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ABSTRACT

Transient electromagnetic computational techniques are critically
examined in this paper. In particular, the time-domain magnetic field
integral equation applied to surfaces and the time-domain electric field
integral equation specialized to thin wires are considered. Except for
the natural advantage provided by the time-domain for non-linear analysis,
the time and frequency-domains may be viewed as offering alternative and
complimentary routes for obtaining and representing electromagnetic phe~
nomena, In general, the time-domain offers a more dependable medium for
shortening the calculation time of transient electromagnetic phenomena
without loss of significant information. Some representative numerical
results and experimental verification are presented. Finally, brief
consideration is devoted to various nonintegral equation transient
computational techniques.
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FOREWORD

This report expands upon the material presented in an invited
paper of the same name by C. L. Bennett and the author at the 1972
Spring URSI meeting. Washington, D. C. An attempt has been made to
present the state-of-the-art in transient calculations. Because of
continued advances which are being made in this area, the material
included here can only be considered current through September, 1972. .
The survey of work in this area is, furthermore, not exhaustive but
only representative of the subject matter, with incomplete reference
to some special applications such as EMP. Nevertheless, the account
of transient electromagnetics given here should provide the reader

with the basic developments to date in the area.




T, INTRODUCTION

Determining the transient properties of physical systems has long been

a legitimate and worthwhile pursuit in various scientific and engineering
studies. A common feature of most transient problems analyzéd to date is
their susceptibility to description via linear differential eguations. This
allows treatment of such problems using standard methods like the Laplace
transform. Transient circuit analysis is one example of the success of this
approach, heat flow prcblems another.

Transient electromagnetic problems have, by comparison, yielded less
readily to classical mathematical treatment. The usual rigorous approach to
this subject, until recently, followed standard frequency-domain techniques
with a subsequent Fourier transformation to obtain the corresponding time-
domain solution. ZEven this method could not be guaranteed to succeed, until
the development of the Fast Fourier Transform (FFT) algorithm and sufficient
computing power to make it practicable. Various approximations based on
physical optics and employed directly in the time-domain, thus avoiding the
Fourier transform, hsve also been used with some success.

The increased computer capability that has become available in the
past few years has opened up new possibilities for the direct time-domain
solution of electromagnetic problems. At the same time, advances in short
pulse generation and instrumentation technology have promoted interest in
the transient behavicr of antennas, scatterers and other microwave components.
These two developments have had the effect of stimuleting further theoretical
efforts toward transient electromagnetic analyéis.

This report discusses,techniques currently being employed for the
solution of transient electromagnetic problems. A brief survey of the field
and its historical development is included. The principle concern of this
presentation, however, is an assessment of integral equation methods which
have been developed for studies of transient properties. We will consider
formulations applicable to three dimensional structures which can be classi-
fied as wires, surfaces, or hydrid geometries. ZEssential features, capa-

bilities, and limitations of integral equation formulations for the direct



time~domain solution of such geometries will be ccompared with the corre-
sponding properties of their frequency-domain counterparts. We will in

particular be concerned with computer time and storage requirements, accu-

racis= attainable, and the relative flexibility and convenience of use of
the time-domain versus frequency-domain approachés. Also to be considered
are methods for extending the capabilities of-such time-domain techniques
to higher frequencies or more complex structures. Typical computed results
will be presented to demonstrate the numerical state-of-the-art in direct
time-domain methods. It is hoped that this presentation will reach beyond %
the unique and novel surface features of transient techniques to place their
relative'position to more conventiocnal methods in proper perspective.

The report is organized into sections which deal with the historical
development of transient electromagnetics; integral equation techniques;
the comparison of time- and frequency-domain solutions with emphasis on
relative computational advantages; and the extension and application of time-
domain methods. A summary is contained at the end.

’

IT. SURVEY AND HISTORICAL DEVELOPMENT

Apparently, the first efforts to determine the.transient properties

of electromagnetic scatterers from time-domain analysis were due to Kennaugh

and Cosgriff,l who employed a physical optics approximation to calculate the
approximate backscatter impulse response of a2 flat plate and spheroid.
Kennaugh and Moffatt2 have summarized the subsequent work which was devoted
to extending the application of physical and geometrical optics to transient
response calculations. The alternative approach of Fourier transforming the
classical Mie series frequency-domain solution for the sphere to obtain its
short pulse response was presented by Rheinstein.3

Methods such as these can be extremely useful in estimating the impulse
response of various target shapes. They can be, however, severely restricted
as to limitations on the body geometry for which they can be successfully
used. The physical optics-based approach requires that certain conditions
relating to the geometry be satisfied (e.g., the body characteristic dimension
R must be large compared with the wavelength). The classical series solutions

can be obtained for only the relatively few geometries separable for Maxwell's
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Equations. An integral equation approach, on the other hand, offers the
possibility of extending direct time-domain solutions to more general, though
not necessarily arbitrary, geometries.

"mtegral equation techniques for frequency-domain application have been
extensively developed and applied during recent years, with the earliest work
on three-dimensional scatterers being reported in 1965 by ﬁn’ldreason,LL Oshiro,5
and Richmond.6 These techniques have been found useful for a wide variety of
radiation and scattering problems, with particular success having been enjoyed
by those especially developed for wire geometries. A survey of trequency-
domain integral equation methods has been given by Poggio and Miller.T

The development of the corresponding integral equation methods for time-
domain solutions was first reported in 1968 by Bennett and Weeks,8 who also
summarized previous time-domain work, including related developments in
acoustic problems. They cobtained the transient response of two-and three-
dimensional, perfectly conducting bodies (surface structures) using a time
dependent integral equation based upon the magnetic field. An interesting
and significant difference between the two methods 1s that in the time-
domain approach the matrix inversion necessary for the frequency-domain
solution can be aveoided. Instead, a time stepping process allows the com-
plete time-domain solution to be obtained as an initial value problem.

A similar approach for finding the transient response of wire structures

9

was also developed about the same time by Sayre and Harrington. Their
technique was based upon the thin-wire approximation to the electric field
integral equation. While naturally differing in numerical details from the
extended-surface structure solution technigque developed by Bennett and Weeks,
Sayre and Harrington also cbtained transient solutions via an initial value
time-stepping procedure, without matrix inversion.

These initial time-domain calculations were performed for relatively

" simple surface geometries such as the sphere and sphere-capped cylinder and

straight and circular wire structures. Subsequent extensions have been

incorporated for surface structures by Bennett et al.lo in order to handle

bodies with edges and wire appendages, and to exploit plane and rotational
11 ' 2 '
symmetry. Miller et al. and Poggio et,al.l have presented a more general

solution for wire structures, to allow essentially arbitrary temporal and



spatial sampling densities by using quadratic space-time current and charge
interpolation. This procedure removes a causality-implied restriction on the

time-step interval explicitly included in Bennett's work, while also yielding

"a smoother current distribution in space-time than that obtainable from the
impulse current expansion employed by Sayre.

Other treatments of the time-domain problem which do not involve an
integral-equation formulation have also been given., A finite difference

13

solution was worked out by Merewether ~for determining the transient response

of thin bodies of revolution. Merewether used the radiation condition to
l1imit the volume of the linearly expanding region containing the non-zero
fields around the structure to that permitted by available computer storage.
A time-domain solution for the currents induced on a multiconductor cable in

15

free space 14 or above a ground plane, was given by Bechtold and Kozakoff.

Transient calculations based upon Fourier transformed frequency-domain solutions

have also been presented by Harrison and Kingl6 for the infinite cylindrical

17

antenna, by Ormsby and Weiss for the radiation field of linear arrays, by

1
Haynes and Wilkerson 8 for transient-currents on long wires, by Chang and

19

2
Harrison © for the annular slot antenna, by Hodge 0 for scaftering from a
2
circular disk, and by Rates and Hawley 1 for current excitation on a long

cable located near a dielectric free-space interface.

Although this list 1s not all inclusive, it may be seen that more effort
appears to have been devoted to obtaining transient results from freguency-
domain solutions than from a direct time-domain analysis, at least where’
numerically rigorous, or non-approximate solution methods are employed. In
the discussion which follows, we hope to more clearly define the potential
advantages of obtaining the transient response from a time-domein viewpoint,

as well as for obtaining monochromatic information.

ITI. INTEGRAL EQUATION TECHNIGQUES

The derivation of an integral eguation for a given electromagnetic (EM)

problem can be accomplished in various ways. What 1s basically involved,

vhatever the speciflc approach, is the expression of Maxwell's Equations in ”
an integral form such that the scattered or radiated (secondary) fields are

given as integrals of their sources. By allowing the locus of Tield ohser-

vation points to be lozated where the tohal field (primary plus secondary) is




known from continuity or boundary conditions, an integral equation can be
obtained for the unknown sources in terms of the known primary field distri-
bution.

This procedure holds, whether Maxwell's Equations are dealt with in the
time-domain or frequency-domain. Furthermore, because of the Fourier transform,
it .is possible to transform integral equations as well as their numerical
solutions from one domain to the other. Thus, we can derive the time-domain
solution by beginning with the time-dependent Maxwell Equations. Alternatively,
we could first obtain a frequency-domain integral equation whose Fourier
transform yields the time-domain equation sought. Or we could follow a combined
approach which contains elements of each. We adopt the first course for our
discussion here, and refer the reader to Poggioggfor an example of the second.

The analytical developments which follow are necessarily sketchy. A
more detailed account 1s contained in the references. We begin by presenting
the magnetic and electric field integral equations for perfect conductors.

These are then applied to surface and wire structures in subsequent sections.
A concluding section deals with the numerical analysis. Where appropriate,

sample results will be given.



The Magnetic and Electric Field Inﬁegral Equations for Perfect
Conductors

. 2
Mexwell's equations can be written in time-dependent differential form 3
as @
VXEF 1) = 5 ¢ EF, 1) + IE, ) (1a)
— _ a ——
VXERF, 1 = - & uHE, (1)
vV-HT,t) =0 (1c) .
V-EG 1 = olr,0)/e, (14)
with
VTEY & oG 1) =0 (1e)
where uo and. e, are the permeability and permittivity of free space.
The scalar potential ¢(T,t) and vector potential A(T,t), are
defined by
TE 1) = #i v X AT, t) (2a)
0
and
BE 1 = -V6E, ) - 5 BE 1. (2b)

Upon applying the Lorentz gauge condition
9 =
V. EF 1)+ e ;ﬁqb(it) =0

we obtain for the potentials, the following wave equations:

2
V2KG: t) = .uoeo 'aat_zz(?: t) = '#Oj(-f:a t) (3a)

2
'V2¢(f, 1) - o€ :Tz ¢(F, t) = -p(T, t)/eq- (30)

But the equations (3a) and (3b) have the Green's f‘unctionzlL

- 1
g(-f‘-, t; I", th = - m 5(t - R/C, t')

where

10




and 8 (x,y) is the Dirac delta function. Thus

o, 1) = L feu_f_u_)d
v R (La)

rhI'S:
o

A, t) fj - Rje) g1, (4b)
v

The time-dependent electric and magnetic fields due to J and p are

thus given by

kol . o1 1 1
E(;:t) = ‘4—71_ ['6—0 [ ——g VRP(F', 'T) av!
v R

1 1 9
+'e—[ R VR 3= (@, 1) dv!

0 \%
1 68 =
+/~‘0f EFJ(?', 7-) dV'] (5)
\Y%
I 1 -
HG-;t) = a7 l [’Lz J(?', T)
R
1 06 - =)
“He 79| Bow (6)
with
T=t-R/c
and

5—— () = —— £(t)

t=r

Equations (5) and (6) represent the secondary fields radiated by the
volume distributions of current and charge J(7,t) and p(T,t). The problems
for which we require such expressions will involve surface current and charge
distributions on perfectly conducting bodies. The appropriate equaticns for
this latter case can be obtained from Egs. (5) and (6) in the usval wasy, to

get, with K and. o the surface current and charge densities,

11



= 1
BEFE,t) = _Gf [—“e(l)n VRo(r!, 1)
S

+ 61—0 'Ba_'r o(r!, 7} VR
“uy o R | 4 (")
and
—_— _ 1 ?(-,
HE, t) = ﬁf [_rRLL)
S
+é %K(F. 'T):' X;{R.‘-ds', (8)

The far-field forms of Egs. (7) and (8) can be obtained from the
limit R = «, and beccme

1

B@) = - 4nre

U)'\.

HE 1) = [%KG&T)X%ds'
S

Now the frequency-domain radar cross section can be defined as

12




with the dependence of 0/)\2 on the incidence angle, observation angle, and’
polarization all suppressed: It is computed from the quotient of the
spectra of the radiated field and the incident field. These in turn ave
determined by taking the Fourier transforms of the radiated field and
the incident field.

The sought-for integral equations are finally derivable from Egs. (7)
and (8) by allowing ¥ = S and introducing the primary or incident field

while imposing the boundary conditions.

