2# on 8Gb device only. These pins are NC for other configurations.
2. The PRE function is not supported on extended-temperature devices.
2, 4, 8Gb: x8/x16 Multiplexed NAND Flash Memory

General Description

Table 1: Pin Descriptions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALE</td>
<td>Input</td>
<td>Address latch enable: During the time ALE is HIGH, address information is transferred from I/O[7:0] into the on-chip address register upon a LOW-to-HIGH transition on WE#. When address information is not being loaded, the ALE pin should be driven LOW.</td>
</tr>
<tr>
<td>CE#, CE2#</td>
<td>Input</td>
<td>Chip enable: Gates transfers between the host system and the NAND device. Once the device starts a PROGRAM or ERASE operation, the chip enable pin can be de-asserted. For the 8Gb configuration, CE# controls the first 4Gb of memory; CE2# controls the second 4Gb. See the Bus Operation section, starting on “Bus Operation” on page 16 for additional operational details.</td>
</tr>
<tr>
<td>CLE</td>
<td>Input</td>
<td>Command latch enable: When CLE is HIGH, information is transferred from I/O[7:0] to the on-chip command register on the rising edge of WE#. When command information is not being loaded, the CLE pin should be driven LOW.</td>
</tr>
<tr>
<td>PRE(^T)</td>
<td>(3V device only) Input</td>
<td>Power-on read enable: Enables the auto-read function when at Vcc. See “Bus Operation” on page 16, for additional details.</td>
</tr>
<tr>
<td>RE#</td>
<td>Input</td>
<td>Read enable: Gates transfers from the NAND device to the host system.</td>
</tr>
<tr>
<td>WE#</td>
<td>Input</td>
<td>Write enable: Gates transfers from the host system to the NAND device.</td>
</tr>
<tr>
<td>WP#</td>
<td>Input</td>
<td>Write protect: Pin protects against inadvertent PROGRAM and ERASE operations. All PROGRAM and ERASE operations are disabled when the WP# pin is LOW.</td>
</tr>
<tr>
<td>I/O[7:0]</td>
<td>I/O</td>
<td>Data inputs/outputs: The bidirectional I/O pins transfer address, data, and instruction information. Data is output only during READ operations; at other times the I/O pins are inputs.</td>
</tr>
<tr>
<td>MT29FxG08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/O[15:0]</td>
<td>I/O</td>
<td></td>
</tr>
<tr>
<td>MT29FxG16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R/B#, R/B2#</td>
<td>Output</td>
<td>Ready/busy: An open-drain, active-LOW output, that uses an external pull-up resistor. The pin is used to indicate when the chip is processing a PROGRAM or ERASE operation. The pin is also used during a READ operation to indicate when data is being transferred from the array into the serial data register. Once these operations have completed, the R/B# returns to the High-Z state. In the 8Gb configuration, R/B# is for the 4Gb of memory enabled by CE#; R/B2# is for the 4Gb of memory enabled by CE2#.</td>
</tr>
<tr>
<td>Vcc</td>
<td>Supply</td>
<td>VCC: The Vcc pin is the power supply pin.</td>
</tr>
<tr>
<td>Vss</td>
<td>Supply</td>
<td>Vss: The Vss pin is the ground connection.</td>
</tr>
<tr>
<td>DNU</td>
<td>–</td>
<td>Do not use: Must be left floating.</td>
</tr>
<tr>
<td>NC</td>
<td>–</td>
<td>No connect: NC pins are not internally connected. These pins can be driven or left unconnected.</td>
</tr>
</tbody>
</table>

Notes: 1. The PRE function is not supported on extended-temperature devices.
Architecture

These devices use NAND electrical and command interfaces. Data, commands, and addresses are multiplexed onto the same pins. This provides a memory device with a low pin count.

The internal memory array is accessed on a page basis. When doing reads, a page of data is copied from the memory array into the data register. Once copied to the data register, data is output sequentially, byte-by-byte on x8 devices, or word-by-word on x16 devices. The memory array is programmed on a page basis. After the starting address is loaded into the internal address register, data is sequentially written to the internal data register up to the end of a page. After all of the page data has been loaded into the data register, array programming is started.

In order to increase programming bandwidth, this device incorporates a cache register. In the cache programming mode, data is first copied into the cache register and then into the data register. Once the data is copied into the data register, programming begins.

After the data register has been loaded and programming started, the cache register becomes available for loading additional data. Loading the next page of data into the cache register takes place while page programming is in process.

The INTERNAL DATA MOVE command also uses the internal cache register. Normally, moving data from one area of external memory to another uses a large number of external memory cycles. By using the internal cache register and data register, array data can be copied from one page and then programmed into another without using external memory cycles.

Addressing

NAND Flash devices do not contain dedicated address pins. Addresses are loaded using a five-cycle sequence as shown in Figures 7 and 8, on pages 12 and 13 respectively. Table 2 on page 12 presents address functions internal to the x8 device; Table 3 on page 13 covers the same functions for the x16 device. See Figures 5 and 6 on page 11 for additional memory mapping and addressing details.
Figure 5: Memory Map x8

(4Gb: 3FFF83Fh) 1FFFF83Fh
(4Gb: 3FFC0000h) 1FFC0000h

Spare Address within a page

A11 A5 A0

000BF83Fh
00080000h
0007F83Fh
00040000h
0003F83Fh
A28 (4Gb: A29) A18

Block Address

Page Address within a block

Column Address within a page

Figure 6: Memory Map x16

(4Gb: 1FFFC1Fh) FFFF41Fh
(4Gb: 1FFE0000h) FFE0000h

Spare Address within a page

A10 A4 A0

005F41Fh
0040000h
003F41Fh
0020000h
001F41Fh
A27 (4Gb: A28) A17

Block Address

Page Address within a block

Column Address

Note: Block address and page address = actual page address.
Figure 7: Array Organization for MT29F2G08AxB (x8)

![Array Organization Diagram]

Table 2: Array Addressing: MT29F2G08AxB

<table>
<thead>
<tr>
<th>Cycle</th>
<th>I/O7</th>
<th>I/O6</th>
<th>I/O5</th>
<th>I/O4</th>
<th>I/O3</th>
<th>I/O2</th>
<th>I/O1</th>
<th>I/O0</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>CA7</td>
<td>CA6</td>
<td>CA5</td>
<td>CA4</td>
<td>CA3</td>
<td>CA2</td>
<td>CA1</td>
<td>CA0</td>
</tr>
<tr>
<td>Second</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>CA11</td>
<td>CA10</td>
<td>CA9</td>
<td>CA8</td>
</tr>
<tr>
<td>Third</td>
<td>RA19</td>
<td>RA18</td>
<td>RA17</td>
<td>RA16</td>
<td>RA15</td>
<td>RA14</td>
<td>RA13</td>
<td>RA12</td>
</tr>
<tr>
<td>Fourth</td>
<td>RA27</td>
<td>RA26</td>
<td>RA25</td>
<td>RA24</td>
<td>RA23</td>
<td>RA22</td>
<td>RA21</td>
<td>RA20</td>
</tr>
<tr>
<td>Fifth</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>RA28</td>
</tr>
</tbody>
</table>

Note: CAx = column address; RAx = row address.
Figure 8: Array Organization for MT29F2G16AxB (x16)

