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Abstract 
 
 

 This paper gives some insight into how to pump up a resonant cavity for microwave pulse compression.  
Canonical examples are considered for the resonant modes in rectangular-waveguide cavities, and the appropriate 
location of coupling ports through which to feed the power into the cavity. 
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1. Introduction 

 

 One potential way to make a high-power hypoband source is pulse compression [1].  In this approach some 

kind of resonant structure (e.g., cavity) with high cQ  is fed by a lower-power tuned source in such a way that a 

higher power oscillation is produced which is later switched quickly into a load (e.g., antenna) producing a high-

power oscillation which exists for a shorter time than that required to pump up the oscillation.  There are various 

factors which need to be optimized for this purpose [2]. 

 

 The present paper is concerned with one aspect of this problem, viz., how to couple in the power from a 

lower-power source into an oscillation which builds up to a high power.  As we shall see, it is not only a question of 

a high cQ , but also a geometric question concerning where in the oscillating-mode pattern to feed in the power.  For 

present illustration we consider a cavity formed from standard rectangular waveguide. 
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2. Half-Guide-Wavelength Cavity 

 

 Let us consider a “baby problem” as C. H. Papas would put it.  This is a simple example which exhibits the 

essential physics of the problem.  As in Fig. 2.1, let this be a rectangular-waveguide cavity of length d.  The 

parameters of the lowest mode 1,0( )H  are [3, 4] 
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Fig. 2.1  Rectangular Waveguide Cavity 
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 The waves to the left of the cavity (z < 0) are characterized by (for electric field) 

 

 zA e γ− ≡  incident wave 

    zB eγ ≡  reflected wave (2.2) 

 

To the right (z > 0, the cavity) we have 

 

 zC e γ− ≡  right-going wave 

 zD eγ ≡ left-going wave (2.3) 

 

Applying the boundary condition at z = d gives 

 

 2 dD e Cγ−= −  (2.4) 

 

 As a first observation choose the frequency such that 

 

 kd π=  (2.5) 

 

Then at z = 0 (the cavity aperture) we have 

 

 D C= −  (2.6) 

 

giving zero electric field.  Then on the z = 0 plane we can place any thin conductor (with or without a hole in it) with 

no effect, and have 

 

 B  =  -A 

 A C=    (continuity of incident wave) (2.7) 

 

With C/A = 1, there is no multiplication of fields in the cavity. 

 

 The reader can note that the above result also applies for d as any positive integer number of half 

wavelengths. 
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3. Resonance Condition Near Guide Half Wavelength 

 

 Let us now look more closely near the cavity resonance by expanding 

 

 kd kdπ= + Δ  (3.1) 

 

We have the transverse fields of the form 
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with the common factor sin( / )x aπ  suppressed.  Looking into the cavity at z = 0 we have a wave admittance 
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The input admittance to the left of z = 0 is 

 

 in c aY Y Y= +             (parallel combination) 3.4) 

 

where 

 

 aY  = aperture admittance (imaginary for s jω=  since lossless) (3.5) 
 

This admittance is treated in various places (e.g., [3, 4]).  For a small centered hole of radius 0r  this is an inductance 

(small) 

 

 
3
081 ,

3a w a
a

kr
Y Y L

sL ab
ω=  (3.6) 

 

so that aY  is negative imaginary.  A capacitive obstacle gives a positive imaginary aY .  For convenience we define 

a normalized admittance 

 

 a w aZ Yη =     (imaginary for s jω= ) (3.7) 
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 The boundary condition (electric field or voltage) at z = 0 is 

 

 21 dA B C D C e γ−⎡ ⎤+ = + = −⎢ ⎥⎣ ⎦
 (3.8) 

 

Relating B to A through the reflection at z = 0 we have 
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 Expanding near kd π=  gives 
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For resonance this denominator is minimized at 
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This change in resonance frequency is maximized at 
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 ( )1 , tan 1 ,
4a kd kd πη = Δ = Δ =  (3.12) 

 

which is a large frequency shift and a large inductance.  For high-Q resonance much larger aη  are desirable. 

 

 Substituting in (3.10) we find 
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which tends to zero (for infinite cavity cQ ) as aη →∞  (small inductance) and 0kdΔ → . 

 

 The Q of the loaded cavity is (for a sharp resonance) given by 
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with ωΔ  taken as the change in frequency from 1ω  (the peak of the resonance) to 1/ 22−  (0.707) of the peak value.  

So set 2Χ  to 2 times the minimum value to give 
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The first term gives the resonance frequency as in (3.11).  The second term gives (small kdΔ ) 
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From this the Q is 

 

 21 1
2 2a a

d cQ
c d
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 (3.17) 

 

which becomes large for small aperture inductance (large aη ).  Then we can estimate from (3.13) 
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as the potential power multiplication. 
 

 From the usual formula for adding Qs  we have 

 
 1 1 1

a cQ Q Q− − −= +  (3.19) 

 

So the above result assumes a cavity cQ  larger than aQ , and cQ  gives a limit on the attainable Q. 
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4. Positioning Coupling Ports 

 

 From the foregoing we can see that a small coupling hole into a resonant cavity can lead to a high Q with 

accompanying amplification of the electromagnetic fields.  This then leads to the question of optimization of the 

location and shape of this coupling port. 

 

 Considering the simple example in Section 2, we have the situation in which the electric field at the 

aperture is zero and the tangential magnetic field matches on both sides, independent of the aperture shape.  One 

might look for similar situations to see whether some improvement can be made in some sense. 