A
Axgttel g nx(E+ETO

A .
A --ﬁtOta1=O =n°* (H+gmc)

applicable at the surface of a perfect conductor, to cbtain

ﬁ X-Einc - _2%
u —
xfB%Mﬂ
S
ofr!, 7) R
€9 =R
8 1 T
- olr!, 7)— —5 | ds',
o7 €0 ch] (9)

KE,t) = 2 xT{inCG, 1) + -2171%
< f [ g mm ez 1]
S

v R
X ds! (10)
E-Z- S

where ][ denotes a principle value integral about R = 0 defined by
S

[ = linl ‘QS"U ’[
J
S /S-AS

13



Details of treating integrable singularities of the type found in Egs. (9)

and (10) are given by Kellog25

in Refs. 7 and 8.

and may be found for this specific problem

It is worthwhile to also present the frequency-domain versions of
Egs. (9) and (10). They are

(_) 27r1w6
./{w“o coR(r" ¢ .
+ [V k@) V'¢}ds', (11)
and *
= 1 A o —
K(r) = g;nxfmr') X V' ds'
S
+ 2R X B (12)
with-
¢ = exp(-ikR)/R
and
kK = wlpes

070" 0

Equations (11) and (12) can be derived from a Fourier transform of their

respective time-domain versions, as discussed by Poggio and Miller,7 or
directly in the frequency domain as presented by Andreason,LL O'Shiro,5
and others.

A nmerical solution of Egs. (9) and (10) can be formally developed
using techniques similar to those already found successful for frequency-
domain application. This involves approximating the unknown surface current
in terms of some suitable basis function expansion, and then satisfying the
integral equation in some prescribed fashion by using an appropriate set
of weight functions as a function of space and time. For surface structure
analysis this might be accomplished, for example, by dividing the surface
into patches or segments of small énough size relative to the shortest
wavelength of interest so that the current on each can be regarded as a
constant. The integral equation could be "point-matched" at the center

of each patch by using delta function weights. This would resullt in an

i

14



overall process known as subsectional collocation and would yield a
linear system of equations for the unknown. Since the time-domain formu-
lation further involves the time dependence of the fields and sources,
the solution process must also include time as an additional variable.
This might be accommodated by dividing time into increments small enough,
relative to the highest frequency of interest, that the various quantities
could be regarded as constants over each time increment. A histogram or
pulse-like current approximation in space-time would then result.

While the time- and frequency-domain solutions are achieved using
similar concepts for approximating the functional behavior of the fields
.and sources involved, they differ greatly in the actual process of
obtaining numerical results. The frequency-domain current solution is
commonly obtained via matrix inversion (iteration can also be used) and
is consequently source independent, but valid only at the fregency for
which the inverse or admittance matrix has been calculated. In the time-
domain on the other hand, due to the retarded time relation between the
current and its propagating field, the current may be found as the solu-
tion to an initial value problem. While not requiring matrix inversion,
or being restricted to only a single frequency, it is, however, source
dependent. These observations indicate the underlying and fundamental
differences which characterize the two formulations.

The derivation of Egs. (9) and (10) is useful for illustrative
purposes. In ectual application only Eq. (10) is used as it is shown, it
being applied to the analysis of three.dimensional surface structures.
Various special forms of these equations are found to be better suited for
the treatment of wires, infinite cylinders, or hybrid structures. The
applicable equations for these special cases will be presented in the
following sections together with sample numerical results obtained from
their solution, as well as from the solution of Eq. (10). Brief descrip-
tions of the solution procedure will also be included as appropriate, but
a detailed account of the numerical methods will be deferred to the con-

cluding section of this chapter.

Analysis of Surface Structures

The two integral equations developed above are suitable for the

time-~-donain analysis of perfectly conducting bodies. While in principle

15



either one might be used for a given problem, experience gained from
frequency-domain applications indicates that the electric-field integral

equation (EFIE), Eq. (9), is more suitable for the treatment of wire-type ‘

structures, and the magnetic-field integral equation (MFIE), Eq. (10), is
more appropriate for handling extended surface objects. The reasons for
this are twofold: 1) the EFIE contains a higher order singularity which
numerically, at least, is more amenable to handling via the thin-wire
approximation than for surface geometries, and 2) the MFIE contains a
K 'x VR term, which is not as numerically tractable for application to
wire structures as it is to surface geometries. Examples to the contrary
can be found. Lin and Me126 used the MFIE for wire antenna analysis and
Harfington and Ma,utz27 applied the EFIE to bodies of revolution. These
examples are more the exception than the general rule.

'Application of the magnetic field inﬁegral equation to two-dimensional

and three-dimensional surface structures is considered below.

a., Two-Dimensional Surface Structures

An integral equation for structures having only a two-dimensional

variation and extending to infinity in the third (z) direction cen be

formally obtained from Egs. (9) and (10). It may be simpler however,
to follow Bennett and Weeks, who derive the two-dimensional vector

potential for the normel incidence case as

A(p,t) = 4——7;1—0 [dc'j drJ(p', 7)

0
y 6(t - R/C, T)
X[ dz —_—

-

for a z-directed cylinder. Upon integration over z', there results

A, t) = 2;# fds‘[
0 Js

-

t-P/c -

b 4 -K(E': T)
’\/cz(t - 7)2- p2

dr,

16



vhere P = p - p' and S is the structural contour.
After evaluating V x & and decomposing the magnetic field into
the usual transverse electric (TE) and transverse magnetic (TM)

components, the following integral equation is obtained:
ﬁxﬁ@wwﬂﬁxﬁm%mw+§ﬁ
t-P/c

x‘/st'<ﬁ ) dr
S T=-c0 \/cz(t - 7)2 - P2

H(p' 8 =
: [af—_(%"y'%p— +~i— 37 Hlp, ’r)]. (13)

This eguation results because of the orthogonality of the TE and ™
fields. It can be written as two independent eguations for the long-
itudinal (HZ or TE) and azimuthal (H¢ or ™M) fields respectively. The

corresponding far-fleld expression for the scattered field can be

written as

H(p,t) =— [Qfds' @' - p)
2n/2p g

t-P/e dr 8

e ———— H
N

X

- 00

+$[ ds"’/‘t.p/C dr %Ii¢(p’,7)].
Jo J, NeG-on-p
Bennett and Weeks8:28 have evidently obtaiﬁed the only time-domain
results to date for the cylindrical geometry. Some typical examples
of their calculations follow below.
Results pertaining to scattering from a cylinder of 1 m radius (a)
are shown in Figs. 1-6. A Gaussian pulse of the form HIPC o exp[—Ag(t - x/c)2]
having a width of approximately the cylinder dismeter was used for the
normal incidence field. BSample points spaced at 15 deg intervaels were used
for the current and field match points on the cylinder. A time increment

of cAt = 0.1 light meter was initially used, and subsequently increased



to 0.2 light meter after the incident field had passed the scatterer.

A comparison of the time-dependent backscatter from the cylinder
for the TE and ™ components computed from the time dependent integral
equation is shown in Figs. 1 and 2. The Fourier transformed frequency- ‘)
domain solution and the physical optics approximation are also shown.
The corresponding bistatic scattering patterns for the two polarizations
are shown in Figs. 3 and L, where the incident and scattered pulses,
shown to scale in space, may be viewed as snapshots of the pulses in
space, at a given time. The semi-circle represents the locus of
points in space to which the peak of the incident pulse would have
propagated had it reflected from the coordinate system origin. Clear
evidence for the creeping wave return is provided by the second positive
pulse in the late-time TE backscatter waveform, but is lacking in the
fM return, suggesting that the latter will exhibit no periodicity in
its frequency response. This conclusion is confirmed by results shown
in Figs. 5 and 6, where the frequency responses calculated from the
time-domain backscattered fields are compared with the classical
frequency-domain solutions. The upper frequency cut off in the time-
domain results occurs primarily because of the spatiazl sampling limita-

tion on the smallest resolvable wavelength and is.discussed further

below.

A second shape considered by Bennett and Week58’28 is a strip 3 m
long capped by l-m-radius (a) hemi-cylinders. A total of L8 equally
spaced points approximately 0.25 m apart were used for the space samples,
while the incident field and time increments were identical to those
employed for the circular cylinder. Both broadside and end-on incidence
of the ™ and TE fields was considered; results for both cases are
shown in the time-domain in Figs. T through 10 and in the freguency-
domain in Pigs. 11 and 12. As expected, the initial end-on backscatter
returns closely resemble those already obtained for the circular cylinder.
The differentiating effects of the edges are exhibited in the

backscatter return for both polarizations. The freguency response

obtained for broadside incidence (Fig. 11) is seen to increase in a
nearly monotonic fashion with increasing frequency, an expected result,

while the end-~on incidence backscatier curves approach a constant value

18




identical to that of the circular cylinder with increasing frequency.
The latter is reasonable, since the side return and creeping wave
effect diminish in importance as the wavelength decreases.

The final shape treated by Bennett and Weeks consists of &
corner reflector, the geametry of which is illustrated in Fig. 13.
€Calculations were performed for both polarizations and for plane-wave
incidence on both the concave and convex surfaces of the reflector, as
shown in Figs. 1k through 17. The time-domain waveforms of the scattered
fields are seen to be much more complex than for the two geometries thus
far examined. This is evidently due to multiple scattering effects.

Of particular interest-is the reciprocity of the forward scattered
fields (Figs. 14 and 15; 16 and 17), a necessary (though not sufficient)
condition for solution validity. As expected, the frequency-domain
backscatter responses as plotted in Figs. 18 and 19 are more oscillatory
than were the corresponding curves for the two previous geometries. The
concave incidence backscatter curves reveal the TE and TM frequency
responses to be out of phase. Bennett and Weeks explain this by noting
that the time-domain returns from the interior corner are of opposite
signs for the TE and T cases, but of the same sign for the edge return.
The convex backscatter is seen to be initally quite oscillatory, but to
approach a more-or-less cdnstant level with increasing frequency due

to the circular geometry of the exterior corner.

The results above are representative of what can be accomplished
with the two-dimensional time-domain integral equation. A conslderable
degree of physical insight, which in many respects is not as readily
Obainable from the more common frequency-domain representation, can be
gained from the time-domain waveforms. The time-domain consequently
provides an alternative and complementary viewpoint from which to
study electro-magnetic scattering. Although the two-dimensional
analysis above 1s obviously limited in application, it possesses a
degree of efficiency not attainable in three dimensions, and so may
be useful for obtaining, in a limited way, an underlying understanding
df some three-dimensional problems (i.e., multiple scattering effects

or the behavior of bodies large in one dimension).
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b. Three-Dimensional Surface Structures

It was mentioned above that although either the EFIE or MFIE

could be employed for surface-structure analysis, the latter is more
attractive from a numerical viewpoint. Bennett and Wéeks,8 employing
the MFIE given by Eq. (10), have developed the only thrée dimensional
time-domain analysis of surface structures. Some results obtained
from their numerical method are given below.

It is convenient to begin the three-dimensional numerical study
with the sphere, since rigorous results are readily availsble to serve
as a check on the time-domain derived data. This was done with the
circular cylinder in the two-dimensional case. A sphere 1 m in radius
(a) was subjected to a field of approximately the sphere's diameter
incident &lcng the positive z-axis of a coordinate system centered in
the sphere,(i.e., 7€ o exp[—Ag(t - z/c)gj). The surface sample
points were selected to maintain a nearly uniform separation between
them of gpproximately 0.25 m. This was accomplished by dividing the
sﬁhere into 12 bands of 15 deg width in elevation angle, and spacing
‘the azimuth samples within each band in multiples of 4 to obtain
quadrant symmetry. A seguence of 4, 8, 12, 16, 20, 24, 24, 20, 16, 12,
8, 4 patches per band was obtained for a total of 168. A constant time

increment of 0.2 light meters was employed throughout the calculation.
The approximate impulse response of the sphere in the backscatter
direction is shown in Fig. 20, where the classical Fourier transformed
frequency-domain results are also presented for comparison. Transient
bistatic E- and H-plane scattering patterns (using the same format as
for the cylindrical case) are presented as Figs. 21 and 22, With the
time-domain derived frequency response shown in Fig. 23. The sphere
exhibits the expected creeping wave respoﬁse in the backscatter
direction in the time response (Figs. 21 and 22), and may be seen to .
agree well with the frequency-domain data of Fig. 23 up to a ka value
of approximately or. At this point, the surface sample points are .
approximately (2m/2L)A ~ A/4 apart, a number previously established as
the maximum patch size for which frequency-domain results can be

expected to be valid. Further verification of the time-domain calcu-
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lation is provided in Figs. 24 and 25, where the bistatic scattering
pattern of the sphere 1s compared with the corresponding frequency-
domain result for the two cases ka = 1.1 and 2.9.

A more interesting case to consider is the bistatic approximate
E- and H-plane impulse response of a sphere-capped cylinder (Figs. 26
and 27 respectively), for axial incldence. This structure, 1 m in
diam and 3 m in overall length (L), was sampled every 30 deg in
azimuth and every 0.25 m along the cylindrical axis of the cylinder
proper. In addition, there were three 30-deg-wide bands on each end
having h, 8 and 12 semples in azimuth proceeding from the sphere tip
towards the cylindrical section, making a total of 14L patches in all.
Strong evidence for the creeping wave return is again demonstrated by
the second pulse in the backscatter waveform, although little back-
scatter evidently occurs from the cylinder sides. The widely
separated backscatter returns due to the direct-scatter and creeping
wave mechanisms produce the expected oscillatory frequency response
seen in Fig. 28. A comparison of the calculated frequency response
with experimental results obtained on a rail-~line scattering range2953o
shows good agreement (Fig. 29).