Table 3: Array Addressing: MT29F2G16AxB

<table>
<thead>
<tr>
<th>Cycle</th>
<th>I/O[15:8]</th>
<th>I/O7</th>
<th>I/O6</th>
<th>I/O5</th>
<th>I/O4</th>
<th>I/O3</th>
<th>I/O2</th>
<th>I/O1</th>
<th>I/O0</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>LOW</td>
<td>CA7</td>
<td>CA6</td>
<td>CA5</td>
<td>CA4</td>
<td>CA3</td>
<td>CA2</td>
<td>CA1</td>
<td>CA0</td>
</tr>
<tr>
<td>Second</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>CA10</td>
<td>CA9</td>
</tr>
<tr>
<td>Third</td>
<td>LOW</td>
<td>RA18</td>
<td>RA17</td>
<td>RA16</td>
<td>RA15</td>
<td>RA14</td>
<td>RA13</td>
<td>RA12</td>
<td>RA11</td>
</tr>
<tr>
<td>Fourth</td>
<td>LOW</td>
<td>RA26</td>
<td>RA25</td>
<td>RA24</td>
<td>RA23</td>
<td>RA22</td>
<td>RA21</td>
<td>RA20</td>
<td>RA19</td>
</tr>
<tr>
<td>Fifth</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>RA27</td>
</tr>
</tbody>
</table>

Notes: 1. CAx = column address; RAx = row address.
2. I/O[15:8] are not used during the addressing sequence and should be driven LOW.
Figure 9: Array Organization for MT29F4G08BxB and MT29F8G08FxB (x8)

Cache Register
- 2,048 bytes
- 64 columns

Data Register
- 2,048 bytes
- 64 columns

1 Block
- 64 pages
- (128K + 4K) bytes
- 1 page = (2K + 64 bytes)

1 block = (2K + 64) bytes x 64 pages = (128K + 4K) bytes

1 device = (2K + 64) bytes x 64 pages x 4,096 blocks = 4,224 Mb

Note: For the 8Gb MT29F8G08F, the 4Gb array organization shown here applies to each chip enable (CE# and CE2#).

Table 4: Array Addressing: MT29F4G08BxB and MT29F8G08FxB

<table>
<thead>
<tr>
<th>Cycle</th>
<th>I/O7</th>
<th>I/O6</th>
<th>I/O5</th>
<th>I/O4</th>
<th>I/O3</th>
<th>I/O2</th>
<th>I/O1</th>
<th>I/O0</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>CA7</td>
<td>CA6</td>
<td>CA5</td>
<td>CA4</td>
<td>CA3</td>
<td>CA2</td>
<td>CA1</td>
<td>CA0</td>
</tr>
<tr>
<td>Second</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>CA11</td>
<td>CA10</td>
<td>CA9</td>
<td>CA8</td>
</tr>
<tr>
<td>Third</td>
<td>RA19</td>
<td>RA18</td>
<td>RA17</td>
<td>RA16</td>
<td>RA15</td>
<td>RA14</td>
<td>RA13</td>
<td>RA12</td>
</tr>
<tr>
<td>Fourth</td>
<td>RA27</td>
<td>RA26</td>
<td>RA25</td>
<td>RA24</td>
<td>RA23</td>
<td>RA22</td>
<td>RA21</td>
<td>RA20</td>
</tr>
<tr>
<td>Fifth</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>RA29</td>
<td>RA28</td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. Die address boundary: 0 = 0 – 2Gb, 1 = 2Gb – 4Gb.
Figure 10: Array Organization for MT29F4G16BxB (x16)

Table 5: Array Addressing: MT29F4G16BxB
CAx = column address; RAx = row address.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>I/O[15:8]</th>
<th>I/O7</th>
<th>I/O6</th>
<th>I/O5</th>
<th>I/O4</th>
<th>I/O3</th>
<th>I/O2</th>
<th>I/O1</th>
<th>I/O0</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>LOW</td>
<td>CA7</td>
<td>CA6</td>
<td>CA5</td>
<td>CA4</td>
<td>CA3</td>
<td>CA2</td>
<td>CA1</td>
<td>CA0</td>
</tr>
<tr>
<td>Second</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>CA10</td>
<td>CA9</td>
<td>CA8</td>
</tr>
<tr>
<td>Third</td>
<td>LOW</td>
<td>RA18</td>
<td>RA17</td>
<td>RA16</td>
<td>RA15</td>
<td>RA14</td>
<td>RA13</td>
<td>RA12</td>
<td>RA11</td>
</tr>
<tr>
<td>Fourth</td>
<td>LOW</td>
<td>RA26</td>
<td>RA25</td>
<td>RA24</td>
<td>RA23</td>
<td>RA22</td>
<td>RA21</td>
<td>RA20</td>
<td>RA19</td>
</tr>
<tr>
<td>Fifth</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>RA28</td>
<td>RA27</td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. Die address boundary: 0 = 0 – 2Gb, 1 = 2Gb – 4Gb.
2. I/O[15:8] are not used during the addressing sequence and should be driven LOW.
Bus Operation

The bus on the MT29Fxxx devices is multiplexed. Data I/O, addresses, and commands all share the same pins. I/O pins I/O[15:8] are used only for data in the x16 configuration. Addresses and commands are always supplied on I/O[7:0].

The command sequence normally consists of a command latch cycle, an ADDRESS LATCH cycle, and a DATA cycle—either READ or WRITE.

Control Signals

CE#, WE#, RE#, CLE, ALE and WP# control Flash device READ and WRITE operations. On the 8Gb MT29F8G08FAB, CE# and CE2# each control independent 4Gb arrays. CE2# functions the same as CE# for its own array; all operations described for CE# also apply to CE2#.

CE# is used to enable the device. When CE# is LOW and the device is not in the busy state, the Flash memory will accept command, data, and address information.

When the device is not performing an operation, the CE# pin is typically driven HIGH and the device enters standby mode. The memory will enter standby if CE# goes HIGH while data is being transferred and the device is not busy. This helps reduce power consumption. See Figure 40 on page 45 and Figure 47 on page 50 for examples of CE# “Don’t Care” operations.

The CE# “Don't Care” operation allows the NAND Flash to reside on the same asynchronous memory bus as other Flash or SRAM devices. Other devices on the memory bus can then be accessed while the NAND Flash is busy with internal operations. This capability is important for designs that require multiple NAND Flash devices on the same bus. One device can be programmed while another is being read.

A HIGH CLE signal indicates that a command cycle is taking place. A HIGH ALE signal signifies that an address input cycle is occurring.

Commands

Commands are written to the command register on the rising edge of WE# when:

- CE# and ALE are LOW, and
- CLE is HIGH, and
- The device is not busy

The exceptions to this are the READ STATUS and RESET commands. Commands are transferred to the command register on the rising edge of WE#. See Figure 34 on page 42. Commands are input on I/O[7:0] only. For devices with a x16 interface, I/O[15:8] must be written with zeros when issuing a command.

Address Input

Addresses are written to the address register on the rising edge of WE# when:

- CE# and CLE are LOW, and
- ALE is HIGH, and
- The device is not busy

Addresses are input on I/O[7:0] only. For devices with a x16 interface, I/O[15:8] must be written with zeros when issuing an address.

Generally all five ADDRESS cycles are written to the device. An exception to this is the BLOCK ERASE command, which requires only three ADDRESS cycles. See "BLOCK ERASE Operation" on page 33 for details.
RANDOM DATA INPUT and OUTPUT commands need only column addresses, so only two ADDRESS cycles are required. Refer to the command descriptions to determine the addressing requirements for each command.

