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SUMMARY

A rocket with removed access plate is simulated by a section of coaxial

transmission line with a transverse rectangular slot cut in its sheath. The

internal circuit consists of two arbitrary impedances in series with the in-

ner conductor at its ends. The object is to find the currents in these im-

pedances when the cylinder is illuminated from the outside by an electromag-

netic field that enters the aperture and excites the internal circuit.

The problem is solved by application of the reciprocal theorem. The

current in a dipole antenna is determined when this is in the far field main-

tained by the slotted coaxial line when driven by a generator in series with

one of the load impedances. The reciprocal theorem gives the current in this

impedance when the distant dipole is driven. A numerical example is given.



INTRODUCTION

In Fig. 1 is shown a simplified rocket or missile in the form of an
aluminum tube with closed ends, radius b and negligible wall thickness which
extends from z = 0 to z = s along the axis of the cylindrical coordinate
system p,¢,z. The open access door is simulated by a transverse rectangular
slot which extends from z = 2 - W/2 to z = 2 + W/2 in the axial direction
and from ¢ = m ~ ¥/2 to ¢ = w + ¥/2 laterally. The center of the slot is at
0o =b, ¢ =m, and z = 2. The internal circuit consists simply of a copper
coaxial conductor terminated at z = 0 in the impedance ZO’ at z = s in the
impedance Zs' The tube is illuminated from the outside by the far field of
a distant antenna, which is conveniently taken to be a dipole at a distance r
from the center of the slot at the origin of the polar coordinates r,6,¢.
The problem is to determine the currents Iz(O) and Iz(s) in the impedances Z0
and ZS.

The procedure to be followed is to remove the generator from the center
of the distant dipole and connect it in series with the impedance Z0 (or Zs)

and then to calculate the current I, at the center of the dipole. According

d
to the reciprocal theorem Iz(O) = Id (or Iz(s) - Id).

In order to determine Id it is necessary to obtain the electromagnetic
field maintained at the dipole by the driven, slotted, coaxial cylinder. This
involves determination of the current in the coaxial line and the field in the
slot as intermediate steps.

THE DISTRIBUTION OF CURRENT ALONG THE CENTER CONDUCTOR
OF THE COAXIAL SECTION OF TRANSMISSION LINE
When the coaxial line is terminated at z = s in the impedance ZB and

driven by the emf Vg in series with the impedance z0 at z = 0 (as shown in

Fig. 1), the current in the center conductor is
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Iz(z) - Vg F(w) (1a)

with
Z cosh yw + Z_ sinh yw
c s (1b)

F(w) = 2
ZC(Z0 + ZS) cosh ys + (Zc + Zozs) sinh yvs

In (la,b), w=s - z is the distance from the load Zs to the point z where
the current is determined. It is assumed that the presence of the aperture
at z = L has a negligible effect on the distribution of current. The complex
propagation constant vy and characteristic impedance Zc of the line are de-

fined by

Yy =a+ jB =V/izi + jwle)(g + jwe) (2)

Z, =\/(zi + jue®) /(g + jwe) (3

The internal impedance per loop unit length of the line is

i@ + 1) uw |1 1
g 2n V2 [ — " _] (4)
avo, b %

where S, and % are the conductivities, respectively, of the inner and outer
conductors - in this case copper (cra = 5.8 x lO7 mhos/m) and aluminum (ob =
3.72 x 107 mhos/m). This formula assumes the frequency to be high enough so
that the skin depth ds = v2/wnuo is small compared with the radius a and the
wall thickness of the outer conductor. More general formulas that apply when

this is not the case are in the literature [l1]. The other line constants have

the well-known forms:
2% = (u/21) &n(b/a) ; g = 2nod/2n(b/a) ; ¢ = Zwedlln(b/a) (5)

where %4 and €4 = €of, aTe the conductivity and permittivity of the dielectric
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in the coaxial line. In this case with air as the dielectric, %4 =0, e_=1,

r
7 henries/m and €. = 8.85 x 10-12 farads/m.