An interesting example of applying the time-domain surface structure
analysis to a radiation problem is demonstrated by the results of Figs.
'30 through 32. The sphere-capped cylinder Jjust considered from a
scattering viewpoint can be treated as an antenna. In this case the
incident field is a Gaussian pulse of agzimuthally directed magnetic
field applied across the center two bands of the cylinder. The bistatic
time response is shown in Fig. 30, where because of the azimuthally
uniform excitation there is no axially radiated field. A plot of the
frequency response in the broadside direction is shown in Fig. 31.

The radiation patterns of the sphere-capped cylinder are shown for
several values of L/K in Fig. 32, and seem compatible with well known
properties of linear dipole antennas.

As a last example for simple surface structures, we present some
time-domain scattering results for a 15-deg halfeangle cone -sphere
(Figs. 33-38). The segmentation of this structure was also quadrature

symnetric following the guidelines previously mentioned, i.e., ~ 0.25 m
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‘separation of the sample points along the surface and a time increment
of 0.2 light meters. DNote, however, that the samples nearest the tip
result in cAt 2> AR and can produce an unstable solution which diverges ‘

with increasing time. When the interaction of such samples was omitted
from the calculation, however, a stable, apparently valid, solution
was obtained as demonstrated by the computed results. The tip-end and
sphere~end incidence E- and H-plane scattering patterns are shown in
Figs. 33 and 34, while Fig. 35 depicts the E-plane scattering pattern
for broadside incidence. DNote the reciprocity checks provided by the
90-deg and 270-deg waveforms of Fig. 35 with the 90-deg E-plane patterns
of Figs. 33 and 34. Good agreement of the tip-end incidence Fourier-
transformed time-domain data with experimental results is shown in
Fig. 36. A final check of the time-domain results is presented in Fig. 37,
where the bistatic scattering patterns for several values of (sphere) ka
are found to compare well with independent results obtained from a
frequency-domain solution. ‘

A different data format is illustrated in Fig. 38 where the H-plane
surface current-density on the cone sphere is shown at successive ilnstants
of time (illustrated by the relative positions of the incidence pulse)

for tip-end incidence of the exciting pulse. The propagation.of the

surface current pulse from the tip to the sphere-end of the cone-sphere
is clearly demonstrated, Such information can be particularly illumi-
nating as to the physical basis of the scattering process.

The treatment of more complex surface structure geometries is
illustrated in Figs. 39 through 4i. These graphs show the computed
bistatic scattering patterns of three satellite models; the advanced
defense communications (ADC) (Fig. 39), the university explorer (UES)
(Fig. 41), and the gravity gradient test number 2 (GGTS-2) (Fig. 43).
Comparison of the backscatter waveform with experimental data 1s
shown in Figs. 40, 42 and ‘L4,

All of these results are due to Bennett gg_gk.,lo who developed
a surface structure time-domain program which exploits rotational
symmetry to reduce computer time and storage. The surface distribution
of unknown current is thus reduced to & linear variation of current

along a line on the surface parallel to the body axis.
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The computed backscatter waveforms are seen to agree quite well
with the measured results. This agreement serves not only as a
corroboration of the numerical solution, but indicates the accuracy
of the unique short pulse measurement capability provided by the
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experimental transient range.

Wire and Hybrid Structures

Wire structures, i.e., objects whose geometrical cross sections are
small in comparison to both the shortest wavelength of interest and their
own physical length, are most conveniently analyzed using the thin-wire
approximation to the EFIE. However, when the structure has the character-
istics of both the wire and surface geometries, a hybrid integral equation
which incorporates both the EFIE or MFIE may be found most efficient from
a numerical viewpoint. These problems are considered in turn in the

following sections.

a. Wire Structure Analysis

When the conditions necessary for application of the thin-wire

approximation are satisfied, Eq. (9) can be reduced to

A —ine H ALA
s E (F,t)=Z%/[S_RS_'§’—TI(s',T)
C

A ——
s-R 8
+c ‘_]}{2—— W'I(S',T)
28.R ‘ —
-c 3 a(s!, 7% ds'; TeC +a (1)

where

1 T 9
als', 7) = "] g7 s t) dt,

-

é,é' are the tangent vectors to the wire at T and T' respectively,

C is the wire contour, a is the wire radius, and (TeC + a) denotes

that the field is to be evaluated on the wire surface. The corre-
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sponding far-field expression similarly reduces to

—_— M
E(r,t) = - Z&oﬁ f [/s\' 58-1-_1(5', T)
C

+ B2 e, n] ast. (15)

A numerical solution of Eq. (1) can be attempted using essentially
the same approach as that already discussed for the surface MFIE. How-
ever, it is numerically expedient to incorporate a quadratic space-time
current and charge interpolation for much the same reason that spatial
current interpolation has been found to'improve the solution accuracy
6f the frequency -domain thin-wire EFIE. Interpolation provides a
significant reduction in the number of current samples required for a
given accuracy in the ffequency-domain solution of the EFIE. This is
because of the higher order spatial derivative, relative to that
associated with the surface MFIE, contained in its kernel. This also
appears tc apply to the time-domain case. In addition, time interpola-
tion allows more flexibility as to the space and time sample intervals
which can be used for a given problem. A detailed discussion of the
numerical solution used for Eq. (14) is provided in a subsequent section
(pagg 37). Here we confine ourselves to presenting some sample results

obtained for various thin-wire structures.

Antenna Structures

The first antenna to be discussed is the center-fed linear dipole.
The length of this antenna (L) is 1 m, and its radius-to-length ratio
is 0.00674 (i.e., Q=2 1n L/a = 150). The temporal behavior of the
source voltage impressed over a region A = L/ll around the center of

the antenna, in volts, is

V_(t) = exp[-A2(t - 2
s exp (t tas) ],

. , -1 - -
with A = 1.5 x 107 sec end t = 1.43 x 10 ? sec. The impressed

electric field, in V/m, is then
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IE%®) | = v_(h/a=a1/L)

XexpEA%t-thxF].

The antenna is subdivided into 22 spatial segments, the center
two of which serve as the source region. The temporal step size (At)
is set equal to Az/c = L/22c, with Az the spatial segment length. In
this case, At = 1,515 x lO'lO sec. Because the Gaussian pulse has
infinite support in the time domain, the starting point (t = O) is
defined, for practical reasons, at some reasonable level not equal to
zero. Hence, t = O is generally chosen to correspond to the point
on the leading edge. of the Gaussian pulse which is 1% of its maximum
value,

Figure 45 typifies the results obtained from the calculation. In
the upper part of the figure, the source current is plotted against
normalized time and the horizontal axis is subdivided into length units
normalized to the propagation velocity in free space. If one were to
superimpose the input Gaussian pulse, the voltage and current would
be seen to behave identically up to the first peak (L/c - 0.5). There-
after, the source current decays more rapidly than éhe input pulse.
This behavior in the region 0.5 = L/c < 1.0 can only be explained by
electromagnetic coupling between the source region and other portions
of the structure. It cannot be due to the reflected current pulse
because the transit time from source to end and return is approxi-
mately L/c sec.

The second major peak (L/c ~ 1.5) represents the arrival of the
peak of the reflected current pulse at the source. Subsequent peaks
occur at approximately odd integer multiples of L/2c. The slight
discrepancies in current variation from these integer multiples can
be attributed to the fact that the propagation velocity on the
structure is somewhat less than that of free space.

The bottom part of Fig. 45 presents the input conductance and

susceptance G, and BO vs the normalized length (L/K), computed from

0
the ratio of Fourier transforms of the source current and source

2
voltage. For comparison, values from the King-Middleton theory3 are
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included. The frequency-domain results are taken from time-domain
data by use of the FFT. The data records for that operation have 0
involved 512 time steps, of which 240 have been taken from the calcu-
lated time history. The balance has come from extrapoiation of the
resuil_ts.l2 Since the time-domain data usually have indicated a late
time ringing at a single frequency with exponential damping, the
technique has been to use the late samples in the calculated records
to determine A and ® in e % sin wt. This has then allowed com- -
pletion of the record. In all cases A has been large enough for the
record to include sufficient samples for late times (essentially equal .
to zero) to minimize the aliasing problems in the Fourier transform.
The discrepancy between the transformed and King-Middleton results for
L/x. > 3.5 was evident and is not included in the figures but is consis-
tent with the six samples/l criterioh33developedfin the frequency domain.
Figure 46 is a computed time history of the antenna current over
half the symmetrical, center-fed structure. It is not the current for
the case shown in Fig. hS, but rather that for an identical dipole

excited by a pulse with a spread half that shown in Fig. 45. This

history is included for illustrative purposes. The dark horizontal
lines represent the extent of the antenna, while the numbers identify
the instant of time for which the current 1s plotted. Each integer
refers to a multiple of At = 0.152 x 10-9 sec so that L/c = 3.33

X 10—9 sec & 22At. The pulse's progression along the structure is
followed from the time of its first appearance at the source through
its first reflection at the end and subséquent second appearance at
the source. It is from data like these, which are a direct result

of the solution of the integral equation in space-time, that plots of
the type shown in the upper half of Fig. U5 derived.

Figure 47 plots the broadside radiated field for the center-fed
linear dipole. The temporal response, from the computed time history
of the current is shown in the upper half; the fregquency-domain
response is shown in the lower half. The time scale in units of dipole
length divided by the free-space velocity starts at L/c = 0, wvhich is
the instant the radiated field arrives at the observation point. The

radiated field is caused by the temporal derivative of the antenna
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current, as one would expect from inspection of Eq. (15). The pre-
dominant radiation comes from the source region (when the pulse first
appears) and from the ensuing reflections which take place at the
antenna ends.

We will discuss this phenomenon in more detail when we consider
off-broadside radiation (i.e., in directions other than along a line
berpendicular to the wire). At this point, it is sufficient to point
out that the field prior to arrival of the radiation due to end
reflection is proportional to the negative of. the source-region
current.

In the bottom half of Fig. 47, the Fourier transform of the
broadside radiated field is used for comparison with independently
calculated results. The independent results in this particular case
were obained by a coellocation solution of the thin-wire electric
field integral equation at the indicated frequencies.

Figure 48 is a temporal display of the radiated field at an
angle 40 deg from broadside. It is included to illustrate the
effective active reglons of the antenna and to point up the influence
of this rather simple radiating system on the radiation of a Gaussian
pulse., These data are not unlike the results presented earlier for
radiation from a sphere-capped cylinder (Figs. 30-32). The effect
of the thicker cylinder has been to considerably reduce its "Q"
compared with that of the wire.

As previously mentioned, the radiated field is a result of the
temporal variation of the antenna current and is computed by a spatial
integration over retarded values of the temporal-current derivative.
If we envision the antenna current distribution to be a traveling
wave with a Gaussian shape like that in Fig. 46 then the required
time derivative is obtained from the Gaussian which, in the limit of
narrow spread, becomes a doublet (the derivative of the Dirac delta
function). Although for the case shown the Gaussian derivative is
not very narrow relative to the antenna length, the use of the doublet
representation points out the salient features of the phenomenon.

Figure 49 is included to illustrate further the effects seen in

Fig. 48. As the wave first appears on the structure t = O+, it
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causes the radiation seen at early times in Fig. 48. We refer to this
first appearance of the wave at the observation point as the refer-
ence time, tO. Once the peak of the Gaussian is passed, the deriv-
ative changes sign and this source of radiation is quenched. We

refer to the arrival of this pegk as tl.
To account for the next pesk in the radiated field, at t - tl
~ L/2c sin® where sin @ accounts for observing at an off-broadside
position; let us first consider the boundary condition at the end of
the antenna. Because the current is zero, the reflected wave nust

be of opposite polarity to the incident wave. As a result, the
Gaussian suffers a continuous sign reversal at the end as evidenced
in Fig. 46. The time derivative of the current for the Gaussian
traveling wave along the structure is similar to a doublet. There-
fore, it causes a negligible radiation field and reaches a point in
time near the end of the antenna where its shape, instead of approxi-
mating a doublet, approximates the absolute value of the doublet

(t - t, # L/2c sin ©). This causes significant radiation from the

regionlnear the antenna end and results in the second peak. The
third peak is due to radiation from the other end of the antenna,
while all subsequent peaks are due to reflections from alternating
ends of the antenna as the wave travels back and forth.

In general, the time of arrival of the pegks is given approxi-
mately by
t, =ty +(L/2c)(n - 1 - sin 6); n, even

L =t; + (L/2¢)(n - 2 +sin §); n > 1, odd.