Data Input

Data is written to the data register on the rising edge of WE# when:

- CE#, CLE, and ALE are LOW, and
- The device is not busy

Data is input on I/O[7:0] for x8 devices, and I/O[15:0] on x16 devices. See Figure 36 on page 43 for additional data input details.

READs

After a READ command is sent to the memory device, data is transferred from the memory array to the data register in tR. Typically tR is 25µs. When data is available in the data register, it is clocked out of the part by RE# going LOW. See Figure 39 on page 44 for detailed timing information.

The READ STATUS (70h) command or the R/B# signal can be used to determine when the device is ready. See the STATUS READ command section on page 27 for details.

Ready/Busy#

The R/B# output provides a hardware method of indicating the completion of a PROGRAM/ERASE/READ operation. The signal is typically HIGH, and transitions to LOW after the appropriate command is written to the device. The signal pin's open-drain driver enables multiple R/B# outputs to be OR-tied. The signal requires a pull-up resistor for proper operation. The READ STATUS command can be used in place of R/B#.

Typically R/B# would be connected to an interrupt pin on the system controller. See Figure 12 on page 18.

On the 8Gb MT29F8G08FAB, R/B# provides an indication for the 4Gb section enabled by CE#, and R/B2# does the same for the 4Gb section enabled by CE2#. R/B# and R/B2# can be tied together, or they can be used separately to provide independent indications for each 4Gb section.

The combination ofRp and capacitive loading of the R/B# circuit determines the rise time of the R/B# pin. The actual value used for Rp (Rp = resistance of pull-up resistor) depends on the system timing requirements. Large values of Rp cause R/B# to be delayed significantly. At the 10- to 90-percent points on the R/B# waveform, rise time is approximately two time constants (TC).

Figure 11: Time Constants

\[
TC = R \times C
\]

Where R = Rp (resistance of pull-up resistor), and C = total capacitive load.

The fall time of the R/B# signal is determined mainly by the output impedance of the R/B# pin and the total load capacitance.

Refer to Figure 13 on page 18, and Figure 14 on page 19, which depict approximate Rp values using a circuit load of 100pF.

The minimum value for Rp is determined by the output drive capability of the R/B# signal, the output voltage swing, and Vcc.
Minimum Rp

\[
Rp \text{ (MIN, 3.3V part)} = \frac{V_{CC} \text{ (MAX)} - V_{OL} \text{ (MAX)}}{I_{OL} + \Sigma I_L} = \frac{3.2V}{8mA + \Sigma I_L}
\]

Where \(\Sigma I_L \) is the sum of the input currents of all devices tied to the R/B# pin.

Figure 12: READY/BUSY# Open Drain

![Diagram](image)

Figure 13: \(t_R \) and \(t_F \)

![Graph](image)

Notes:
1. \(t_R \) and \(t_F \) calculated at 10 percent and 90 percent points.
2. \(t_R \) dependent on external capacitance and resistive loading and output transistor impedance.
3. \(t_R \) primarily dependent on external pull-up resistor and external capacitive loading.
4. \(t_F \approx 10\text{ns at 3.3V} \).
5. See TC values in Figure 15 on page 19 for approximate Rp value and TC.
Figure 14: I_{OL} vs. R_{p}

![Graph showing I_{OL} vs. R_{p}]

Figure 15: T_{C} vs. R_{p}

![Graph showing T_{C} vs. R_{p}]

- I_{OL} at 3.60V (max)
- RC = T_{C}
- C = 100pF
Table 6: Mode Selection

<table>
<thead>
<tr>
<th>CLE</th>
<th>ALE</th>
<th>CE#</th>
<th>WE#</th>
<th>RE#</th>
<th>WP#¹</th>
<th>PRE²</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>L</td>
<td>L</td>
<td></td>
<td></td>
<td>H</td>
<td>X</td>
<td>Read mode Command input</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>L</td>
<td></td>
<td></td>
<td>H</td>
<td>X</td>
<td>Address input</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>L</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>Write mode Command input</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>L</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>Address input</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
<td></td>
<td>H</td>
<td>H</td>
<td>Data input</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>Sequential read and data output</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>During read (busy)</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>During program (busy)</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>During erase (busy)</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0V/Vcc</td>
<td>Write protect</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>H</td>
<td>X</td>
<td></td>
<td>0V/Vcc</td>
<td>0V/Vcc</td>
<td>Standby</td>
</tr>
</tbody>
</table>

Notes:
1. WP# should be biased to CMOS HIGH or LOW for standby.
2. PRE should be tied to Vcc or ground. Do not transition PRE during device operations. The PRE function is not supported on extended-temperature devices.
3. Mode selection settings for this table: H = Logic level HIGH; L = Logic level LOW; X = VIH or VIL.
Power-On AUTO-READ

During power-on, with the PRE pin at VCC, 3V VCC devices automatically transfer the first page of the memory array to the data register without requiring a command or address-input sequence. As VCC reaches approximately 2.5V, the internal voltage detector initiates the power-on AUTO-READ function. R/B# will stay LOW (tRPRE) while the first page of data is copied into the data register. See Table 18 on page 41 for the tRPRE value. Once the READ is complete and R/B# goes HIGH, RE# can be pulsed to output the first page of data.

The PRE function is not supported on extended-temperature devices.

Figure 16: First Page Power-On AUTO-READ (3V Vcc only)

Figure 17: AC Waveforms During Power Transitions
Command Definitions

Table 7: Command Set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Cycle 1</th>
<th>Cycle 2</th>
<th>Valid During Busy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAGE READ</td>
<td>00h</td>
<td>30h</td>
<td>No</td>
</tr>
<tr>
<td>PAGE READ CACHE MODE START¹</td>
<td>31h</td>
<td>–</td>
<td>No</td>
</tr>
<tr>
<td>PAGE READ CACHE MODE START LAST¹</td>
<td>3Fh</td>
<td>–</td>
<td>No</td>
</tr>
<tr>
<td>READ for INTERNAL DATA MOVE²</td>
<td>00h</td>
<td>35h</td>
<td>No</td>
</tr>
<tr>
<td>RANDOM DATA READ²</td>
<td>05h</td>
<td>E0h</td>
<td>No</td>
</tr>
<tr>
<td>READ ID</td>
<td>90h</td>
<td>–</td>
<td>No</td>
</tr>
<tr>
<td>READ STATUS</td>
<td>70h</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>PROGRAM PAGE</td>
<td>80h</td>
<td>10h</td>
<td>No</td>
</tr>
<tr>
<td>PROGRAM PAGE CACHE¹</td>
<td>80h</td>
<td>15h</td>
<td>No</td>
</tr>
<tr>
<td>PROGRAM for INTERNAL DATA MOVE²</td>
<td>85h</td>
<td>10h</td>
<td>No</td>
</tr>
<tr>
<td>RANDOM DATA INPUT for PROGRAM⁴</td>
<td>85h</td>
<td>–</td>
<td>No</td>
</tr>
<tr>
<td>BLOCK ERASE</td>
<td>60h</td>
<td>D0h</td>
<td>No</td>
</tr>
<tr>
<td>RESET</td>
<td>FFh</td>
<td>–</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes:
1. Do not cross die address boundaries when using cache operations. See Tables 4 and 5 for definition of die address boundaries.
2. Do not cross die address boundaries when using READ for INTERNAL DATA MOVE and PROGRAM FOR INTERNAL DATA MOVE. See Tables 4 and 5 for definition of die address boundaries.
3. RANDOM DATA READ command limited to use within a single page.
4. RANDOM DATA INPUT for PROGRAM command limited to use within a single page.
READ Operations

PAGE READ 00h-30h

On initial power up, each device defaults to read mode. To enter the read mode while in operation, write the 00h-30h command sequence to the command register along with the five ADDRESS cycles.