YoMr 0
If the dissipation in the line is neglected, vy = jk = w/lec, Zc -,/le/c =

As usual, y = where Mo = 4w x 10

(CO/Zﬁ)ln(b/a) where g, = /;3726 * 1207 ohms.
THE AXIAL ELECTRIC FIELD IN THE APERTURE

The axial electric field Ez(p,¢,z) in the interior of a perfectly conduct-
ing coaxial line with the current Izl(z') = 2naKzl(a,z') as given by (la,b) on
the inner conductor and an equal and opposite current, Izz(z') = - Izl(z') =
2anzz(b,z'), on the shield vanishes at all points on the surfaces of the con-
ductors and in the dielectric between them.* This zero value is the result of
the complete cancellation expressed by the equation Ezz(p,¢,z) = —Ezl(p,¢,z)
where Ezl(p,¢,z) is the field due to the current Izl(z') and the associated
charge ql(z') = (j/m)[alzl(z')/az'] and Ezz(p,¢,z) is the field due to Izz(z')
and qz(z') = (j/w)[alzz(z')/az'].

The axial electric field Ezl(p,¢,z) due to the current Izl(z') given in

(la,b) is readily calculated when the conductor is perfect so that y = jk.

The axial field due to the current
] = ) L. |
Iz(z ) Im sin k(h + h z') (6)

in the range 0 < z' < h is well known. It is (2]

-3g,1 | ~jkR. . \ )
E_(pr$,2) = __TO_E Je =1 costh + 1z > h) sin kh' + z—-‘Th- sin kh']
z "o - M R) kRY
@)
-§kR : l
_e  0fcos k(;+h)+l;—sin k(h +h") + %2 sin k(h+h')}
- 0 RS kR )

*
The currents are located by the primed coordinates p',¢',z'; the point where
the field is calculated in the coaxial line by the unprimed coordinates p,¢,z.



where R0 = /pz + 22 and R1 ’V/;Z + (h - z)z. The field due to the current
(la,b) is obtained from (6) as the sum Ezl(p,¢,z) = Ezlc(p,¢,z) + Ezls(p,¢,z).
. = e L =
Ezlc(p,¢,z) is given by (7) with the substitution: Im VOZc/D, kh /2 and
kh = ks. Similarly, E_; (p,$,2) is given by (7) with I = jngS/D, kh' = 0,

kh = ks. D is the denominator in (1b). Thus,

R e
~3%V0%¢ J;-ijl [—j(s ~2) 5 ~z|

E (D,¢ Z) =
zlc ’ 4wD r2 xRS
1 1
~jkRgy m _ 'll
- e 0 { _s_j_'_n_ki + l_z_ cos ks + L cos ks ; (83)
L Ry g2 KR> 4
0 0 ;
e, [ -jkR 3
E . (p,b,2) = 228 '8 e Olcosks 32 ks +—Z-sinks|\ (8b)
zls 4nDd - R R 2 3 .
l A 0 RO kRO i
J

where Rl =J/Qé + (s - z)2 and-R0 = /02 + z2. These expressions are independent
of ¢ since the fileld is rotationally symmetrical.

The increments dEzzc(p,¢,z) and dEZZS(O,¢.z) of the field at an arbitrary
radius p between p = a and p = b due to the filament of current Kzz(b,¢',z')bd¢'
= [Izz(z')/2n]d¢' on an element bdé¢’' of the shield are given by (8a,b) with

e

Rl(¢') substituted for R1 and R0(¢') for R0 and with the sign of V0 reversed.

