

ECE 558: Charged Particle Beams and High Power Microwaves Spring 2017

MW 4:00-5:15 PM, ECE 210 and online (Updated 02/23/17)

Edl Schamiloglu, Distinguished Professor Room 323C ECE Building 505.277.4423 (voice) edls@unm.edu http://www.ece.unm.edu/faculty/edl/

Office Hours: TuTh 3:00-4:00. I will also be available by appointment.

Catalog Description: "Overview of physics of particle beams and applications at high-current and high-energy. Topics include review of collective physics, beam emittance, space-charge forces, transport at high power levels, and application to high power microwave generation."

Web Enhanced: http://learn.unm.edu (you need to be registered for the course; use your UNM NetID and password to access).

Prerequisites: ECE 557 or permission of the Instructor.

Text: J. Benford, J. Swegle, and E. Schamiloglu, *High Power Microwaves, 3rd Ed.* (CRC Press, Boca Raton, FL, 2016).

There will be a problem set biweekly (on average). Some problems will involve computer solutions and plotting, so you will need access to software with math and plotting functions, such as Matlab, Mathematica, *etc.* There will be a final project and presentation, which will be described in more detail in class. Your final grade will be based on:

100
50
50

Emphasized topics are:

- 1. Fundamental HPM concepts
- 2. Enabling technologies
- 3. Beamless systems
- 4. Relativistic magnetrons and MILOs
- 5. Cerenkov devices
- 6. Klystrons and reltrons
- 7. Vircators
- 8. Gyro-devices
- 9. Free electron lasers

Syllabus - Lecture No. and Topics*

W	eek #			
1. 01/16	1	Dr. Martin Luther King Jr. Federal Holiday – No Class		
2. 01/18		Introduction to Charged Particle Beams and High Power Microwaves		
3. 01/23	2	Fundamentals – Basic EM (Chap. 4)		
4. 01/25		Fundamentals – Periodic SWSs (Chap. 4)		
5. 01/30	3	Fundamentals – Metamaterials/Cavities (Chap. 4)		
6. 02/01		Fundamentals – Intense Beams (Chap. 4)		
7. 02/06	4	Fundamentals – Beam/Wave Interactions (Chap. 4)		
8. 02/08		Fundamentals – Wrap-up (Chap. 4)		
9. 02/13	5	Enabling Technologies – Pulsed Power Drivers (Chap. 5)		
10. 02/15		Enabling Technologies – Cathodes and Beams (Chap. 5)		
11. 02/20	6	Enabling Technologies – Pulse Compression/Antennas/Plasma Diagnostics (Chap. 5)		
12. 02/22		Enabling Technologies – Computational Techniques (Chap. 5)		
13. 02/27	7	Cerenkov Devices (Chap. 8)		
14. 03/01		Cerenkov Devices (Chap. 8)		
15. 03/06	8	Beamless Systems - Introduction (Chap. 6)		
16. 03/08		Beamless Systems - NLTLs (Chap. 6)		
		03/12_03/10 Spring Ryagk		

03/12- 03/19 Spring Break

17. 03/20	9	Relativistic Magnetrons and MILOs (Chap. 7)
18. 03/22		Relativistic Magnetrons and MILOs (Chap. 7)
19. 03/27	10	Vircators (Chap. 10)
20. 03/29		Vircators (Chap. 10)
21. 04/03	11	Klystron and Reltrons (Chap. 9)
22. 04/05		Klystron and Reltrons (Chap. 9)
23. 04/10	12	Klystron and Reltrons (Chap. 9)
24. 04/12		Gyro-Devices (Chap. 11)
25. 04/17	13	Gyro-Devices (Chap. 11)
26. 04/19		Free Electron Lasers (Chap. 11)
27. 04/24	14	Student Presentations
28. 04/26		Student Presentations
29. 05/01	15	Student Presentations
30. 05/03		Student Presentations

^{*} Subject to minor changes. Use this as a guide to read the textbook in advance.