The result of a wider bandwidth calculation is shown in Figs. 50-5l,

where a l-m dipole, 0.0067k m in radius and modeled by 48 segments by
a Gaussian pulse whose "A" value is 3.25 x 109. A total of 1024 time
samples were used for the Fourier transform, of which 480 were
computed from the integral egqguation. We see that the admittance
values exhibit the expected resonance behavior to approximately 10 A,
beyond which the characteristic numerical noise dominates the results.
The time-dependent behavior of the loop antenna is considered in

Tig. 55. TFor this particular case, the excitation voltage is assumed
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to have a temporal variation described by the time derivative of the
Gaussian pulse. Thils particular excitation is chosen because it

does not have a zero-freguency component and therefore does not excite
the circulating current that would exist on the closed-circuit
structure. The loop is modeled by 22 straight-line segments.

The upper part of Fig. 55 shows the source current as a function
of time. The current shape here is very similar to that of the
exciting voltage for P/c < 0.5; all perturbations to this close track-
ing are due to electromagnetic coupling effects and not to the arrival
of the portions of the pulse which have circulated around the loop.

The input admittance of the loop antenna, plotted in the lower
part of Fig. 55, shows excellent agreement with the independently
computed results for P/k < 2.5, beyond which the time-domain derived
values progressively depart from the correct results. For loop
structures, modeling guidelin§s33indicate that the spatial sample

density per wavelength (Nl) in the frequency-domein must be 6 < N, s 10,

A
so that the response of the highest frequency component of the

incident pulse, which can be accurately determined is approximately
(P/k)max’¥ 2.5. The (P/?\)max values from modeling experience in the
frequency-domain and our numerical results are thus in close agreement.

The loop antenna calculation was also repeated, using the Gaussian
pulse of the previous computations. Although the temporal response of
the source current was, of course, quite different in this case and, .
in fact, reached a steady-state non-zero value for late time, all
responses akin to spectral transfer functions (such as input admit-
‘tance) agreed closely with the results obtained from fhg Gausslan
derivative. This particular calculation can be viewed és‘a demanding
" test of the numerical procedure; and considering that the steady-state
current became numerically stable in the fourth decimal place, the
overall numerical accuracy of the approach is evidently quite good.

The final antenna to be treated here is the zig-zag dipole
antenna excited with a Gaussian socurce. The computed results are
shown in Fig. 56. By virtue of the cusps in the wire geometry, this
antenna represents a particularly stringent test of the Lagrangian

interpolation scheme described below.
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For such a structure, the effects of a current in a given segment
during a given time step can be felt in adjacent spatial segments
during the same time step using, as we have here, cAt = Az, Also, the
high @ factor of this type of structure tests the ability of the com-
puter program to predict not only late time behavior but also the
hlghly peeked spectral transfer function (input addmittance).

The source current behavior for this structure is plotted in the
upper part of Fig. 56, while the input admittance is plotted in the
lower part. The agreement between the time- and frequency-domain
results is quite good for L/A < 1.3, L being the total wire length.
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With wmodeling guidelines for zig-zag structures indicating that

NX ~ 20 is required for relative errors less than 10%, one finds that
(L/k)max = 1.1 is the approximate 1limit for accurate results in the
frequency~domain, again in reasonable agreement with the calculated

data.

Wire Scatterers

The technique for determining the behavior of a given wire

structure operated as a scatterer of an electromagnetic pulse in the

form of a plane wave differs only slightly from that for determining

its behavior as an antenna. The difference lies only in the form of
the applied field EA.

For an antenna, E 1s specified as due to a time-dependent voltage:
that 1s, as a tangential electric field over a region at the surface of
the wire. For scatterers, the applied field can illuminate the entire
éiructure and is described as a Gaussian traveling wave, expressed in
V/m, of the form

—EA(Z 1) —xexp{ [z/c —(t-tmax)Jz},

where the field is x polarized and the propagation direction is given
by 2.

The radisted or scattered field is determined from the computed
time history of current. As described previously, an additional
temporal translation is introduced at the far-field point in order
that the zero time point corresponds to the instant a wave first

aches that observer.
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lFigure 57 shows the responses of a dipole operated as a scatterer
for an incident electric field polarized along the wire axis, with the
scattered field computed in the backscatter direction for broadside
Awcidence via Eq. (15). The constants associated with the Gaussian
incident field are defined in the figure caption. From these constants,
it is easily seen that the spatial width of the applied pulse is
approximately equal to the length of the scatterer. The normalized
radar cross section is computed from the Fourier transforms of
the radiated and applied fields.

A comparison with independent frequency-domain calculations is
provided in the lower part of this figure. Not that the results begin
to diverge for L/A > 1.5. This observation is consistent with results
already obtained for antennas, based on the space-time sampling density
and the excitation pulse width in space relative to the structure's size.

A wider bandwidth calculation for the dipole scatterer using the
same model and pulse width employed to obtain the results of Figs. 50-54
is showmn in Figs. 58 and 59. The characteristic staircase response of
the dipole is obtained to an L/X value of approximately 10, beyond which
the numerical noise predominates.

Figure 60 illustrates the response of a ring, modeled by a 12-sided
polygon, to an axially incident Gaussian pulse. As evident from the time
response (upper part of the figure), the far field of the loop settles
into a ringing mode very rapidly and oscillates at the fundamental
frequency (with exponential decay). This indicates a sharp peaking in
the frequency response; and indeed this is observed in the lower part of
‘the figure, where the results are compared with independent data. A
deterioration brought on by the finite number of samples is again noted
at the higher frequencies. Since NA'" 6-10 for polygons,33 we obtain
(P/A)Inax % 1.5, in agreement with the present time-domain calculation.

The backscatter response of a 48-side polygon model of a ring using
the incident pulse and time sampling employed for the widé—band dipole
resuls presented in Figs. 58 and 59 is shown in Figs. 61 and 62. It is
'interesting to observe the relatively fast decay of the scattered field
in this case, compared with that shown in Fig. 57. This is evidently due

to the larger wire size relative to the ring radius used for this case
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compared with that of Fig. 57, thus producing a lower Q scatterer. It
is also interesting to see that the ring scatterer exhibits resonances
at P/k values of approximately 1, 5, 9, 13 compared with the dipole
resonances which occur at L/A values of approximately 1/2, 3/2, 5/2,

ete.

Extending the single-loop results, we show in Fig. 63 the responses

of two coplanar. rings to an axially incident Gaussian pulse. An
amplitude-~-scaled version of the incident pulse is shown in the time
response. The temporal behavior of the radiated field is somewhat

more erratic than that found for the single loop for early times

(t < 2.5 P/c)'but settles down to a simple ringing mode for later times.

Another observed characteristic is the much lower field strength
seen in the double-ioop case for times greater than 1.5 P/c. The
reason for this will become obvious when we look at the time-dependent
currents on the rings. The normalized radar cross-section curve ex-
hibits reasonable good agreement with independent results for
P/k < 1.0, deterioration occuring above that point. A frequency shift
seems to have taken place, but aside from this it is encouraging to
note that the null point in the response is well predicted. The
maximum P/\ for accurate results is computed according to Nk ~ 6-10
so that (P/X)max ~ 1.5. Note that this value is near the deep null
in the normalized radar cross section (RCS).

In Fig. 64 we see the current at the point on each ring where the
‘incident magnetic field is orthogonal to the ring as a function of
time. For very early times, the currents are independent; that is,
there is no interaction.between the rings. The currents thus start
out in phase but lose their phase correlation as the combination of
mutual electromagnetic coupling between the rings and their differing
natural frequencies takes effect. In fact, for times greater than
1.5 P/c, the currents are almost in phase opposition (though differing
somewhat in amplitude and period), thus giving rise to oscillations
similar to a transmission line (push-pull) mode. The strong peak in
the scattered fields at early times and its rapid decay to a lower
oscillation level are thereby explained.

Another example of time-domain calculations, the response of a
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circular crown band to an axially incident Gaussian pulse, is shown
in Fig. 65. The crown band is & zig-zag wire structure 85 in. in
length, wrapped on the surface of a cylinder 25.13 in. in circum-
“~rence. This example is particularly well suited to our approach
since it represents a stringent test of the agbility of the inter-
polation scheme described below to allow arbitrary space-time sampling.
In fact, for this case, one can easily see that cAt > AR; that is,
the distance a wave propagates in one time step is greater than
the distance between sample points. This in turn allows interactions
between various segments within the same time step.

The crown band is alsc a fine example of a high Q scatterer with
a highly peaked response curve in the frequency domain. The slow
wave characteristic of the zig-zag structure is exhibited by the
ringing period of the radiated field, which in turn is reflected by
the resonance in the normalized radar cross section. Agreement with

independently computed results is quite good for P/k < 1.s.

Hybrid Structure Analysis

The treatment of a structure having both wire and surface features
can be implemented by combining Egs. (l) and (lh). This basically
invoives using each equation type to determine the self-interaction of
the surface and wire portions, respectively. In addition, the mutual
interaction fields must be formulated to account for the effect of
each on the current distribution on the other. The latter can be
expressed by using Eq. (7) to obtain the electric field on the wire
portion due to the surface current distribution, and by applying the
thin-wire approximation to Eq. (8) to find the magnetic field of the
wire current-distribution on the surface portion of the structure.
These manipulations of Egs. (7), (8), (10), and (1) lead to the
coupled set

RE, 1) = 28 x B, 1)

1 A 1 8 = =
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structure by employing (16a) for its surface portion, but replacing

(160) by

U2

where B —

and

This form of integral equation for the wire currents is derived for

the special case of straight wire appendages attached to surface

structures.

The far-fields of the resulting currents can of course be found

from the expressions previously given for the surface and wire current

distributions.

Two numerical cases treated by Bennett , et. al.%o

Figs. 66 through Tl, where the first figure of each s:

E™%r, t) = RHS of Eq. (14)

+ &+ RHS of Eq. (7).

have obtained numerical solutions for a hybrid
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scatterer geometry, the second shows the bistatic scattering patterns
and the third shows a comparison between the backscatter waveform and
the numerical solution. The geometries treated represent the small
sclentific (SSS) and early warning reconnaissance (EWRS) satellites.
The 555 model consists of a sphere with four wire antennas attached
at 90 deg intervals around the equatorial plane with the incident
pulse traveling down the polar axis. The EWRS model is a right
circular cylinder with an aspect length-to-width ration of 3 to 1.

It has two perpendicular wire antennas attached at each one of 180
intervals one-third of the length of the cylinder from the end on
which the exciting field is.axially incident. Again, there is quite
good agreement between experiment and theory.

In each case, the influence of the wires can be seen in the back:
scatter waveform. For the SSS, the initial or specular return is
similar to that found for the previous sphere backscatter waveforms,
as would be expected. The latter time returns exhibit differences,
however, which are attributable to the attached wires. In the EWRS
case the effect of the wire antennas is seen as a continuation of the
back scattered waveform as the incident pulse propagates down the
side of the cylinder. The isolated cylinder would produce no signif-

icant return from this region.

The Numerical Solution

The integral equations (more precisely integro-differential equations)
derived above for surface, wire, and hybrid geometries are sufficiently
different as to require a certain dissimilarity in their numerical treat-
ment. They exhibit in common, however, the influence of the causality
which exists between the field at a given observation point and the
geometrically separated source current which determines it. It is this
property of the time-dependent integral equations, which permits their
solution without the matrix inversion normally associated with the corre-
sponding frequency-domain approach. B

Consider for example, that at a given instant of time, t, the sampled
currents (or fields) for all previous time steps t -At, t -2At, etc. with

t the time step, are known evervwhere on the structure. Then 1t can be

35



seen from Egs. (9) and (10), that formally, the unknown current (or field)
sample at a given point is completely determined by earlier, hence already

known sampled values of the current (or field) on the rest of the structure.

But these earlier current (or field) values have themselves been found in
the same way, beginning at the time when the known scurce field has Just
been turned on, prior to which all quantities are assumed to be zero. Thus,
the integral equation can be solved in principle as an initial value problem.

There are of course other factors to consider which may complicate, but
not basically change, the rather simple solution procedure Jjust described.
If causality is to be satisfied, as it must, in the numerical reduction of
the integral equation to a computer algorithm, then we would conclude from
the above discussion that cAt < Ar is required with At the time step size
and Ar the space sample separation. But this may be an impractical or
inefficient restriction to impose (as discussed further below), requiring
thatlthe solution procedure be generalized to allow for arbitrary At and Ar.
The practical result of lifting this restriction is to regquire that allow-
ance be made for two or more samples to interact within the same time step
(i.e., cAt > Ar). This can be accomplished using time interpolation.
Details associated with this procedure_are described below.

Solution of the above integral equations can be accomplished using

the moment method, the application of which is already well established
for frequency-domain formulstions. The moment method, described in detail
by Harrington,3l+ basically involves the reduction of a functional equation
to an approximate matrix which can be solved by standard techniques. The
sampling, can be viewed in matrix form as a repetitive application of a
sparse, time-independent matrix operator. From a practical viewpoint this
is a process significantly different from the corresponding frequency-
domain formulation, even though both solutions are based on the moment
method. Essential features of the computer programs, as presently devel-
oped, for the surface and wire geometries are outlined below. The hybrid
structure will not be discussed, except in passing, since its treatment
conbines the features of both the surface and the wire geometrics solution

methods.
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Surface Geometries

The most significant differences between the wire and surface
integral equations, insofar as their numerical solution is concerned,
—. 2 that the latter has the unknown outside of, as well as under, the
integral, and a lower order derivative appearing jin the kernel. Thus,
it is possible to solve the surface equation using both a current
expansion and space integration method crude in comparison to the one
required for the wire.