Writing 00h to the command register starts the ADDRESS LATCH cycle. Five ADDRESS cycles are input next. Finally the 30h command is loaded into the command register.

While monitoring the read status to determine when the tR (transfer from Flash array to data register) is complete, the user must re-issue the READ (00h) command to make the change from STATUS to DATA. (See Figure 44 on page 48 and Figure 45 on page 49 for examples.) After the READ command has been re-issued, pulsing the RE# line will result in outputting data, starting from the initial column address.

A serial page read sequence outputs a complete page of data. After 30h is written, the page data is transferred to the data register, and R/B# goes LOW during the transfer. When the transfer to the data register is complete, R/B# returns HIGH. At this point, data can be read from the device. Starting from the initial column address to the end of the page, read the data by repeatedly pulsing RE# at the maximum tRC rate. (See Figure 18 on page 23.)

Figure 18: PAGE READ Operation
RANDOM DATA READ 05h-E0h

The RANDOM DATA READ command enables the user to specify a new column address so the data at single or multiple addresses can be read. The random read mode is enabled after a normal PAGE READ (00h-30h sequence).

Random data can be output after the initial page read by writing an 05h-E0h command sequence along with the new column address (two cycles).

The RANDOM DATA READ command can be issued without limit within the page. Only data on the current page can be read. Pulsing the RE# pin outputs data sequentially. See Figure 19 on page 24.

Figure 19: RANDOM DATA READ Operation

PAGE READ CACHE MODE START 31h; PAGE READ CACHE MODE START LAST 3Fh

Micron NAND Flash devices have a cache register that can be used to increase READ operation speed when accessing sequential pages in a block.

First, a normal PAGE READ (00h-30h) command sequence is issued. (See Figure 20 on page 25 for operation details.) The R/B# signal goes LOW for \(tR \) during the time it takes to transfer the first page of data from the memory to the data register. After R/B# returns to HIGH, the PAGE READ CACHE MODE START (31h) command is latched into the command register. R/B# goes LOW for \(tDCBSYR1 \) while data is being transferred from the data register to the cache register. Once the data register contents are transferred to the cache register, another PAGE READ is automatically started as part of the 31h command. Data is transferred from the next sequential page of the memory array to the data register during the same time data is being read serially (pulsing of RE#) from the cache register. If the total time to output data exceeds \(tR \), then the PAGE READ is hidden.

The second and subsequent pages of data are transferred to the cache register by issuing additional 31h commands. R/B# will stay LOW up to \(tDCBSYR2 \). This time can vary, depending on whether the previous memory-to-data-register transfer was completed prior to issuing the next 31h command. If the data transfer from memory to the data register is not completed before the 31h command is issued, R/B# stays LOW until the transfer is complete.

It is not necessary to output a whole page of data before issuing another 31h command. R/B# will stay LOW until the previous PAGE READ is complete and the data has been transferred to the cache register.

To read out the last page of data, the PAGE READ CACHE MODE START LAST (3Fh) command is issued. This command transfers data from the data register to the cache register without issuing another PAGE READ. (See Figure 20 on page 25.)
Figure 20: PAGE READ CACHE MODE

CLE

CE#

WE#

ALE

R/B#

RE#

I/Ox

00h Address (5 Cycles) 30h Data Output (Serial Access) 31h Data Output (Serial Access) 3fh Data Output (Serial Access) tR tDCBSYR1 tDCBSYR2 tDCBSYR2

Don't Care
READ ID 90h

The READ ID command is used to read the 4 bytes of identifier codes programmed into the devices. The READ ID command reads a 4-byte table that includes Manufacturer’s ID, device configuration, and part-specific information. See Table 8 on page 27, which shows complete listings of all configuration details.

Writing 90h to the command register puts the device into the read ID mode. The command register stays in this mode until another valid command is issued. (See Figure 21.)

Figure 21: READ ID Operation

Notes: 1. See Table 8 on page 27.
Table 8: Device ID and Configuration Codes

<table>
<thead>
<tr>
<th>Options</th>
<th>I/O7</th>
<th>I/O6</th>
<th>I/O5</th>
<th>I/O4</th>
<th>I/O3</th>
<th>I/O2</th>
<th>I/O1</th>
<th>I/O0</th>
<th>Value¹</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0</td>
<td></td>
</tr>
<tr>
<td>Manufacturer ID</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2Ch</td>
<td></td>
</tr>
<tr>
<td>Byte 1</td>
<td></td>
</tr>
<tr>
<td>Device ID</td>
<td></td>
</tr>
<tr>
<td>MT29F2G08AAB</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>DAh</td>
<td></td>
</tr>
<tr>
<td>MT29F2G16AAB</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>CAh</td>
<td></td>
</tr>
<tr>
<td>MT29F4G08BABB</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>DCB</td>
<td></td>
</tr>
<tr>
<td>MT29F4G16AABB</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>CCh</td>
<td></td>
</tr>
<tr>
<td>MT29F8G08FABB</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>DCB</td>
<td>2</td>
</tr>
<tr>
<td>Byte 2</td>
<td></td>
</tr>
<tr>
<td>Byte value</td>
<td>Don’t Care</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>XXh</td>
<td></td>
</tr>
<tr>
<td>Byte 3</td>
<td></td>
</tr>
<tr>
<td>Page size</td>
<td>2KB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01b</td>
<td></td>
</tr>
<tr>
<td>Spare area size (bytes)</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01b</td>
<td></td>
</tr>
<tr>
<td>Block size (w/o spare)</td>
<td>128KB</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01b</td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td>x8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1b</td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0b</td>
<td></td>
</tr>
<tr>
<td>Byte value</td>
<td>x8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>15h</td>
<td></td>
</tr>
<tr>
<td>Byte value</td>
<td>x16</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>15h</td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. b = binary, h = hex
2. The MT29F8G08FAB device ID code reflects the configuration of each 4Gb section.

READ STATUS 70h

These NAND Flash devices have an 8-bit status register that the software can read during device operation. On the x16 device, I/O[15:8] are “0” when reading the status register. Table 9 on page 28 describes the status register.

After the READ STATUS command has been issued to the NAND Flash device, all subsequent READ cycles will output data from the status register until another command is issued. Note that the RE# pin can be toggled multiple times without issuing a new READ STATUS command, as shown in Figure 21. Each time the RE# pin is toggled, the updated status will be output on I/O[7:0].

In addition, after a READ STATUS command has been issued to the NAND Flash device, the status register provides continually updated output on I/O[7:0] as long as CE# and RE# are held LOW, i.e., RE# does not have to be toggled.

Note that MT29FxGxxxAB devices do not support a READ STATUS operation in which the READ STATUS (70h) command is repeatedly issued after each RE# toggle.

Additional details regarding READ STATUS implementation are available in Micron technical note TN-29-13 at: www.micron.com/products/nand/massstorage/technote.
2, 4, 8Gb: x8/x16 Multiplexed NAND Flash Memory

Command Definitions

Figure 22: Status Register Operation

While monitoring the read status to determine when the tR (transfer from Flash array to data register) is complete, the user must re-issue the READ (00h) command to make the change from STATUS to DATA. After the READ command has been re-issued, pulsing the RE# line will output data, starting from the initial column address.