The new distances are

2

Rl(¢') =Q/§2 + b° - 20b cos(¢ - ¢') + (5 - 2)2

9

2 2

R0(¢') 'v/bz + b - 2pb cos(d - ¢') + z

The entire field EZZ(D.¢,Z) = Ezzc(p,¢,z) + EZZS(D,¢,2) due to the currents in

all of the filaments is obtained by integration from ¢' = -n to ¢' = 7 of the

two components, viz.,



g vz om [ =3kR(6") [y o _
-7 Rl(¢') kR1(¢')
{10a)
-jkR.(¢')
~ e 0 § —;in Es + zjz cos ks + ——35——- cos ks] %il
0 0
and
e  -jkR (¢") . '
E ,_ (p,9,2z) = :EQXQEg_ "(JE____ET___ - e-JkRO(cb ‘ [cos Fs + 32 sin ks
z2s 4nD - L R1(¢ ) R0(¢ ) R(2)(¢')
(10b)
+ —2— sin ks} %%l

3ar
KR3($")

Since Ezz(p,¢,z) = -Ezl(p,¢,z) and Ezl(p,¢,z) is given by (8a,b), these inte-
grals do not have to be evaluated. However, they are needed in obtaining the
field in the aperture as expléined in the following.

When a rectangular aperture is cut in the shield with its center at p = b,
¢ = %, z =2, and with the dimensions b¥ and W which are sufficiently small to

satisfy the inequalities,
kW << 1, W<<g ; kb¥ << 1, VY <w (1n»

it may be assumed that no significant change occurs in the axial distribution
of the total curremnts Izl(z') and Izz(z') on the inner conductor and the inner
surface of the sheath. Approximate rotational symmetry in the transverse dis-
tribution will continue to be true for the current on the inner conductor and
also on the inner surface of the shield except at and quite near the aperture.
In the range £ - W/2 < z' < ¢ + W/2, the entire current will be distributed

over the conducting sector since it is zero in the aperture. As an approxima-



tion it may be assumed that the total current is distributed with a uniform

density in each transverse section so that

-
& Izz(z')/(Zw -¥)b; -m+ ¥/2<4¢'<Tw-¥/2,
L - w/2‘§ z' <2+ w/2
K 2(1'-’9¢'9Z')< (12)
z = 0; T - ¥/2 < ¢ < -m+ ¥/2,
L ~-W/2 < z2' <2+ W2

In the conducting strips that bound the aperture at z = *W/2 and extend to the
ends of the coaxial line, the surface current density Kzz(b,¢',z') is quite
small near the aperture. 1Its transverse distribution is relatively unimportant

2 cosz(¢'/2). It

at distances from the aperture that are large compared to 4b
follows that specifically for calculating Ez(b,w,l) at the center of the aper-
ture, the distribution (12) is a satisfactory approximation provided the aper-
ture is not too near the ends. Note that the total current and its axial dis-
tribution are essentiaily correct and only the transverse distribution is some-

what modified at distances from the slot at which this is of no consequence.

It will be required, therefore, that the following inequalities be satisfied:

(s - 1)2 >> b2 . 12 >> b2 (13)

With p = b, ¢ = w, z = £, the distances R1(¢') and R0(¢') in (9) become

R, (4") =/ b2 cos?(4'/2) + (s - 2)2

(14)
Ry(6") =V 4b cos®(s'/2) + 22
Subject to (13), satisfactory approximations are
R1(¢') =5 -2 1
in amplitudes, (15a)

Ry (4') = 2
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2 2
" s _ 2b° cos“(4'/2)
Rl(¢ ) =g -8 + —
2 2 in phases
1 ]
R0(¢') g+ 2b cosz(¢ /2)

(15b)

The approximate field Ezz(b,n,z) can now be obtained from (10a,b) by introduc-

ing (15a,b), extending the limits of integration from -v + ¥/2 to 7 - ¥/2, and

substituting dé'/ (27 - ¥) for dé'/2n. The field at the center of the

due to the currents on the inner surface of the shield is

Ezz(b,n,l) = Ezzc(b,ﬂ,l) + Ezzs(b,ﬂ,l)

where
e
-igvez |
0 0% ! -jk(s - 2) | -1 1
E (b,m,2) = ————— se [ — - L(s -~ 2,¥%)
z2c 47D ( s L k(s - 1)2
_3 . jks
-e jk2 [Jez 4 cos 55:1 L(2,¥)
ke
e (s -
E (bnz)-covozs)eJk(s i L(s - £,Y¥)
z2s ' °? 4mD ] s - £ ’
{
_s jks
- e jke [e — + sin gs } L(2,¥)
- k&
In (1l6b,c)