We select as the current basis function expansion on the surface,

Ng Np
J(r,t) = Kij(F -Tt- tj)
i=1 j=1
. X V(ri) U(tj) (l'_{')
where
V(?i) = 1 for T on the surface patch
of area ASi centered at Fi and
0 elsewhere
and

U(tJ.) =1 for t in the time interval At
centered at tj and 0 elsewhere,

We also assume Atj =At, =1, « o, NT' The Eﬁj function may be

seen to represent a set of space-time sampled current values on the
surface of the structure. TFollowing the already well established
frequency-domain approach, we might expect to obtain reasonable accuracy
by using the simple pulse approximation for the current, i.e., taking
E. . to be constant in value over surface patch i and time interval j.
Tiis representation actually suffices for integration of the current,
allowing surprisingly good accuracy to be obtained from the rather

crude approximation that, for example,

f JTY) X Vé(r,r') ds' ”T(Fi)
AS'I
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integration over the surface patch 1 is thus achieved by a single
integrand sample at the point 'fi, and the temporal current variation
over the patch due tc the changing retarded time is ignored.

The current time variation might be similarly allowed for, if
all space samples were separated by distances which are integral
multiples of cAt. This is not in general the case. Furthermore,
since a current derivative with respect to retarded time appears in
the surface integral, it is necessary to perform a current inter-
polation in time, A polynomial expansion in time allows the required

interpolation to be achieved, i.e.,

<. _ _=%(0)
jxij (ri,t tj) ;xij ()
+ Aij (ri) (t - ’cj)
(a) a
...+ .Aij @) ¢ -t (18a)

where as usual, the expansion coefficients are found in terms of adjacent

- . —=(0
temporal current samples on either side of the ij'th sample A§j). 1f
t - tj < alt, there exists the possibility of interpolating to future
current values, in which case the interpolation interval is shifted

backwards in time. The a + 1 coefficients inEq, (18a) are, in any

. . x{(0)  (0) (0)
case, found in terms of Ai,j-b'xi,j-b+l’ . e ",Eﬁ,j-b+a

sampled values of the current on patch i at times tj - bAt,tj- (b - L)AL, ...,

tj - (b - a)At respectively. Thus,

a
- _ (0)
By Gpt-t) s dz-'o B4, 5-(o-d)

a
. e
=0

]

where the interpolation function B is explicitly determined by the

d,e
particular interpolation order.

Thus, ve have a space~time current representation suiteble for the
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surface geometry integral equation. Upon inserting Eq. (17) into the
integral equation [Eq. (10)], performing the integration over the sample
patches, and collocating the observation points at the patch centers,

we Tormally obtain

Ny
(0) _on o5l 1 A
Aij = 2n; X Hij +teony
it=1
a a
(0)
X z ll:j‘-(b'd) z Bd) €.
d=0 e=0
)l -4,0% Lo v e -t !
J RB i
ij*
X —+_ ||..,a4s.
g Bt (9)
ii
where
Ripr = Ty~ Ty i= » Ny
i, it =1, , NS
Rijr = [Rypl
1 = = Ay -
t=t- Ry eat it =ty (- Dat
it=]- it
with r,., being the rounded off value of R,,.,/cht.

ii

We observe, that if K(O) is known for j' < j - 1, that Eq. (19)

i!j 1
allows a simple arithmetic calculation of Kng_fj)’ i=1, .. ., NS’ if
cAt < Ar_. with Ar_, the minimum value of R,.,,. If however,
— "Tnin min : it
cAt < Armi , then the situation arises where Kig)is dependent upon the
value of K{??, i.e., it is a function of the current on other patches
iJ
at the present time step. It is then but a simple matter to rewrite
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Eq. (19) in matrix form with K§§)the unknowns, and 1 =1, . . ., NS
and j arbitrary. The resulting matrix will be very sparse, and can be
solved by the usual techniques, to obtain a simultaneous solution

for the coupled surface-current values at each time step. The matrix
coefficients are themselves independent of time, so that the matrix
solution need be performéd but once. Note that the matrix ceoefficients
are determined solely by the structural geometry, its segmentation, and
the time interpolation method used. The time-domain surface program
used to generate the numerical results presented in this paper has been
developed subject to the condtion that'cAt < Armin' Its extension to
allow for more general time-space current sampling should be straight
forward.

The computer time required to find the time-dependent surface
current by a stepwise solution of Eg. (19) will usually exceed that
necessary for all subsequent calculations. Evaluation of the far-field,
for example, is by comparison a generally more efficient procedure in
either the time- or frequency-domain (via Fourier Transform). In this
regard, it might be noted that the efficiency of such computations can
be a sensitive function of the order in which théy are performed. Cal-
culation of the backscatter cross-section in the frequency-domain
could be performed by either Fourier transforming the time-dependent
backscattered field, or first Fourier transforming the surface current
distribution, from which the direct frequency behavior of the back-
scattered field can be found. The former. approach requires only a
single Fourier transorm, however, while the latter entails NS such

transforms and so can be considerably less efficient.

Wire Geometries

A solution of the wire version of the time-domain integral equation
can be expected, if our freguency-domain experience is any guide, to
require a more elaborate numerical treatment than the surface integral
equation. It has been found in the frequency-domain, for example, that

the surface integral equation can be solved with reasonable accuracy

-using impulse current samples and a single integrand sample per patch.

The wire equation, on the contrary, grzatly benefits from sub-segment
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integraticn and a higher order current expansion. ZEven then, the
maximum sample separation that can be used in general is on the order
of one-sixth the wavelength compared with the one-fourth wavelength
separation found to be acceptable in some cases for the surface
equation. At the risk of some degree of oversimplification, this
difference may be attributed to the differences between the two
equations in the order of their respective integrand simularitiesand
the fact that the surface and wire equations are Fredholm equations
of the second and first kind, respectively.

We can thus expect that, at a minimum, a space integration will
be necessary to evaluate the interaction fields of the wire currents,
even when impulse current samples are employed. And as already noted,
if Jelt % Ar is to be allowed for, time interpolation is also necessary,
particularly to allow for the mutual interactions within the same time
step which occurs when cAt 2Ar. But since retarded time varies with
position along a given current-segment, it becomes necessary to allow
for this when performing the space integration. Space interpolation
of the current is thus also in order if the space-time current repre-
sentation is to be reasonably self-consistent and numerically efficient.

Two-dimensional interpolation can be accomplished via one of many
standard methods. The relationship between the space and time sample
points is illustrated by Fig. 72, where the mutual interaction region
for the ij'th sample point (i ~ space, j ~ time) is confined to the
lines along the light cone. It may be concluded from this dia-
gram that the space-time patch involved in integrating over current
segment 1i' at time step j' is a line along the light cone from midway
between segments i' - 1 to i' + 1. This integration path requires a
current expression accurate over the entire ij'th sample patch. For
this reason we adopt a general quadratic space-time current expansion
which includes all products to second order in space and time, i.e.,

A (s-s,t-t) =40 (1)
ij'S T Sp Et) = AT A (t-tj)+A§§)(t-tj)2+A§j3)(s-si)

(4) 5 (6), 2. (D), .2,
A s -5t 1) +A§j)(s-si>(t-tj)2 TAG (s AL (s -8 ) 1)
+ a0 5% -1
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where the expansion coefficients Agg), e ey Ags) are obtained from
interpolating the 1j'th current to the currents at the centers of the

adjacent space-time samples. As before, we avoid future current samples

by adjusting the interpolation interval, We also interpolate I to zexo "
at the wire ends. After performing this interpolation we can express

the current on space-time sample ij in the manner of Eq. (18b) already

used fo the surface-current representation. With quadratic terms in

both s and t, we obtain the general form

£=+1 m=n+9

Iij(sn ) = z z

= men .
x g{&m)
1 i+4,j+m? (202)
where
p=1 q=nt+2
(2,m) _
CHE Tl n=
p=-1 g=n
« (g'- Si+p)(t" tj+q)
(8549 Si+p)(tj+m‘tj%;;7
p=+l g=n+2
-t
p:-l q:n

1

X - - 20b
(si+£ Si+p)(tj+rn tj+q) ( )

(s}t 8- s, M+t -t )

with [s"l < as/2, [t"l < At/2, n = -2 for R/[cat] < 0.5 and -1 -
otherw1se. The upatlal and temporal sample sizes are denoted by As

and At respectively and the superscripts £ and m on the product .
symbols denote that the terms p =f, g =m are omitted from Eq. (11).

Substitution of this current expansion and of similar forms for the

charge and current derivative terms into the original integral equation

!
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together with a linear piecewise modeling of the original structure,
leads to an integral equation similar in form to that for the surface,
Eq. (19). This equation is very complicated, but we include it here
for the sake of completeness; it is discussed in detail.by Miller,

Poggio, and Burke.ll

= H r1-£ u
Z-T,=E + Z
£=-1 m=n
=(2 +1
x X, Tv r +m * Z
-r, m
i-£,u 101

n'+2 n+2< i—fz-r,u”"ml+1>

DA A

r=-1 m=n't=n

i-2-r,u
X—W(ﬂ,m,r,t) Z

s=1
X TV_ . ,
i-f-r,u mi+l-s (21)
where
+1
Z = HO A A/z
ui '4—7r- u dsllﬂ
£=-1 (“-a/2
s
-4 (2,p)
X 8(r - p>[ L B, P
Z Ri—ﬂ,u t7i-g

+c i-0,u (ﬂp) 02
2 1!2
R:
i-4,u

a/2
X z [ ds;'ﬂ -r

=-1 "-4A/2
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5= 2

Ri-ﬂ-r!u
X3 zg 6(ri-ﬂ-r,u -
i-£-r,u q=0

+1
<t/ )

and

xm) o _Ho s, Al2 st
ui 47 "u - i-2

-A/)2

i-£g1t i-1 R2 sTi-4

8 R
X [R_l"ﬁ_ glLm) Ti-Lu B(ﬂ,m)]
i-£,u

ds!'

ul 4 i-2-r
-A/2
R,
X _i-f-r,u B{ﬂ:nﬂ Cgrﬂﬂ
Rﬁ i-£-r Ti+L
i-£~r,u
wW=n+2
plbm . §m 1 plhm)
ti @ -t ) i
= Jtw
w=+h .
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= zm 1 B(ﬂ,m)
i +t, - t.+w) ij .
w=n J o
r=1 (2. m)
(2,m) _ jgﬂ 1 pl4,m
sPi B (s' - Si+r; ij
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r=+1
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p+1
+
><ﬂ r—Ls.;

s=1 q=n+2
Zﬂz—-‘a'

Also, { 7 signifies round off to the lower integer value, R,

1,7
|?j - T, - §i\ with Ei measured along segment i from its center
at ?i and ri 3 = Ri j/cAt rounded off to the closest integer value.
) J

The added complexity of the wire eguation over that for the
durface is primarily due to the extra space interpolation employed
and to the extra term which appears in it. Its extension to the
multiple Junction case would be even more involved. The wire equation
is also solvable as an initial value problem, prior to which a geometry
dependent sparse matrix must be inverted. The procedure is described

in more detail by Miller, Poggio, and Burke.ll

Factors Common to the Wire and Surface Formulations

Although the specific details of their numerical solutions differ,
there are aspects of the surface and wire formulations which are
similar enough to be Jointly considered. Among them are the questions

of accuracy, beginning and terminating the solution in time, and the

influence of symmetry

Accuracey

The numerical accuracy attainable using a time-domain approach
is dependent upon more factors than is the corresponding problem in
the frequency-domain. Common to both domains, however, are the ques-
tions of spatial sampling relative to the wavelength(s) involved and
the proper geometric modeling of the structure being considered. The
former question has been considered rather thoroughly by Miller gE_§£.33
for wire geometries and is discussed for surface geometries by Poggio
énd Miller.7 The latter problem concerns the use of a numerical model
which not only meets spatial sampling requirements, but adequately

conforms to the actual structural geometry. It is particularly
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uvemanding for structures which are of complex shape or construction.
Unique to the time-domain formulation are the problems of (1)

temporal sampling requirements, (2) the exciting pulse shape, and

(3) the ratio of body-size to the pulse width in space. These

questions are cosidered separately below.

Temporal Sampling Requirements

The exciting source and the currents and fields which it produces
must be sampled at a sufficient rate in time to adequately resolve their
temporal variation, much as their spatial variation requires a certain
spatial sample density. The temporal sample density should be chosen so

as to provide an accuracy compatible with that obtainable from the spatial

sample density. In this way, neither sampling rate alone, but both
together, determine the overall numerical accuracy. As a consequence,
the total computer time required to obtain a given accuracy can be
minimized.

We already have developed some spatial sample density guidelines,
j.e., AR ~ A/S where S is on the order of 4 to 8 for the surface integral

equation and varies from 6 to 20 for the wire integral equation, depend-

ing upon the structural complexity. Now we inquire as to what value of
At will be compatible with this Ax, insofar as the overall solution
accuracy and computer time are concerned. This is a question which

is difficult to answer without some consideration of how accuracy is

to be defined, a topic discussed further below in connection with

the pulse shape used for the calculation. For the present, .we ignore
the specifics of defining accuracy and proceed instead on a sampling
theorem basis.