Table 9: Status Register Bit Definition

<table>
<thead>
<tr>
<th>SR Bit</th>
<th>Page Program</th>
<th>Program Page Cache Mode</th>
<th>Page Read</th>
<th>Page Read Cache Mode</th>
<th>Block Erase</th>
<th>Definition</th>
</tr>
</thead>
</table>
| 0 | Pass/fail | Pass/fail (N) | – | – | Pass/fail | “0” = Successful PROGRAM/ERASE
| | | | | | “1” = Error in PROGRAM/ERASE |
| 1 | – | Pass/fail (N-1) | – | – | – | “0” = Successful PROGRAM/ERASE
| | | | | | “1” = Error in PROGRAM/ERASE | |
| 2 | – | – | – | – | – | “0” |
| 3 | – | – | – | – | – | “0” |
| 4 | – | – | – | – | – | “0” |
| 5 | Ready/busy | Ready/busy¹ | Ready/busy | Ready/busy¹ | Ready/busy | “0” = Busy
| | | | | | “1” = Ready |
| 6 | Ready/busy | Ready/busy cache² | Ready/busy | Ready/busy cache² | Ready/busy | “0” = Busy
| | | | | | “1” = Ready |
| 7 | Write protect | Write protect | Write protect | Write protect | Write protect | “0” = Protected
| | | | | | “1” = Not protected |
| [15:8] | – | – | – | – | – | “0” |

Notes:
1. Status register bit 5 is “0” during the actual programming operation. If cache mode is used, this bit will be “1” when all internal operations are complete.
2. Status register bit 6 is “1” when the cache is ready to accept new data. R/B# follows bit 6.
See Figure 20 on page 25, and Figure 25 on page 30.
PROGRAM Operations

PROGRAM PAGE 80h-10h

Micron NAND Flash devices are inherently page-programmed devices. Within a block, the pages must be programmed consecutively from the least significant bit (LSB) page of the block to most significant bit (MSB) pages of the block. Random page address programming is prohibited.

Micron NAND flash devices also support partial-page programming operations. This means that any single bit can only be programmed one time before an erase is required; however, the page can be partitioned such that a maximum of eight programming operations are allowed before an erase is required.

SERIAL DATA INPUT 80h

PAGE PROGRAM operations require loading the SERIAL DATA INPUT (80h) command into the command register, followed by five ADDRESS cycles, then the data. Serial data is loaded on consecutive WE# cycles starting at the given address. The PROGRAM (10h) command is written after the data input is complete. The internal write state machine automatically executes the proper algorithm and controls all the necessary timing to program and verify the operation. Write verification only detects “1s” that are not successfully written to “0s.”

R/B# goes LOW for the duration of array programming time, tPROG. The READ STATUS REGISTER (70h) command and the RESET (FFh) command are the only commands valid during the programming operation. Bit 6 of the status register will reflect the state of R/B#. When the device reaches ready, read bit 0 of the status register to determine if the program operation passed or failed. (See Figure 23.) The command register stays in read status register mode until another valid command is written to it.

RANDOM DATA INPUT 85h

After the initial data set is input, additional data can be written to a new column address with the RANDOM DATA INPUT (85h) command. The RANDOM DATA INPUT command can be used any number of times in the same page prior to issuing the PAGE WRITE (10h) command. See Figure 24 for the proper command sequence.

Figure 23: PROGRAM and READ STATUS Operation

Figure 24: RANDOM DATA INPUT
PROGRAM PAGE CACHE MODE 80h-15h

Cache programming is actually a buffered programming mode of the standard PAGE PROGRAM command. Programming is started by loading the SERIAL DATA INPUT (80h) command to the command register, followed by five cycles of address, and a full or partial page of data. The data is initially copied into the cache register, and the CACHE WRITE (15h) command is then latched to the command register. Data is transferred from the cache register to the data register on the rising edge of WE#. R/B# goes LOW during this transfer time. After the data has been copied into the data register and R/B# returns to HIGH, memory array programming begins.

When R/B# returns to HIGH, new data can be written to the cache register by issuing another CACHE PROGRAM command sequence. The time that R/B# stays LOW will be controlled by the actual programming time. The first time through equals the time it takes to transfer the cache register contents to the data register. On the second and subsequent programming passes, transfer from the cache register to the data register is held off until current data register content has been programmed into the array.

Bit 6 (Cache R/B#) of the status register can be read by issuing the READ STATUS (70h) command to determine when the cache register is ready to accept new data. The R/B# pin always follows bit 6.

Bit 5 (R/B#) of the status register can be polled to determine when the actual programming of the array is complete for the current programming cycle.

If just the R/B# pin is used to determine programming completion, the last page of the program sequence must use the PROGRAM PAGE (10h) command instead of the CACHE PROGRAM (15h) command. If the CACHE PROGRAM (15h) command is used every time, including the last page of the programming sequence, status register bit 5 must be used to determine when programming is complete. (See Figure 25.)

Bit 0 of the status register returns the pass/fail for the previous page when bit 6 of the status register is a “1” (ready state). The pass/fail status of the current PROGRAM operation is returned with bit 0 of the status register when bit 5 of the status register is a “1” (ready state). (See Figure 25.)

Figure 25: PROGRAM PAGE CACHE MODE Example

A: Without status reads

B: With status reads

Notes:
1. See Note 3, Table 19 on page 41.
2. Check I/O[6:5] for internal Ready/Busy. Check I/O[1:0] for pass fail. RE# can stay LOW or pulse multiple times after a 70h command.
Internal Data Move

An internal data move requires two command sequences. Issue a READ for INTERNAL DATA MOVE (00h-35h) command first, then the INTERNAL DATA MOVE (85h-10h) command. Data moves are only supported within the die from which data is read.

READ FOR INTERNAL DATA MOVE 00h-35h

This READ command is used in conjunction with the INTERNAL DATA MOVE (85h-10h) command. First, (00h) is written to the command register, then the internal source address is written (five cycles). After the address is input, the READ for INTERNAL DATA MOVE (35h) command writes to the command register. This transfers a page from memory into the cache register.

The written column addresses are ignored even though all five ADDRESS cycles are required.

The memory device is now ready to accept the INTERNAL DATA MOVE (85h-10h) command. Please refer to the description of this command in the following section.

INTERNAL DATA MOVE 85h-10h

After the READ for INTERNAL DATA MOVE command has been issued and R/B# goes HIGH, the INTERNAL DATA MOVE command can be written to the command register. This command transfers the data from the cache register to the data register and programming of the new destination page begins. After the INTERNAL DATA MOVE command and address sequence are written to the device, R/B# goes LOW while the internal control logic automatically programs the new page. The READ STATUS command and bit 6 of the status register can be used instead of the R/B# line to determine when the write is complete. Bit 0 of the status register indicates if the operation was successful.

The RANDOM DATA INPUT (85h) command can be used during the INTERNAL DATA MOVE command sequence to modify a word or multiple words of the original data. First, data is copied into the cache register using the 00h-35h command sequence, then the RANDOM DATA INPUT (85h) command is written along with the address of the data to be modified next. New data is input on the external data pins. This copies the new data into the cache register.

When 10h is written to the command register, the original data plus the modified data is transferred to the data register, and programming of the new page is started. The RANDOM DATA INPUT command can be issued as many times as necessary before starting the programming sequence with 10h. (See Figures 26 and 27 on page 32.)