 

 For this purpose consider the half-wavelength cavity for its spatial field distribution.  As we know, the 

narrow side walls, as well as the end closures at z = 0,d have no normal electric field in the 1,0H  mode.  Look, 

however at the tangential magnetic field on the side walls.  It varies as sin( / )z dπ .  Suppose now that for kd π=  

we place a magnetic field zH  on the exterior of the cavity at / 2z d= , the center of the side wall.  Call this location  

1  in Fig. 4.1 with magnetic field 1H .  This will be matched by the same magnetic field on the inside of the cavity at 

this position.  With the boundary conditions satisfied over all the cavity boundary, this gives the correct value for the 

internal fields.  There is, however, no amplification of the magnetic field. 

 

 Now consider a position   2  near z = 0 (the end of the side wall).  Call the tangential magnetic field there 

2H .  If we match 2H  to the external magnetic field as before, then 1H  inside the guide will be larger by the ratio 

 

 ( )11
2

sin /h
Hf z d
H

π−= =  (4.1) 

 

Here we have assumed that the size of the coupling hole (in the z direction) is small compared to z so that there is 

negligible variation of the magnetic field over the port at   2  .  Again the cavity boundary conditions are matched for 

kd π= . 

 

 Of course, like in Section 3, if we vary the frequency near kd π= , we can achieve a resonance condition 

with even larger field amplification.  Note that the coupling at   2   implies that the fields leak out through the port 

more slowly when the excitation is removed.  This is another way to say that the aQ  is increased by moving the port 

from   1   to   2  , even with the same size coupling hole.  Said another way, the coupling hole at   2   can be larger 

for the same aQ .  Again, the cavity Q must be larger than aQ  if this Q is to be achieved. 
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 A.  View normal to broad wall 
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 B.  View normal to side (narrow) wall with possible coupling ports 

 

 

 

 

 

 

 

 

 

 C. Tangential magnetic field on side wall 

 
Fig. 4.1  Electromagnetic Fields in Half-Wavelength Rectangular Waveguide Cavity 
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 As a simple illustration, Fig. 4.2 shows a possible way to feed the cavity from a rectangular waveguide.  In 

this case extH  is twice the incident magnetic field (when kd π= ).  This is, in turn, matched to 1H  or 2H  

depending on the position of the coupling waveguide.  This is only one possible configuration.  One can conceive of 

many more. 
 

 While a rectangular waveguide is chosen for our example cavity, many other shapes are possible, and 

higher order modes (many wavelengths across inside) are also possible.  The important point is that the fields vary 

considerably over the cavity walls, and one can choose the coupling location and type (electric or magnetic) for field 

amplification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.2  Waveguide-Fed Cavity 
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5. Inclusion of Coupling Port in Symmetrical Waveguide Cavity System 

 
 While this paper is not concerned with the details of rapidly switching out the amplified fields into a load, 

one must incorporate the input port into such systems.  As discussed in [1] symmetry is an important concept in such 

systems.  The action of the switch is to destroy the symmetry in the oscillating system in such a way as to allow the 

energy to rapidly exit the cavity into the desired load. 

 
 Considering now waveguide cavities, the magic tee is one way of feeding in antisymmetric fields at the Δ  

port, while feeding out fields through the Σ  port [3, 4].  A switch in the waveguide converts the antisymmetric 

resonance into a quasi-symmetric field pattern.  A significant question concerns feeding into the cavity in a high-Q 

manner.  Consider the configuration in Fig. 5.1.  The incident field in the Δ  port and the fields in the waveguide 

cavity are antisymmetric with zero tE  (tangential electric field) and maximum tH  (tangential magnetic field) on 

the symmetry plane.  This makes the E field a null at the center of the Σ  port, leading to no excitation of the 1,0H  

mode in the output waveguide. 

 
 This leaves the question of how to build up the resonance by feeding in power through the Δ  port.  If the 

waveguide feeds in directly with no small coupling hole or iris the Q will be quite low.  As illustrated in Fig. 5.1, 

one could place such an iris directly in the broad wall of the cavity symmetrically on the symmetry plane (position  

 1  ).  This gives a situation similar to that in Sections 2 and 3.  One can also move the iris to position  2  , away from 

the junction as a means of tuning to the resonance.  We have assumed that each arm of the resonant cavity is a 

positive integer of / 2λ  in length. 

 
 There are many other possible ways of feeding such a cavity.  One can insert a small coupling hole at 

various positions along the waveguide cavity.   This introduces a small asymmetry if the coupling hole is small.  

This can be tuned out by adjusting the lengths of one or both cavity arms.  Similar compensation is needed for the 

switch presence (before it fires).  Fig. 5.2 shows an example of coupling to the magnetic field at location  3  on the 

narrow wall near the symmetry plane (or some other null of the longitudinal component of the magnetic field).  This 

is similar to location  2  in Section 4. 
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Fig. 5.1  Feeding a Magic Tee 
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Fig. 5.2  Feeding Near the Symmetry Plane 
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6. Concluding Remarks 

 

 This only indicates the many possibilities for pumping up the power in a resonant cavity for a pulse 

compression scheme.  Certain advantages are found for placing the input coupling port near an appropriate null of 

the resonant mode.  This gives an initial field amplification based on field ratios in the cavity.  It also contributes to 

the required high Q, and allows for a larger coupling port. 
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