The Shannon-Kotelinkov Sampling Theorem states that the maximum
resolvable frequency F of a band-limited spectrum using a temporal step -
éize of At is F = 1/2 At. According to the preceding discussion we
then have AR ~ A/S = ¢/FS = c2At/S. We.then conclude that for surfaces

AR ~ cAt/2 to cit/h,
vhile for wire structures
AR ~ cAt/3 to cAt/10.
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This result implies that if we are to in any way optimize the computer
time required to obtain results accurate up to the frequency F, then
adjacent spatial samples must be allowed to interact within the time At.

There may appear to be an inconsistency, however, in requiring only
two samples per temporal cycle, while requiring up to 20 samples per
spatial cycle, The reason for this difference in sampling rates lies
in the character of the time and spatial variation of the currents
and fields themselves. The spatial variation of the current on g
structure when excited by a monochromatic source of frequency F, except
in special cases such as an infinite two-wire transmission line, is not
a spatial sinusoid with a wavelength A = c/F. T can instead, as a
minimum, consist of oppositely traveling waves of length A or exhibit
an even more complex variation when represented by a spatial Fourier
series, which extends to several spatial harmonics of A. This behavior
of the current plus the approximations associated with the numerical
colution procedure itself, can require many times the minimum two-
samples per wavelength. The temporal variation, on the other hand, can
be sampled as to phase and amplitude at the frequency F using two data
points. If, however, the time interpolation method uses other than a
sinusoid variation of frequency ¥, quadratic interpolation for example,
then more than two samples per temporsl cycle may be necessary. Quad-
ratic interpolation has been found to require more samples per wave-
length (i.e., result in a larger value for s) than sinusoidal inter-
polation for the frequency-domain treatment of wire structures.

The results derived above can be used to obtain an estimate of the
maximumn L/k value for which transient calculations of a wire structure

of length L will be valid. This estimatell is

N (LY min (1 1
L/ ax NT(CT)InHI(E” 3N;>' (22)

where o = AR/cAt, NX is the spatial sample density per wavelength, and
NT is the number of time samples over the exciting pulse (assumed
Gaussian) whose spatial extent is ~ cT. Transient calculations for

several wire structures (see examples in this paper) have produced
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data in agreement with this formula. However, since cAt = AR was
used for the most part, the temporal sample density limitation on

accuracy (the first term in the bracket of Eq. (22) was not tested.

Exciting Pulse Shape

One of the attractive features of transient calculations is
the wide bandwidth information which they are potentially capable of
providing in but a single computer run. It isobvious that a wide
bandwidth exciting source is required to realize this cap-
ability. This implies the use of a short pulse in time, something
approaching a delta function. Delta functions are convenient to
employ theoretically, but they cannot be used numerically; it is
convenient instead to use a Gaussian pulse shape, which in the limit
of vanishing duration approaches the delta function.

The time-domain Gaussian pulse of unit amplitude is given by

2 2
g(t) ﬂ@/JEE't A

and has the frequency-~domain counterpart

o) = T EE

The 0.1 values of the pulse occur in the time and frequency-domain

when t ~ 1.5/A and £ . 0.5A respectively. If we assume F ~ 0.54,

then Ath_l is implied. Upon letting the temporal (and spatial) pulse

widths be denoted by Wy (and W ) we have that Wy ~ 3/A, so that At

~ WT/3. This means that we would sample the pulse, at a minimum,

only three times between its 0.1 values, 4.3 times between its 0.001

values. This sampling rate is somewhat lower than that of the 10 sam-

ples per WT used for the numerical results presented here. However,

the relationship F ~ l/2At is true under optimum conditions, wnich

cannot be necessarily assumed to hold in actual practice, particularly

since the time interpolation is achieved via polynomial interpotation.
1t might be asked whether other pulse shapes might be better

suited for numerical purposes than the Gaussian. The answer to this
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depends upon numerous factors, foremost among them being the error-

generating mechanisms assoclated with the numerical computation

the way in which these errors accumulate in the final answer. Assess-

ment of the error impact on the computed results requires some criteria

for judging the numerical accuracy of the result. Such a Judgement may

be more easily made because of prior experience in the frequency-domain.
Let the exact frequency-domain response of the structure, current,

far field, etc., be denoted by R(f), and the computed response by

g(f). The error in R(f), W(f), numerical noise analogous to

that in an electronic circuit, can be defined by
N(f) = [R(£) ~ R(£)]/R(E).

In most applications, it would be desired that the signal-to-nolse
(error)-ratio, S(f) = R(£)/N(£),exceed some value over the range of f
being considered. For simplicity of analysis, assume S(f) = S over
the range¥* 0 to F.

Now, how might we assure that the desired S is actually achieved
in our numerical computation? Recall that g(f) is obtained from the
ratior H(£)/G(f) with H(f) being the Fourier Transform of the trans-
ient waveform h(t) due to the exciting source g(t). The function G(f)
is known analytically, for a Gaussian pulse at least, so that any error
in ﬁ(f) comes directly from H(F).

Application of the finite Fourier transform:to h(t) to compute
H(f) may be viewed as a matrix operation, whereby the sequence of
sampled values for h(t) is multiplied by a Fourier Transform matrix
operator. The operator is also analytically known and thus exact so
that the errors in H(f) come only from h(t). Since errors are cumulative
in addition or subtraction, the errors in h(t) will be additive for each
sampled value of H(f). We thus conclude that S(f) will have a relatively
constant value over f, if H(f) is also relatively independent of f. But
since H(f) = G(f)ﬁ(f), we find that a frequency independent H(f) requires
that . _1”"
a(f£) ~R (f),

*In actual practice the low frequency respdnse, the Rayleigh region of
a scatterer for example, may not be essential, so that the range in f
might be from some non-zero lower 1limit to I, '
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i.e., the exciting pulse should have a time variation which is the
Fourier Transform of the inverse frequency response of the structure.

This is a rather interesting result, but since the idea of the 0

culculation is to find ﬁ(f), of what use is it? The answer would seem
to be that it offers the potential for increasing the value of F for
which the results will be valid by perforwing a few iterations in the
calculation of H(f). We could, for example, initially use the Gaussian
pulse from which Ho(f) is obtained. A new Gl(f) obtained from ﬁél(f)

= Go(f)/Ho(f) could then be used to find a new Hl(f)’ and thence if
desired, a new Gg(f). This process might be repeated until the results
for H(f) stabilize. The potential advantage of following this procedure
is that, as shown below, the computer time for a transient calculation
vVaries with wire length L or body radius a, by to (kL))+ and (ka)6

.respectively. Thus, if by p of the iterations above, the effective

range of validity in £ can be extended to (1 + y)F, a computer time
savings can be effected if
b b
p(kL)" < [kL(L + y)]

or

p(ka)6 < [ka(1 + y)]6

for wire or surface structures respectively.

Note that using G(f) ~ E-d(f) de-emphasizes the structural reso-
nances and enhances the anti-resonant response. As a result, the induced
response h(t) will become approximately Gaussian. The computation time
may then be reduced because fewer time steps would be required for h(t)
to become negligible as a result of not exciting the structure at its

resonant frequency (ies).

Pulse Width Relative to Body Size

The influence of the temporal and spatial sampling rates on the
maximum frequency, ¥, for which valid numerical results can be expected,
has been discussed. The ratio of the body size to pulse width is also
a faector to be considered in this regard.

The temporal sampling rate must be sufficient to adequately resolve
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the time variation of the exciting pulse. The pulse time duration
WT must thus contain some minimum number of time steps of length At.
In addition, W, must be sufficiently short as to contain significant

frequency compgnents up. to ¥, upon whose wavelength the spatial
sampling rate is based.

The pulse width in time can be defined to be the time interval
over which the pulse exceeds some fraction of its maximum value, say V.

Then for a Gaussian pulse, for example

Wy, = (2/AW -Anv

and the corresponding spatial pulse width W_, is given by

3

The time- and frequency-domain forms for the Gausslan pulse then become

g(t) = (/W W-Inv/m
and
a(s) = eﬂgfgwg/czhﬂnv.

Now let the spatial pulse width be some fraction w of the minimum

diameter (d) sphere in which the structure can be enclosed, i.e.,

Ws = d/w.
Then G(f) can be written
2
kd/l
G(f) - e( / W) /OnV

so that G(f) decreases to the value V when
kd = 4w|dnv] .

Since the spatial sample separation Ax is given by X/S as discussed

above, we find that
W = md
T 2lenviaxs

Thus, once the spatial sampling rate, or maximum d/X value, has been
sélected, the exciting pulse width is fixed.

From previous discussion it was determined thst

an
A—l L At = (W/EAV- gnv) :HT@EV .
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In the present case we obtain

W
Ax ~ S5
25|qnv} ?

+10m which

2cht
S

~

in agreement with the result derived”from sampling considerations alone.

Beginning and Terminating the Solution in Time

One aspect of the time-domain formulation that requires special
attention is that of determining the first non-zero current values
as the exciting source is initially turned on. The Gaussian pulse for
example is non-zero for all times which are finitely different from
t = 0. DNumerically, of course, early time source values that are
sufficiently small should have no practical effect upon the eventual
solution. The pfoblem arises then of establishing at what point in
the source buildup the solution should be started. Similar observa-
tions apply to the truncation of the time-stepping solution, where the
induced current level, rather than the source strength, is the determining
Tactor.
The numerical results presented here have been obtained starting with

3

source strengths 10 ~ to ]_O"2 of the maximum source value. This level
appears sufficiently small so as not to limit the accuracy of the cal-
culations. Time interpolation of the current and charge is performed

using zero values for prior time samples of these gquantities. In some

instances it has been found expedient to begin the solution using shorter

~time steps, and to increase the temporal sampling interval after the

first several time samples have been obtained.

The point at which the solution process can be stopped depends
entirely on the transient characteristics of the structure. Some
geometrical shapes, the sphere for example, do not exhibit sharp
resonances, and as a consequence the calculation can be terminated a
relatively short time after the exciting pulse has decayed to the point
where it has no practical effect. Resonant structures, such as the

crown band scatterer, give results (Fig. 56) which may exhibit very
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slowly decaying currents and fields. These require continuing the
solution for many time steps unless some suitable method, which has
the effect of increasing the decay rate, can be found. A simple means
of accomplishing this, at least for structures with one or a few
persistent harmonics, is to obtain their periods and decay constants
early in the calculation, and to then analytically extrapolate the
resultant waveform to the point of acceptable convergence. This pro-
cedure can drastically reduce the number of time steps required for
the overall solution. Impedance loading can also accomplish this.,

It is.interesting to note that the number of time samples used
to set up the finite Fourier Transform to the frequency domain can
be adjusted with the goal of improving the appearance of the frequency-
domain data. By the artifice of adding zeroes (or analytically cal-
culated extrapolated data) to the calculated values and thus widening
the time window of the Fourier Transform, interpolation or smoothing
of the frequency-domain data is achieved. This occurs since the inter-
val in frequency (Af) between calculated data points is given by Af = 1/T,
with T the total time window, while the frequency interval covered is
F = 1/2 At. If At remains unchanged while T is increased, then Af

decreases effecting a frequency interpolation.

Symmetry

As 1s true in frequency-domain solutions, computer time and stotage
requirements can be dramatically decreased by exploiting structural
mirror and rotational symmetry in the time-domain approach. The effect
of symmetry can reduce the number of independent currents which must be
solved for, as well as allowing decomposition of the source into modes
for which the resultant currents can . be more efficiently obtained.

Consider as an example, a scatterer having a wave of arbitrary
polarization incident in a plane of symmetry. By decomposing the source
into TE and TM modes with respect to the symmetry plane, the number of
current unknowns can be reduced by a factor of two by reason of their
even or odd symmetry about the mirror plane of the body. The computation
time then changes from the order of N2N to 2N2NT/h, the multiplier

T
coming from the two polarizations which must be solved for. For
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rotationally symmetric bodies and axially incident sources the decrease
can be even more substantial since the current sampling then becomes
a function of the body size rather than surface area. Further aspects

of structural symmetry are discussed by Poggio and Miller.T

IV, COMPARISON WITH FREQUENCY-DOMAIN APPROACHES

The frequency-and time-domains offer alternative methods for obtaining
the same information. A paramount question concerning their use is the
relative advantages they offer for the solution of the same problem. Of
particular interest here, of course, is thé time-domain formulation. We
must ask whether it truly offers an advantage/in any given instance over
the frequency-domain approach, or is it simply a unique and novel way of
deriving the same information. These are the questions to which the dis-

cussion below is addressed.