Because the INTERNAL DATA MOVE operation does not utilize external memory, ECC cannot be used to check for errors before programming the data to a new page. This can lead to a data error if the source page contains a bit error due to charge loss or charge gain. In the case that multiple INTERNAL DATA MOVE operations are performed, these bit errors may accumulate without correction. For this reason, it is highly recommended that systems utilizing the INTERNAL DATA MOVE operation use a robust ECC scheme that can correct two or more bits per sector.
Figure 26: INTERNAL DATA MOVE

![Diagram](image)

Figure 27: INTERNAL DATA MOVE with RANDOM DATA INPUT

![Diagram](image)
BLOCK ERASE Operation

BLOCK ERASE 60h-D0h

Erasing occurs at the block level. For example, the MT29F2G08xxB device has 2,048 erase blocks organized as 64 2,112-byte (2,048 + 64 bytes) pages per block. Each block is 132K bytes (128K + 4K bytes). The BLOCK ERASE command operates on one block at a time. (See Figure 28.)

Three cycles of addresses A[28:18] are required for the x8 device, and three cycles of addresses [27:17] are required for the x16 device. Although addresses A[17:12] (x8) and A[16:11] (x16) are loaded, they are a “Don't Care” and are ignored for BLOCK ERASE operations. (See Figures 5 and 6 on page 11 for addressing details.)

The actual command sequence is a two-step process. The ERASE SETUP (60h) command is first written to the command register. Then three cycles of addresses are written to the device. Next, the ERASE CONFIRM (D0h) command is written to the command register. At the rising edge of WE#, R/B# goes LOW and the internal write state machine automatically controls the timing and erase-verify operations. R/B# stays LOW for the entire \(^{t_{BER}}\) erase time.

The READ STATUS REGISTER command can be used to check the status of the ERASE operation. When bit 6 = “1” the erase operation is complete. Bit 0 indicates a pass/fail condition where “0” = pass. (See Figure 28, and Table 9 on page 28.)