T-¥/2 s 2 2,., '
L(x,¥) = —é exp[ =L = @ /2)] 3 fd’wz

with x =2 or x=s = &.

aperture

(16a)

(16b)

(1l6c)

(16d)

The field Ezl(b,n,z) - Ezlc(b,n,z) + Ezls(b,n,l) due to the currents and

charges on the inner conductor is given directly by (8a,b) with z = £ and p = b.

In order to combine it with (16b,c) the distances Rl and RO have to be approxi-

mated in the manner suggested by (15a,b). Since these approximations and those

in (15a,b) are quite critical in determining the small difference field in the



aperture, an alternative procedure which, in effect, subtracts out the errors
introduced by them, is to be preferred. It depends on the statement follow-
ing (10b) which applies specifically to the field at the surface of the co-
axial line when there is no aperture, viz., Ezl(b,n,z) = —Ezz(b,ﬂ,z). Since
the field Ezl(p,¢,z) is affected negligibly by the presence of the aperture,
it follows that Ezl(b,w,z) is given by the negative of (l6a-d) with ¥ = 0.
This involves only the substitution of -L(s - £2,0) and -L(%2,0) for L(s - &,Y¥)
and L(L,¥) where L(x,0) is given by (16d) with ¥ = 0. It follows that in the

evaluation of the total field in the aperture, viz.,

Ez(b,ﬂ,z) = Ezc(b9“sg‘) + Ezs(b)n’z)
= Ezlc(b’ﬂ’z) + Ech(b’“’l) + Ezls(b’ﬂ’l) + EzZs(b’ﬂ’l) 17

the quantity L(x,¥) - L(x,0) must be evaluated from (16d) and (17). If it is
now recalled that the inequalities kb << 1 and (b/x) < 1 have been postulated,
it follows that the exponents in the integrands must be small enough to permit
the retention of only the leading terms in the series expansions of the expo-

nential functions. Thus,

-¥/2 cor 2 2.,
L(x,¥) - L(x,0) & - [1 _ 32kb” cos”(¢ /2)J do'

x T - ¥/2

O3

(18)
2

G(Y)

L X

2 2, .
+ } [1 _ 32kb” cos” (¢ /2)] di -y kb
0 X

where

sin(y/2)

G(Y) = T - ¥/2

(19)

and where in (18) x = s - £ or x = %.



It follows from (16)-(19) that the total axial field at the center of
the aperture is given by (17) with
"0 +

471D ! i. (S - 2) 22

oik(s = 2)  -jke l
+ 3 + 3 cos ks (20a)
k(s - 2) ke

Vekb Gz j e -jk(s - ) _ik(s - 2)
Ezc(b,ﬂ,l) = ]

o

3T, Vokb G(‘i’)Z J.e-jk(s -2) k(s - 2) _-jK&

00 T \[ — - > - & sinks (20b)

E _(b,m,2) =
zs (s - 2) 2 ke

The sum of these components gives the final expression for the approximate

field at the center of the aperture. It is:
e
Ez(b,n,z) = COVOkG(W)YcH(s,z)/4n (21a)

where Y = 1/Z and
c c

b Zc e-jk(s - %) ejk(s - )
H(s,L) = j Z_ -2)-j——(@2_+2)
’ D (s - 2)2 s c 22 s c
o-ik(s = 2) ke l
- 3 Z - 3 [Zc cos ks + st sin ks]l (21b)
k(s - 2) ¢ ke J
G(Y) is given in (19) and
2
D ZC(Z0 + Zs) cos ks + j(zc + ZOZS) sin ks (22)