Computer Time Requirements

An especially important factor in establishing the relative merits
of competing computational methods applicable to the same problem is that
of the computer time which they require. We will develop general expres-
sions in this section for the frequency- and time-domain computer time
requirements, from which comparisons will be made for specific problem
types (i.e., mono-static RCS time response, single frequenéy bistatic

antenna patterns, etc.).

a. Frequency Domain

There are four basic steps involved in obtaining the freguency-
domain solution for a given structure. They are (1) Computation of
the impedance matrix from the geometrical data; (2) factorization,
inversion, or other .slution of the linear system to obtain the admit-
tance matrix; (3) calculation of the currents induced on the structure
by the specifiedsource(s); and (4) evaluation of observebles such as
the far-field radiation pattern or near-field behavior. In terms of
the nunber of current samples N, the calculation time (tf) for a single

frequency can be written in the same order as steps (1)-(4) as
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where the coefficients Af, ey Df are computer and algorithm

dependent timing coefficients, N_ is the number of separate sources

I
considered and N, the number of viewing angles in the far-field.

For simplicity wé limit our attention to structures without symmetry,
consider only solution via factorization, and include field compu-
tations for the far-field only. This and subsequent discussion are,
furthermore, order of magnitude only and are for puposes of making a
gross comparison between the time- and frequency-domeins.

The order in N of the various terms in Eq. (23) is easily
established. Matrix fill time is of order Ng, since the interaction
of each of the N segments with its N neighbors must be determined,
while matrix factorization is well known to be of order N3. The
current computation is of order Ng, since it involves the multipli-
cation of an N-dimensional source vector to find each of the N
currents. Far-field evaluation time is of order N, since N current
segment contributions must be summed for each field point.

Numerical evaluation of tf requires the relationship of N to
the body size ia wavelengths. Previous studies have shown that about
2 current samples per wavelength are reQuired for the analysis of
wire structures when using the sinusoidal current expansion and the
electric field integral equation. Similarly, on the order of lom
samples per square wavelength (noting that two current components must
be sampled every 1/4 wavelength) are necessary for the treatment of
surface obJjects via the magnetic field integral equation.

Let ku(fu)igorrespond to the shortest waveléngth (highest fre-
quency) for which the transient calculation is to apply. Then on
the order of Nu ~ 2ﬂL/ku and lEﬁA/ki current samples at a maximum
will be reguired for a wire of length L or surface of area A. For

the latter we assume A ~ Hﬂag with a being the radius of the minimum
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enclosing sphere. In addition, we let the number of current samples at

a frequency stepgi, 1= Nt’ Nt + L,e o oy Nf by given by Ni = iNu/Nf

and N, = igNg/N for the wire and surface cases respectively, with ‘l’
i u L

corresponding values for Nf given by Nf ~ EWL/Xu and Nf'~ 2nkua. For
simplicity we will use Nt = 1. The angular sampling rates NI and NA are
similarly taken to be -2nN for 2m radian coverage of the two principal

polarizations, or ~ lEﬂL/Ku and lEna/Ku for wires and surfaces respec-
tively. These values are derived from consideration of the minimum
sampling required to represent monostatic or bilstatic angular patterns
or aspect-constant freqpency variations using ~ 27 samples per unit
wavelength change in length (L/Ku) or circumference (C/ku). Then,
uvpon suming Eq. (22) over 1 =1, . . . N_ for wire and surface struc-

f
tures, we obtain the computation times for transient analysis as

N ‘
T f t N? N?
fw fwi~™ 3 Pew 7 Bry
i=1
(o 4
27er c 0
4 fw
3
27TNf J
FTE Doyt (2ha)
N}
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T Ny N¢
ts™ D e 30 %15 * 728 Bys
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rwN?
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4 48 fs
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Ny
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where the upper part of each bracket refers to a monstatic calculation
and the lower part to a single-source bistatic calculation. Note that
since Nf ~ 2rTL/>\u for wires and 2nkua for surfaces, the corresponding
computation times increase as the fourth and seventh powers of the
frequency! The Fourier transform time, on the order of Nflogng, is
not included here since it is usually insignificant compared with the
other time requirements.

It is worthwhile to include the corresponding computer time re-
quirements for a single frequency calculation using the frequency-domain

formulation. They are, at frequency fu,

trw ~ Np Bp T Np Bpy
3
27er wa
+ 27er wa +
2
Ng Cpw
Ny Ng
‘s ~ 16 Pts ¥ 57 Bis
7rN5
[
3 8 fs
7er | J
+ -——2 DfS +
N4
t e
\. 16 fs

The abové expressions for Tf yield the approximate solution times
for obtaining transient scattering or radiation information using a
frequency-domain formulation. Single fregeucny computation times
are obtained from tf evaluated with fu equal. to the frequency of
interest. Note incidentally that Eqs. (24a) and (24b) make use of
frequency-variable segmentation and viewing-angle sampling densities.
The use of a single model for the entire frequency range which might

be more convenient, could increase the calculation times by a factor
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of up to T, the actual value for each term being the exponent of

Nf in that temm.
Numerical values of the coefficients (in seconds on a CDC 6600)
in Egq. (24) for the surface and wire programs under consideration

are approximately:

A By Cs Dy
Surface 3x10% s5x108 2x107% 1x107¢
Wire  2x10°° 5x%10°% 2x10% 3x1074

The B and C coefficients are the same for both programs since these
operations are performed by common subroutines. Note that for the
surface program and single freguency calculation, the matrix inversion
time exceeds matrix fill time for N > 60, while the increased matrix
£ill time for the wire program due t0 more complex matrix coefficients
necessitates that N > 400 before inversion time dominates. For tran-
sient calculation, the corresponding values for N, when inversion

time dominates, are 75 and 533 respectively.

Time Domain

A time-domain solution involves the following steps: (1) computa-
tion of the geometry dependent matrix (end its inverse if interaction
within a time step is allowed for); (2) step-by-step calculation of
the time dependent current; (3) computation of the time-dependent far
field; and (&) Fourier transform to the frequency domain (if desired)
of the current or far-field. The calculation time can be written in
the same order as steps (1) - (4),

Tt ~ AtNENTNI + BtNTNINA, (25)

where NT is the number of time steps, and N_ and N, the number of

1 A
incident fields and far-field observation points, as before. 1In

writing Eq. (25), we neglect the matrix setup time (1) and the Fourier
transform time (4) as being relatively unimportant.
Coefficient values (in seconds on & CDC 6600) for the surface

and wire time-domein programs under discussion are:
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A B

¢ t
Surface ax1074 1x107%
Wire 1x10°4 2 %1079

The verious sampling rates in Eq. (25) can be expressed in terms
of the number of frequency steps, Nf, as already done for the frequency-
domain calculation. For example, it can be concluded that the approxi-
mate equality of NT and 2Nf is essentially due to the fact that the
time-domain quantities such as current, scattered field, etc. are real,
whereas in the frequency-domain they are complex (i.e., have a phase
and magnitude). We also know from our frequency-domain discussion that
NA and NI ~ 2an, while N ~ Nf
Nf ~ enL/xu and 2nk a = enc/xu.

The wire and surface computation times for obtaining transient

for wires and N?/M for surfaces, where

results from a time-domain calculation are then

4
41er Atw
~ 3
Tiw + 4rNg B, (26a)
3
2Nf Atw
T A8
Z'Nf Ats
T, _~ + Nt B
ts 5 mNg Big (26v)
N¢
- A
8 ts

where the upper part of each bracket refers to a monostatic, and the
lover to a single source bistatic, calculation. In contrast to the
case of the frequency-domain formulation, there is no difference

in the time required to obtain the transient response of a structure,
or to find its behavior at a single frequency, when following the
time-domain approach. Ncte however, that in obtaining the structural

response at a single frequency, one would choose Nf for that frequency,
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i.e., at the maximum useable frequency of the calculation.

It is interesting to tabulate the highest order terms in L/A
and C/h contained in the computer time expressions just derived. If
we consider both single frequency and transient calculations for both
the single source bistatic and monostatic cases we obtain the results
shown in Table 1. There we observe that by considering only highest
order terms in the computer time equations and by further ignoring the
coefficients which multiply them, we find that the time-domain formui-
lation evidently requires equal or less computer time than the
frequency-domain approach for all but the monochromatic, monostatic,
wire case. That this is not the case for problems of practical inter-
est is shown in following section where the actual computer time
estimates are presented. Furthermore, the misleading nature of coumputer

time comparisons performed in this way 1s demonstrated.

Comparison of Computation Times

The general expressions developed sbove for the computer time
requirements of the frequency- and time-domain formulations allow us
now to obtain specific numerical comparisons of their relative cdﬁput-
ation times for typical problems. These expressions have been developed
for the two most often encountered cases of practical interest, (1)
monostatic scattering and (2) single-source bistatic radiation (or
scattering). It is of interest here to compare the computer times
associated with the analysis of these two cases using either the time-
or frequency-domain approaches.

Tt is convenient to Tirst rewrite Eqs. (24) and (25) in terms of
L/X or ka = c/x with C the enclosing sphere circumference, and also

to use the numerical values of 4, . . ., D. We obtain

1 5 X 107 2L/
~ 3
T, ~ 3% 107w/ +

2 x 107 3L/
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Ty ~ 6 X 10-%c/n? +ax 107 te/n?®

gx10"2(c/n°

+ +ax1073c/n” (27)
0
6x10 2(L/n% + 2x109w/n?
T, ~
tw
gx 107 2(L/0)° +0
2x 10 (C/n)®
1y g4
T, ~ 5X10 (C/2)*+ (28)

5X107H(C/0)°

For the single frequency cases we also

have

3 X 10‘2(L/x)3

-1 2
e ~ 1 X 10 (L/° +

£
1x 1073@/n?

te, ~ 4% 1073/ 43 % 1072(c /0t

f

g8 X 10”2(c/n°
+ +5X 10'3(C/x)6.

Let us define the ratio of the time-domain to frequency-domain
computer time as Rt/f' Using Egs. (27) and (28), with the superscripts
m,b to denote the monostatic and bistatic cases respectively, we find

the following expressions for Rt/f:

2

m,w 6 X 10™“ + 2L/X
Rt/f ~ -1 =3 (29a)
3x1071 +5x107° L/
RV 8 X 1077
/ - - - \
Vi axietleax107d L (29w)
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1

m,s sx 107! +2x10! (c/0)?
Reje ~ =3 2 ) 3 =3 3 (280
6X1072+4x1072C/A+8x1072(C/N% +4x1073 (C/N)
-1 -1
b, s 51071 +5x107} ¢/
Ryjp ~ ) - = 5 (294)
6X 1072 +4X1072C/A+4%X1075 (C/)

The bistatic calculations can apparently be done more efficiently in
the time-domain in terms of the order of L/\ or ¢/\, but monostatic
results require less computer time in the frequency-domain. Graphs of
the computer times from Egs. (24) and (25) and the time-domain, freguency-
domain ratios are included in Figs. 73 through 76 for easy comparison.
It sould be noted that the numerical comparison of these calcula-
tion times is both computer and algorithm dependent. These results,
particularly the absolute calculation times, can be expected to differ
for other computers and may also be substantially changed if the
algorithms were to be optimized. The expressions given by Egs. (23)
~and (25) are, however, completely general and are thus more universally
indicative of the computer time requirements for the frequency- ard

time-domain formulations.

Computer Storage Requirements

Besides the differerx computer times involved in generating the same
numerical results in the frequency- and time~domains, there is also the
computer storage requirement to be considered. The time-domain approach’
offers some potential savings in this area because of time causality, the
phenomenon which also makes possible the time-stepping solution of the
time dependent integral equation. As shown below, the savings effected
depends upon whether the structure is of the wire or surface type.

If N is the number of current samples used, then in the frequency-domain,
on the order of 2N2 real numbers must be computed and stored for impedance
(or admittance) matrix. The number of real currents which are computed in
the time-domain is N NT for NT time steps. Of this total, however, only
thosé which contribute to the fields over the structure at the present

observation time need be considered.

Let 4 be the dizmeter of the smallest sphere in which the structure
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can be enclosed. If At is the time interval used in the calculation,
then the maximum number (Nm) of current values which can interact in any

time step is
N~ Nd/cAt.
m
Since
cAt ~ ARS/2,
we obtain

N_ ~ Na2/SAR.
m

For a wire object of total length L, we have
L/6x = N = d/AR.
In this case
N, < N 2/s.

The ratio of computer storage required in the time-domain compared with

the frequency-domain, St/f’ is for wire structures thus given by

S, /.= Nm/2N2 < 1/s.

t/f

A storage saving of 1/6 to 1/20 is then achievable at a minimum for wire
structures, at the expense of a moderate increase in the Program's complexity.

In the case of a surface structure of area A, we have
2 2,,.2
2A/AR” = N » 2md"/ART,

since A can exceed or be less than the surface area of the enclosing sphere.

Then Nm becomes

N = 2N3/2/J—§hs.

The time-domain to frequency-domain storage ratio for the surface case is
then

Sy/e = 1/ oy s.

The potential time-domain storage savings is thus much greater than for
the wire structure. As an example, if N = 200, (a reasonable number for a
roughly spherical scatterer one wavelength in dism) then St/f ~ 1/35 (using

S = 1). Looked at another way, the total storage required is decresed {rom
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80,000 words to only 2,300 words or so, a substantial reduction.