Figure 28: BLOCK ERASE Operation

```plaintext
<table>
<thead>
<tr>
<th></th>
<th>CLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CE#</td>
</tr>
<tr>
<td></td>
<td>WE#</td>
</tr>
<tr>
<td></td>
<td>ALE</td>
</tr>
<tr>
<td></td>
<td>R/B#</td>
</tr>
<tr>
<td></td>
<td>RE#</td>
</tr>
<tr>
<td>I/Ox</td>
<td>60h Address Input (3 Cycles)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

RESET Operation

RESET FFh

The RESET command is used to put the memory device into a known condition and to abort a command sequence in progress. RANDOM READ, PROGRAM, and ERASE commands can be aborted while the device is in the busy state. The contents of the memory location being programmed or the block being erased are no longer valid. The data may be partially erased or programmed, and is invalid. The command register is cleared and is ready for the next command. The status register contains the value E0h when WP# is HIGH; otherwise it is written with a 60h value. R/B# goes low for tRST after the RESET command is written to the command register. (See Figure 29 and Table 10.)

Figure 29: RESET Operation

![RESET Operation Diagram]

Table 10: Status Register Contents After RESET Operation

<table>
<thead>
<tr>
<th>Condition</th>
<th>Status</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP# HIGH</td>
<td>Ready</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>E0h</td>
</tr>
<tr>
<td>WP# LOW</td>
<td>Ready and write protected</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>60h</td>
</tr>
</tbody>
</table>
WRITE PROTECT Operation

The WRITE PROTECT feature protects the device against inadvertent PROGRAM and ERASE operations. All PROGRAM and ERASE operations are disabled when WP# is LOW. For WRITE PROTECT timing details, see Figures 30 through 33.

Figure 30: ERASE Enable

[Diagram showing write protect enable with timing details]

Figure 31: ERASE Disable

[Diagram showing write protect disable with timing details]

Figure 32: PROGRAM Enable

[Diagram showing program enable with timing details]
Figure 33: PROGRAM Disable

![Program Disable Diagram](image-url)

- **WE#**: **t_{WW}
- **I/Ox**:
- **WP#**:
- **R/B#**
Error Management

Micron NAND devices are specified to have a minimum of 2,008 (NVB) valid blocks out of every 2,048 total available blocks. This means the devices may have blocks that are invalid when they are shipped. An invalid block is one that contains one or more bad bits. Additional bad blocks may develop with use. However, the total number of available blocks will not fall below NVB during the endurance life of the product.

Although NAND memory devices may contain bad blocks, they can be used quite reliably in systems that provide bad-block mapping, replacement, and error correction algorithms. This type of software environment ensures data integrity.

Internal circuitry isolates each block from other blocks, so the presence of a bad block does not affect the operation of the rest of the Flash device.

The first block (physical block address 00h) for each CE# in Micron NAND devices is guaranteed to be free of defects (up to 1,000 PROGRAM/ERASE cycles) when shipped from the factory. This provides a reliable location for storing boot code and critical boot information.

Before NAND Flash devices are shipped from Micron, they are erased. The factory identifies invalid blocks before shipping by programming data other than FFh (x8) or FFFFh (x16) into the first spare location (column address 2,048 for x8 devices, or 1,024 for x16 devices) of the first or second page of each bad block.

System software should check the first spare address on the first or second page of each block prior to performing any erase or programming operations on the Flash device. A bad block table can then be created, allowing system software to map around these areas. Factory testing is performed under worst-case conditions. Because blocks marked “bad” may be marginal, it may not be possible to recover this information if the block is erased.

Over time, some memory locations may fail to program or erase properly. In order to ensure that data is stored properly over the life of the Flash device, certain precautions must be taken, such as:

- Always check status after a WRITE, ERASE, or DATA MOVE operation.
- Use some type of error detection and correction algorithm to recover from single-bit errors.
- Use a bad-block replacement algorithm.
Electrical Characteristics

Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not guaranteed. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Table 11: Absolute Maximum Ratings by Device

<table>
<thead>
<tr>
<th>Device</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT29FxGxxxAx</td>
<td>VIN</td>
<td>0.6</td>
<td>4.6</td>
<td>V</td>
</tr>
<tr>
<td>MT29FxGxxxAx</td>
<td>VCC</td>
<td>-65</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>TSTG</td>
<td>-65</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Short circuit output current, I/Os</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>mA</td>
</tr>
</tbody>
</table>

Table 12: Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter/Condition</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>Commercial</td>
<td>0</td>
<td>-</td>
<td>+70</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Extended</td>
<td>-40</td>
<td>-</td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>VCC supply voltage</td>
<td>Vcc</td>
<td>2.7</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>Vss</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>V</td>
</tr>
</tbody>
</table>

VCC Power Cycling

Micron NAND Flash devices are designed to prevent data corruption during power transitions. VCC is internally monitored. When VCC goes below 2.0V, PROGRAM and ERASE functions are disabled. WP# provides additional hardware protection. WP# should be kept at VIL during power cycling. When VCC reaches 2.0V, a minimum of 10µs should be allowed for the Flash to initialize before executing any commands. (See Figure 17 on page 21.)
Table 13: DC and Operating Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential read current</td>
<td>Icc1</td>
<td>tCYCLE = 30ns, CE# = VIH, IOUT = 0mA</td>
<td>–</td>
<td>15</td>
<td>30</td>
<td>mA</td>
</tr>
<tr>
<td>Program current</td>
<td>Icc2</td>
<td></td>
<td>–</td>
<td>15</td>
<td>30</td>
<td>mA</td>
</tr>
<tr>
<td>Erase current</td>
<td>Icc3</td>
<td></td>
<td>–</td>
<td>15</td>
<td>30</td>
<td>mA</td>
</tr>
<tr>
<td>Standby current (TTL)</td>
<td>Isb1</td>
<td>CE# = VIH, PRE = WP# = 0V/Vcc</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>mA</td>
</tr>
<tr>
<td>Standby current (CMOS)</td>
<td>Isb2</td>
<td>CE# = VCC - 0.2V, PRE = WP# = 0V/Vcc</td>
<td>–</td>
<td>10</td>
<td>50</td>
<td>μA</td>
</tr>
<tr>
<td>Input high voltage</td>
<td>VIH</td>
<td>I/O [7–0], I/O [15–0] CE#, CLE, ALE, WE#, RE#, WP#, PRE, R/B#</td>
<td>0.8 x Vcc</td>
<td>–</td>
<td>VCC + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>Input low voltage (all inputs)</td>
<td>VIL</td>
<td>–</td>
<td>-0.3</td>
<td>–</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>Output high voltage</td>
<td>VOH</td>
<td>I/O = -400μA</td>
<td>2.4</td>
<td>–</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Output low voltage</td>
<td>VOL</td>
<td>IOL = 2.1mA</td>
<td>–</td>
<td>–</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>Output low current (R/B#)</td>
<td>IOL</td>
<td>VOL = 0.4V</td>
<td>8</td>
<td>10</td>
<td>–</td>
<td>mA</td>
</tr>
</tbody>
</table>

Notes:
- The PRE function is not supported on extended-temperature devices.

Table 14: Valid Blocks

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Device</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of valid blocks</td>
<td>NVB</td>
<td>MT29F2GxxAAB</td>
<td>2,008</td>
<td>2,048</td>
<td>Blocks</td>
<td>1, 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F4GxxBAB</td>
<td>4,016</td>
<td>4,096</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F8G08FAB</td>
<td>8,032</td>
<td>8,192</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Invalid blocks are blocks that contain one or more bad bits. The device may contain bad blocks upon shipment. Additional bad blocks may develop over time; however, the total number of available blocks will not drop below NVB during the endurance life of the device. Do not erase or program blocks marked invalid by the factory.
- Block 00h (the first block) is guaranteed to be valid and does not require error correction up to 1,000 PROGRAM/ERASE cycles.

Table 15: Capacitance

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Device</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input capacitance</td>
<td>CIN</td>
<td>MT29F2GxxAAB</td>
<td>10</td>
<td>pF</td>
<td>1, 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F4GxxBAB</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F8G08FAB</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input/output capacitance (I/O)</td>
<td>CIO</td>
<td>MT29F2GxxAAB</td>
<td>10</td>
<td>pF</td>
<td>1, 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F4GxxBAB</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MT29F8G08FAB</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- These parameters are verified in device characterization and are not 100 percent tested.
- Test conditions: Tc = 25°C; f = 1 MHz; Vin = 0V.
Table 16: Test Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input pulse levels: MT29FxGxxxAB</td>
<td>0.0V to 3.3V</td>
<td></td>
</tr>
<tr>
<td>Input rise and fall times</td>
<td>5ns</td>
<td></td>
</tr>
<tr>
<td>Input and output timing levels</td>
<td>Vcc/2</td>
<td></td>
</tr>
<tr>