An interesting special case is the completely matched line with both ter-

minations equal to Zc. With Z0 = Zs = Zc’ D= ZzieJks and (21b) reduces to
zj ke fk(2s - 2)  -jke
H(s,%) = -b 7+ + 3 (23)

l L 2k(s - 2) 2ke



-10~-

If, in addition, the aperture is located at the center of the line with s = 22,

the field at its center is

12 -§2k8

H(2%,2) = - ;§-~{je_jk£ + & —— cos k2 (24)
It is significant to note that H(s,%) and, hence, Ez(b,ﬂ,l) are proportional
to terms with (b/l)2 or bz/(s - z)z as a factor. This means that the axial
field in the aperture decreases as the inverse square of the distance from
the center of the aperture to the ends of the coaxial line. Unlike H¢(p,¢,z)
and Eo(p,¢,z) which are determined by the local current Iz(z') and charge per
unit length q(z'), Ez(p,¢,z) in the aperture depends primarily on the distance
from the point z to the ends of the line. When the aperture is closed, it is
everywhere zero.
THE RADIATION FIELD OF AN INFINITE CYLINDER WITH ELECTRIC FIELD Ez(b,ﬂ,l)
IN THE APERTURE

The electric field at points outside and in the radiation zone of a per-
fectly conducting cylinder that is infinite in length and in which there is
an aperture has been determined by Harrington [3]. In general, it has the
following components in polar coordinates (r,0,¢) with origin at p = 0, z = &,

on the axis of the inner conductor opposite the center of the aperture [4],

-jkr )
Ef(r,8,8) = jun S—— sin @ nZ_d.ejn¢ Flass f_(-k cos 6) (25a)
_jkr @
r - - e jn¢  n+l _
E¢(r,e,¢) jk =—— sin 8 nz_d'e j g, (~k cos 8) (25b)

where the functions fn(e) and gn(E) are given by [5]:
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£ () = jueE (0,0 (67 - 5 8P 0 /i® - 17 (262)
- _mE 3 T2 () S L o2yl
B8 = Byme) + — gt E I/ - & 1 e /1 - ) (26b)

In (26a,b), Ez(n,E) and §¢(n,£) are the Fourier trangforms of the electric
field in the aperture.

The transforms in (26a,b) are readily evaluated if it is assumed that the
electric field in the aperture 1is approximately equal to its value Ez(b,w,l)

at all points. In this case E¢(b,n,2) = 0 and

2 L .
Ez(n,g) = é%—é do —{;Ez(b,¢,z) e-Jn¢ e 1tz dz

Ez(b,n,l) T+Y¥/2 —iné W/2 itz
= f/ e 1% g6 [ e735% 42 (27a)
mT-¥/2 -W/2

The integration yields:

E (n,6) - ZEz(b,ﬂ;l) ™37 2in(av/2) sin(E/2) 27
Since E¢(n,5) = 0, it follows from (26a,b) with (27) that
£ (£) = Ez(b,n,z)ljzm€ sin(ut/2) sin(gi/2) e 3 (28a)
L mea? - HuP /i - % |
2 sin(n¥/2) sin(eW/2) e 37" (280

g (£) = Ez<b,n.z){

“b(k 2 3/2 122)'(b 2 62)

The substitution of £ = -k cos 6 in (28a,b), combined with the condition kW << 1

from (11), gives:
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\
o)
;gw s;u(n?/Z) e > (29a)

f (-k cos 68) = jE (b,n £)< @)
sin” @ H (kb sin B)

lnnk

-jnn
g, (-k cos 8) = -E L (BT L) < chos g sin(n¥/2) e L

| bk? sine H(Z) (kb sin 6) |

(29b)