<td>Output load</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT29FxGxxxAB (Vcc = 3.0V ±10%)</td>
<td>1 TTL GATE and CL = 50pF</td>
<td></td>
</tr>
<tr>
<td>MT29FxGxxxAB (Vcc = 3.3V ±10%)</td>
<td>1 TTL GATE and CL = 100pF</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes: 1. Verified in device characterization; not 100 percent tested.

Table 17: AC Characteristics: Command, Data, and Address Input

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>x16</th>
<th>x8</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALE to data start</td>
<td>$^\text{1}A\text{DL}$</td>
<td>100</td>
<td>100</td>
<td>ns</td>
<td>1</td>
</tr>
<tr>
<td>ALE hold time</td>
<td>$^\text{1}A\text{LH}$</td>
<td>10</td>
<td>5</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>ALE setup time</td>
<td>$^\text{1}A\text{LS}$</td>
<td>25</td>
<td>10</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>CE# hold time</td>
<td>$^\text{1}C\text{H}$</td>
<td>10</td>
<td>5</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>CLE hold time</td>
<td>$^\text{1}C\text{LH}$</td>
<td>10</td>
<td>5</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>CLE setup time</td>
<td>$^\text{1}C\text{LS}$</td>
<td>25</td>
<td>10</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>CE# setup time</td>
<td>$^\text{1}C\text{S}$</td>
<td>35</td>
<td>15</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>Data hold time</td>
<td>$^\text{1}D\text{H}$</td>
<td>10</td>
<td>5</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>Data setup time</td>
<td>$^\text{1}D\text{S}$</td>
<td>20</td>
<td>10</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>Write cycle time</td>
<td>$^\text{1}W\text{C}$</td>
<td>45</td>
<td>30</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>WE# pulse width HIGH</td>
<td>$^\text{1}W\text{H}$</td>
<td>15</td>
<td>10</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>WE# pulse width</td>
<td>$^\text{1}W\text{P}$</td>
<td>25</td>
<td>15</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>WP# setup time</td>
<td>$^\text{1}W\text{W}$</td>
<td>30</td>
<td>30</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. Timing for $^\text{1}A\text{DL}$ begins in the ADDRESS cycle, on the final rising edge of WE#, and ends with the first rising edge of WE# for data input.
2. For PROGRAM PAGE CACHE MODE operations, the x16 AC characteristics apply for both x16 and x8 devices.
Table 18: AC Characteristics: Normal Operation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>x16</th>
<th>x8</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALE to RE# delay</td>
<td>tAR</td>
<td>10–10</td>
<td>10–10</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CE# access time</td>
<td>tCEA</td>
<td>–</td>
<td>45–23</td>
<td>ns</td>
<td>1</td>
</tr>
<tr>
<td>CE# HIGH to output High-Z</td>
<td>tCHZ</td>
<td>–</td>
<td>20–20</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>CLE access time</td>
<td>tCLEA</td>
<td>–</td>
<td>28–28</td>
<td>ns</td>
<td>1</td>
</tr>
<tr>
<td>CLE to RE# delay</td>
<td>tCLR</td>
<td>10–10</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Cache busy in page read cache mode (first 31h)</td>
<td>tDCBSYR1</td>
<td>–</td>
<td>3–3</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>Cache busy in page read cache mode (next 31h and 3Fh)</td>
<td>tDCBSYR2</td>
<td>25–25</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>Output High-Z to RE# LOW</td>
<td>tIR</td>
<td>–</td>
<td>25–25</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>Data output hold time</td>
<td>tOH</td>
<td>15–15</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Data transfer from Flash array to data register</td>
<td>tR</td>
<td>0–0</td>
<td>30–30</td>
<td>ns</td>
<td>1</td>
</tr>
<tr>
<td>READ cycle time</td>
<td>tRC</td>
<td>50–50</td>
<td>30–30</td>
<td>ns</td>
<td>1</td>
</tr>
<tr>
<td>RE# access time</td>
<td>tREA</td>
<td>–</td>
<td>30–30</td>
<td>ns</td>
<td>1</td>
</tr>
<tr>
<td>RE# HIGH hold time</td>
<td>tREH</td>
<td>15–15</td>
<td>10–10</td>
<td>ns</td>
<td>1</td>
</tr>
<tr>
<td>RE# HIGH to output High-Z</td>
<td>tRHZ</td>
<td>–</td>
<td>30–30</td>
<td>ns</td>
<td>2</td>
</tr>
<tr>
<td>RE# pulse width</td>
<td>tRP</td>
<td>25–25</td>
<td>–</td>
<td>ns</td>
<td>1</td>
</tr>
<tr>
<td>Data transfer from Flash array to data register at power-up with PRE enabled @ 3.3V Vcc</td>
<td>tRPRE</td>
<td>–</td>
<td>25–25</td>
<td>µs</td>
<td>3</td>
</tr>
<tr>
<td>Ready to RE# LOW</td>
<td>tRR</td>
<td>20–20</td>
<td>20–20</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Reset time (READ/PROGRAM/ERASE)</td>
<td>tRST</td>
<td>–</td>
<td>5/10/500–5/10/500</td>
<td>µs</td>
<td>4</td>
</tr>
<tr>
<td>WE# HIGH to busy</td>
<td>tWB</td>
<td>–</td>
<td>100–100</td>
<td>ns</td>
<td>4, 5</td>
</tr>
<tr>
<td>WE# HIGH to RE# LOW</td>
<td>tWHR</td>
<td>60–60</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. For PROGRAM PAGE CACHE MODE operations, the x16 AC Characteristics apply for both x16 and x8 devices.
2. Transition is measured ±200mV from steady-state voltage with load. This parameter is sampled and not 100 percent tested.
3. The PRE function is not supported on extended-temperature devices.
4. If RESET (FFh) command is loaded at ready state, the device goes busy for maximum 5µs.
5. Do not issue a new command during tWB, even if R/B# is ready.

Table 19: PROGRAM/ERASE Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of partial page programs</td>
<td>NOP</td>
<td>–</td>
<td>8</td>
<td>Cycle</td>
<td>1</td>
</tr>
<tr>
<td>Block erase time</td>
<td>tBERS</td>
<td>2</td>
<td>3</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Busy time for cache program</td>
<td>tCBSY</td>
<td>3</td>
<td>700</td>
<td>µs</td>
<td>2</td>
</tr>
<tr>
<td>Last page program time</td>
<td>tLPROG</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td>Page program time</td>
<td>tPROG</td>
<td>300</td>
<td>700</td>
<td>µs</td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. Eight total to the same page.
2. tCBSY MAX time depends on timing between internal program completion and data in.
3. tLPROG = tPROG (last page) + tPROG (last – 1 page) – cmd load time (last page) – addr load time (last page) – data load time (last page).
Timing Diagrams

Figure 34: COMMAND LATCH Cycle

Note: x16: I/O[15:8] must be set to “0.”

Figure 35: ADDRESS LATCH Cycle

Note: x16: I/O [15:8] must be set to “0.”
Figure 36: INPUT DATA LATCH

Notes: 1. DIN Final = 2,111 (x8) or 1,055 (x16).

Figure 37: SERIAL ACCESS Cycle After READ

Don't Care
Figure 38: STATUS READ Cycle

CLE

CE#

WE#

RE#

I/Ox

Status Output

70h

Don’t Care

Figure 39: PAGE READ

CLE

CE#

WE#

ALE

RE#

I/Ox

R/B#
Figure 40: READ Operation with CE# “Don’t Care”

Figure 41: RANDOM DATA READ
Figure 42: PAGE READ CACHE MODE Timing Diagram, Part 1 of 2
Figure 43: PAGE READ CACHE MODE Timing Diagram, Part 2 of 2

Timing Diagrams
2, 4, 8Gb: x8/x16 Multiplexed NAND Flash Memory

Micron
Figure 44: PAGE READ CACHE MODE Timing without R/B#, Part 1 of 2
Figure 45: PAGE READ CACHE MODE Timing without R/B#, Part 2 of 2

Continued from 1 of previous page
Figure 46: READ ID Operation

Figure 47: Program Operation with CE# “Don’t Care”
Figure 48: PROGRAM PAGE Operation

- CLE
- CE#
- WE#
- ALE
- RE#
- I/Ox
- R/B#

SERIAL DATA INPUT Command

80h

Col Add 1
Col Add 2
Row Add 1
Row Add 2
Row Add 3
DIN N
DIN M
10h
70h

Status

PROGRAM Command

Serial Input

1 up to m Byte

Don’t Care

x8 device: m = 2,111 byte

x16 device: m = 1,055 byte
Figure 49: PROGRAM PAGE Operation with RANDOM DATA INPUT

- CLE
- CE#
- WE#
- ALE
- RE#
- I/Ox
- R/B#

Timing Diagrams

- SERIAL DATA INPUT Command
- RANDOM DATA INPUT Command
- Column Address
- Serial Input
- PROGRAM Command

- Don't Care

Figure 50: INTERNAL DATA MOVE

- CLE
- CE#
- WE#
- ALE
- RE#
- I/Ox
- R/B#

Timing Diagrams

- READ STATUS Command
- Don't Care
Figure 51: PROGRAM PAGE CACHE MODE

Note: PROGRAM PAGE CACHE MODE operations must not cross die address boundaries.
Figure 52: PROGRAM PAGE CACHE MODE Ending on 15h

Poll status until:
- I/O6 = 1, Ready

To ensure PROGRAM success, last 2 pages:
- I/O5 = 1, Ready
- I/O0 = 0, Last page PROGRAM successful
- I/O1 = 0, Last page -1 PROGRAM successful

Timing Diagrams

2, 4, 8Gb: x8/16 Multiplexed NAND Flash Memory
Figure 53: BLOCK ERASE Operation

Notes: 1. See Table 8 on page 27 for actual values.

Figure 54: RESET Operation
Package Dimensions

Figure 55: 48-Pin TSOP Type I

![Diagram of 48-Pin TSOP Type I package dimensions](image)

Notes:
1. All dimensions in millimeters; MIN/MAX, or typical, as noted.
2. For design guidelines using the 8Gb device, see Micron technical note TN-29-09, at: www.micron.com/products/nand/massstorage/technote.
Revision History

Rev. I ... 1/06
- “Options” on page 1 and Figure 2 on page 2: Added new 8Gb-only version of the lead-free 48-pin TSOP.
- “Error Management” on page 37: Clarified addressing and bad block marking description.
- “Vcc Power Cycling” on page 38: corrected to 2.0V for PROGRAM and ERASE operation disable.

Rev. H ... 9/05
- Updated READ STATUS 70h description.

Rev. G ... 9/05
- Clarified READ STATUS 70h description on page 27.
- Updated Figure 22 on page 28 and moved up under new description.

Rev. F ... 8/05
- Revised endurance feature on page 1: deleted “with ECC and invalid block mapping.”
- Updated 1R functional description.
- Added data retention period.
- Clarified AC characteristics.

Rev. E ... 7/05
- Replaced DNU definition in Table 1 on page 9.

Rev. D ... 6/05
- Updated address latch diagram.

Rev. C ... 5/05
- Added WRITE PROTECT.
- Updated standby current descriptions.

Rev. B ... 4/05
- Updated package drawing.

Rev. A ... 4/05
- Initial Release