These expressions can be inserted into (25a,b) to obtain the components of the

radiation field. They are

r W e-jkr
Eg(r,0,0) = -E_(b,m,2) Fy(¥,0,9) (30a)
z 3]
mr sin 8
r W e JkT
E¢(1‘,9,¢) - jE (b LS 2—) —2—— F¢(‘P,6,¢) (30b)
mr sin 6
where
o o+l ~-jn(mr ~ ¢)
Fo(¥,0,0) = ] J 51“5'2‘\*'/2) - (31a)
n=- an )(kb sin 6)
. cot 8 S jn+1 sin(n¥/2) e-jn(“ -4
F¢(‘P,6.¢) b (31b)

n=- HI(IZ)T(kb sin 6)

Alternatively, with Hfg)(x) = (-1)n Héz)(x) it follows that

l n+l
i Fo(¥,0,4) = (2) ¥ + 2 i sing\;/z) cos n(m - )
| (kb sin &) n=1 nH_“" (kb sin @)
(31lc)
F¢(W,e,¢) 2 cot 8 z it sinE;:{Z) sin n(nr - ¢) (31d)
; H (kb sin 0)

Note that the field Ez(b,n,z) in the aperture excites a horizontally polarized
¢—component as well as a vertically polarized 6-component. This is a consequence

of the transverse currents excited on the cylinder near the aperture. However,




=13~

r r
P 9
= 0, In (30a,b) the field Ez(b,n,l) in the aperture is given by (21). In

in the principal plane 6 = w/2, E, (r,n/2,¢) = O; in the plane ¢ = m, E (r,8,m)
special cases, H(s,%) in (2la) is given by (23) or (24).
Since the coaxial line is electrically small in radius as required im (11),

the following approximate forms of the Hankel functions with small arguments

(x2 << 1) may be used:

(2 4y 21 - 12 (g0 X S L B
HO (x) 1 = [2n 3 + 0.5772] s HO (x) = (jﬂx + 2) (32a)
(2) 2 _2 X . (2)' & 3 2 l
Hl (x) ij + 2 3 Hl (x) J——§-+ 3 (32b)
™
With these values, the leading first two terms in the sum are
Fo(¥,6,0) = 3¥ jmkb sin © sin(¥/2 (33
e( »9,9 T+ 304/ in(2/vkb sin &) ~ 37 sin 68 sin(¥/2) cos ¢ a)
F, (¥,8,0) * -mkb cos 6 sin 6 sin(¥/2) sin ¢ (33b)

In (33a), ¢n vy = 0.5772.

In the analysis to determine E;(r,9,¢) and E;(r,6,¢) the conducting cylin-
der has been treated as if infinitely long, whereas it is actually only very
long compared to the radius b of the cylinder and the axial length W of the
aperture. Since the currents excited on the outside of the cylinder by the
field in the electrically small slot are highly localized, an increase in its
length beyond a certain limit is unimportant in its effect on the far field
except in directions near 6 = 0 near the axis of the cylinder. In terms of
the reciprocal theorem, this is confirmed by the recent work of Kao [6] in
which it is shown that the currents far from the ends of a long but finite
cylinder differ negligibly from those on an infinitely long cylinder with the

same radius and orientation relative to the incident field. Note, however,
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that the internal length of the coaxial section is important in determining

the circuit properties of the terminated transmission line.

CURRENT IN THE DIPOLE; APPLICATION OF RECIPROCAL THEOREM
Let a dipole antenna be placed in the far field of the slotted cylinder
with its axis parallel to E;(r,9.¢). The current at the center of the dipole

is [7]
I,(0) = -2h_ (v/2) ¥, E;(r,6,¢) (364)

where Zhee(W/Z) is the complex effective length when the antenna is parallel
to the incident component E;(r,e,¢), which is given by (30a) with (3la), and

YA is the admittance of the dipole.

According to the Rayleigh-Carson reciprocal theorem [8] the impedanceless

e
0

series with the impedance Z

generator V_ may be moved to the center of the dipole from its position in

0 at z = 0 in the coaxial line, and the current

Iz(O) will then equal the current Id(O) given by (34). Hence, with (30a) and
(31a)
2hee(ﬂ/2) YA Ez(b,n,l) W e-jkr

“2 sin 9

12(0) = Fe(w,e,¢) (35a)

where Ez(b,n,l) is given by (21). More explicitly, the current in the load of

the slotted coaxial receiving system is

2h_ (7/2) COVSWR ik
3

1(0) = H(s,2) G(¥) Fy(¥,0,0) (35b)

AZCZAn sin 0

e
0

The electromagnetic field maintained by the dipole at the center of the

Note that V. in (35b) is the emf driving the dipole antenna; Zc - l/Yc.

aperture in the cylinder is
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inc C0 0 e-jkr khee(ﬂlz)

=3
2n r ZA

E (36)

since the electrical effective length is the same as the far field factor by

the reciprocal theorem. If (36) is used to eliminate Vg in (35b), the follow-
ing final general formula is obtained:
.in
L) = 55 u(s,8) G(N) Fy(¥,0,4) (37)

wZ sin 6
c

H(s,%) 1is defined in (21b) or (23) or (24), G(¥) is given by (19), and Fe(W,9,¢)
is in (31la) or (33a). This formula gives the desired solution for the current

in the impedance Z. as a result of the excitation of the coaxial line by an

0

axially directed incident field glnc

in the aperture. The current Iz(s) in Zs
is obtained simply by interchanging ends. (The current resulting from a trans-
verse incident field can be derived in a similar manner with a distant dipole

oriented parallel to E;(r,e,¢). Its maximum possible value is always smaller

than the maximum possible value of (37).)

SPECIAL CASE AND ILLUSTRATIVE EXAMPLE

When the terminations at both ends are matched so that Z0 = Zs = Zc -

(co/Zﬂ)Ln(b/a), and the aperture is at the center of the coaxial section so

that s = 2%, (24) applies. That is

2 o—i2ke

b jk2‘+——o::osk9.j‘

H(22,2) = - = {je”

. & k&
L

For normal incidence, 6 = 7/2, ¢ = 7, so that from (3la)

- +1
- 377" sin(ny/2)
Fe(\y’ﬂ'/Z'“) z

B
n=-— an (kb)




~16-

or, from (33a),

jvy
2 + j(4/n)n(2/vykb)

Fe(?.v/Z,n) - + jnkb sin(¥/2)

Illustrative Example:

Let f = 1 MHz so that A = 300 m and k = 27/A = 0.0209; W = 0.25 m, ¥ = 0.5

3 3

radian, b = 1.0 m, and a = 1 mm = 10~ m. Then kb = 0.2094 x 10" °; 2n(b/a) =

6.908, sin(¥/2) = 0.2474. Also let s = 15 m, £ = 7.5 m so that k& = 0.1568.

It follows that H(15,7.5) = -0.1094 + jO0.0168; G(.S)‘-0.0856;Fe(.5,n/2,w) =

(4.43 + j0.829) x 107 2; Z_= 414.48 ohms. With these values

I,(0)

Einc

= 0.026 pA

i
If E 7€ is 105 volts/m, IIZ(O)I = 2,6 mA. In this example the dimensions of

the slot are bY = 0.5 m (19.69") along the circumference and W = 0.25 m (9.84")

along the axial direction. Note that kW = 0.00525 << 1 and kb¥ = 0.0105 << 1.

CONCLUSION
A missile with its access plate removed has been approximated by a large
coaxial cable with an arbitrarily located transverse slot of rectangular shape
cut in the sheath. The inner circuit is represented by the inner conductor
with a load impedance in series at each end. Formulas have been derived for
the currents in the load impedances in terms of the magnitude of a plane-wave

field incident on the slot.
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Figure 1,

Coordinates and Parameters for Internally Loaded
Cylinder with Aperture
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