Representation Complexity

One of the factors which deserves consideration when comparing the
time~ and frequency—domain approaches to a given problem is identification
of the most sultable format for expressing the calculated response and
the relative ease with which the parameters that characterize it may be
obtained. The response of a highly resonant structure, for example the
crown scatterer previously discussed, may be adequately described over a ~
wide frequency range by using only its resonant frequency and the "Q" of
the resonance peak. A digital (as opposed to analog) representation of
such a response could be accomplished with just a few non-zero seamples
in the frequency-domain. The corresponding time-~domain description, on
the other hand, could require a greater number (an order of magnitude
or more) of samples to accomplish the same thing. On a numerical basis
then, in contrast to an analytical description, there may be a marked

advantage of one domain over the other in terms of the amount of inform-

ation required to qualify a given response.

It is pertinent to ask whether a significant benefit may accrue to
one domain over the other on the purely numerical basis of obtaining a
computer solution. Again consider the crown scattereras an example. It
can be verified from Fig. 65 that after a time of approximately P/c,
with P the cylinder circumference, the.backscattered field decays as a
damped sinusoid at the scatterer's resonance frequency. On the order of
only < 3 P/cAt time steps are required to carry the solution to the point
where the resonance frequency and decay rate can be determined.

Beyond that point we can ektrapolate the damped sinusoid behavior with <
reasonable assurance because this is a property characterisfic of physical
systems. On the other hand a frequency-domeain calculation to locate the
resonance and determine its Q may regquire may more samples over the band-
width effectively covered by the time-domain calculation. The computation
time advantage of the time-domain for this kind of prohlem would then be-
come even more pronounced.

What about the case where the freguency variation of the structural
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response resembles a damped sinusoid over the band of interest? If we

could be absolutely sure of the entire frequency behavior from a limited
sample of its response, it would be possible to extrapolate the remaining
frequency variation in the same fashion as for the time response considersd
above. The extrapolation cannot be this confidently performed, however,
since there is no obvious physical reason to expect the un-~calculated
response to exhibit a continued damped oscillatory behavior. This is in con-
trast to the time-domain case. The frequency-domain approach thus cannot exploit
our general knowledge of a physical system's response in the same way as 1s
possible in the time-domain. Broadly spegking, it appears reasonable to con-
clude that the time-domain offers & more dependable medium for shortening the
caleulation time without loss of significant information. However, loss 1in
the accuracy of the low level frequency response away from the resonance can

result  from such a time-domain extrapolation.

V. EXTENSIONS AND POTENTIALS OF TIME-DOMAIN METHODS

The examples presented in the section on Integral Equation Techniques
demonstrate the state-of-the-art in electromagnetic time-domain numerical
capabilities. In addition, the potential advantage of time-domain over
fregquency-domain technigues for certain classes of problems, notabiy those
involving limited source variation characteristic of antenna analysis or
radar cross-section calculation for a small number of viewing angles was
discussed in the preVious section. It appears worthwhile to ask if further
significant developments such as extending the structure complexity, widening
the bandwidth, or increasing the efficiency of the numerical calculation
may be possible. Furthermore, some thought should be devoted to identify-
ing practical applications where time-domain techniques may offer analytical
capabilities not available via the frequency-domain, i.e., non-linear effects.

These topics are considered in order below.

Structural Complexity

The problems thus far treated from the time-domain integral equation
viewpoint are not trivally simple. The satellite-type structures for example,
especially those with wire appendages, are reasonable complicated even in the

context of a frequency-domain analysis. Similarly, the wire problems presented .
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above alsc demonstrate a capability for treating wire geometries of

reasonably complex shape. There are, however, extensions to both

problem areas which would allow treating an even wider variety of geometries
having significant practical interest. Aside from the obvious advantage

to be gained from increasing the bandwidth of the calculation, which is
considered in the following sectlon, certain developments relating to

structure complexity are also immediately suggested.

a. Multiple Wire Junctions

The capability for handling multiple wire junctions, i.e., ~
Junctions of three or more wires, has been fbund to greatly in-
crease the scope of applicability of frequency-domain computer
analysis. A similar advantage would accrue to the time-domain
approach if it could be modified to handle this.case as well. Since
the time-domain numerical solution procedure for the two-wire Jjunction
case is already considerably more complex than that for the multiple-~
Junction frequency-domain approach, we might expect that its-extension

to handle multiple junctions will be no easy task. We can, however,

draw upon our frequency-domain experience to gain some insight as to
the general approach that might be taken.

The basic requirement of a valid frequency-domain multiple-junction
treatment is that it satisfy conditions of current continuity at the
Junction. One method for realizing this is described by Gee EE_§£‘35
A three term current expansion (constant sine and cosine) is used
together with an interpolation procedure between the segments con-
nected at the Junction to approximate the required continuity édndi—
tions there. This interpolation technique is a straightforward extension
of that used for the simpler two wire junction and has been found to "
increase the accuracy of the calculation relative to that obtained when
a constant current basis (no interpolation) is used for the Pocklington
integral equation. Inclusion of a similar interpolation method for
treating multiple Junctions in the time-domain merits investigation.

This interpolation approach would result in the expression of the
current on a segment connected to a multiple junction in terms of

the sampled current values on all the other segments at the Junciion. ‘
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We would thus find that Eq. (30) for the two-wire Junction case would
be formally modified to take the fom

£=+]

1 =
Is(s], Y = 2
2=-1

m=n+2

X (E,m)
z Blj Ii+£,j+m
m=n

L=y
* <2 Ii‘+2'+1,j+m> g 1s (30)

£'=1

with w denoting the number of wires connected to segment 1 at its
positive end, B§g’m) as previously given, and all segment lengths
assumed equal. Similar expressions would apply to all other segments
connected to the multiple Jjunctions.

Another approach to the multiple junction probelm may be provided
by frequency—domain method employed by Chao and Strait.36 Their
treatment of this problem is 1o model wire Junctions as combinations
of L-shaped open-ended wires which overlap at the Jjunction over an
interval of two segments. This allows the multiple Jjunction to be
analyzed without the necessity for developing a special multiple
Junction formulation and computer program. A piecewise linear current
expansion and Galerkin's method 1s used in their numerical reduction
of the wire integral equation. If this approach could be employed
for the time-domain solution, it would permit the present program to
be applied to multiple Junction problems with relatively little modi-

fication.

BHybrid Structures

Hybrid structures consisting of spheres and cylinders with straight
vire appendages have been formulated for sclution in the time-domain

through use of a combination of surface and wir

]

integral equaticns &as
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discussed above. The range of hybrid structures, which can be anslyzed
in the time-domain, could be significantly broadened by generalizing

treatment to handle wire appendages of arbitrary shape. This might be

most easily accomplished by combining the surface program developed
10 .

by Bennett et al. with the wire program described by Miller et al}l

The wire treatment used by Bennett et al. is applicable to straight

wires only.

C. Shell Geometries -

Many structures of practical interest consist of thin shell-like
geometries which can not be conveniently treated via existing wire or -
surface programs in either the frequericy or the time-domain.
Aircraft for example, have relatively thin wing and tail surfaces
which are not well suited for treatment using a surface integral
equation because the close proximity of the opposite sides tends to
produce ill-conditioned matrices. While wire grids may sometimes
provide a tractable numerical model for this geometry, they are
known to lead to a generally less efficient numerical treatment of

surfaces than a surface: integral equation.

The development of special integral equation techniques for the
time~ and freguency-domain analysis of shell-like geometries would
greatly extend the range of problems amenable to numerical modeling.
Effort directed in this area is certianly indicated since a requirement
for this capabillity arises frequently in electromagnetic anlaysis.

The successful development of such techniqpes could add significantly

t0 the state-of-the-art.

Wide Bandwidth Calculations

Extension of the bandwidth of the calculation is one of the most
pressing needs in the further development of transient numerical technigques.
The rapid growth in computer time requirement with increasing structure
size in wavelengths demonstrated by Eqs. (2k) and (25) underscores the
impracticability of extending time-domain integral equation techniques
very much beyond the resonance region. Many Iinteresting transient problems,

however, involve structures whose dimensions are large compared with the
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shortest wavelengths producing a significant response. There is a need,

consequently, to develop approaches, combining whatever techniques may

be appropriate, for the transient eveluation of structures arbitrarily

larg~ relative to the shortest wavelength in the exciting source spectrum.

Some methods which may have some application for increasing the calculation

bandwidth are suggested below.

=y

Integral Equation Extensions

There seem to be few possibilities by which the integral-equation
approach can be modified to extend the high frequency cutoff of the
time-~domain calculation. Most of the techniques that come to mind
involve combinations of the time-domain formulation with various high
frequency, frequency-domain approximations (as discussed below). There
is one approximation, however, that may have some potential for directly
extending the bandwidth of the time-domain calculation.

It has been verified by frequency-domain results that points-on a
structure separated by a wavelength or more may not appreciebly inter-
act, and can thus be neglected in the computation of the impedance
matrix. A similar approximation may possibly also be iInvoked for the
time-domain calculation. In this case it  would.be the retarded time
difference which would serve as the criterion for neglecting mutual
interactions. This approximation would reduce the storage and compu-
tation time dependencies on the number of space samples from N2 to N’
where N' 1s the reduced number of interacting current samples,

Adaptive time stepping should also allow the time-domain computation
to be extended to a wider bandwidth. The early time response contains
more high frequency information, and is thus more rapidly varying, than
the latter time waveform. It is consequently necessary to sample the
initial current values at time intervals appropriate to the highest
frequency intended to be resolied. The late-time, low-frequency samples
could be calculated at more widely separated times so that a longer time
span could be covered with fewer current samples, and require a reduced
computation time., It may be similarly possible to reduce the spatial

sample density as the high frequency waveform decays to small amplitudes.

69



A practical method for conveniently achieving this may be via an
iterative process whereby successive calculations which employ smaller
space and time samples together with a narrower pulse are performed.
Each computation will be truncated where its current agrees to within
some specified amount of £he previously calculated case; Only that
pért of the spectrum associated with the higher frequency incident

pﬁlse, and not the low frequency datsa would be re-computed then.

Physical and Geometrical Optics

Any consideration of extended frequency calculations must in-
evitably include those proven frequency-domain technigues based upon
physical and geometrical optics. The capability provided by the FFT
for economically deriving transient behavior from the frequency response
enables us to substitute such freguency-domain methods for direct time-
domain solutions. It may furthermore develop that some problems can be
formulated directly in a transient sense using such approximations,
thus circumventing the need for their prior treatment in the frequency-
domain and the attendant necessity for a Fourier Transform.

An in-depth discussiocn of this area is beyond the scope of this
presentation. We can, however, briefly consider the problem involved
in obtaining a transient response synthesized from combining the results
of two or more, ideally overlapping, band-limited calculations performed
in either the frequency- or time-domains. Suppose for example, that
separate results are available for a structure that covers the rsnges
from essentially zero frequency to Fi (response Rl from a time-domain

integral equation), from F, to F, (response R, from physical optics)

2 3 2

3 from geometrical optics). If'F2 < Fl

and F_ = Fu, then a composite frequency response can be rather easily

3

obtained; most simply by setting the overall résponse R equal to R

and from F) to F5 (response R

1

from O to Fl, 32 from F2 to F3 and R3 from Fh to F5’ while averaging

the responses in the regions of overlap. If it happens however that
F_ > F_, then a more sophisticated interpolation procedure might be
usSed to generate R. Note that from Parsceval's Theorem the root mean

square errors in the freguency- and time-domains are equal so that

bounds on the transient response error may be derivable.
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c. Moving Time-Space Window

It has been found practicable for some problems in the frequency-
domain to decrease the computation time by neglecting interaction
between current elements whose separation exceeds some minimum distance.
This procedure can not only decrease the number of impedance matrix
élements requiring calculation, but can under certain circumstances
greatly facilitate the matrix inversion as well. A straight wire
offers a particular example of a structure which can be effectiely
treated using this approach.

Application of a similar method to the solution of the time-domain
integral equation may offer similar advantages. Implementation of
this idea in the time-domain is not likely to be as straightforward as
for the frequency-domain calculation. What it might involve is a space
window of the appropriate width traveling with the incident pulse (in
the case of a scatterer) outside of which mutual interactions are
neglected. The effect of this approximation on the calculation time
would be to reduce the N2 current sample term in Eq. (25). This
reduction could be substantial if the number of current samples in
the space window is significantly less than the total number of cur-
rent samples on the structure. A potential problem of methods like
this is the difficulty of their adaption to a workable computer pro-
gram and their tendency to become too problem oriented, losing as a

result the desirable quality of flexibility of application.

Increased Efficlency

The computer time requirements dicussed above for numerical solution
of the time-domain integral equation are not only computer, but algorithm
dependent. It may be possible, consequently, to significantly reduce the
indicated times by optimizing the programs. Whatever .is feasible in this
regard is not likely alone to greatly extend the upper frequency cutoff F
of the time-domain calculation because of the high order polynomial depend-
ence .of the computer time on F. There may be other methods for increasing
the computational efficiency, which taken altogether could measurably

increase the applicability of transient techniques for certain problems.
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One obvious way of decreasing computer time (and storage) is the
exploitation of structural symmetry. Many objects of interst are mirror
or rotationally symmetric. The latter property offers a particularly
advantageous method for increasing either the size, or decreasing the
expense, of treating surface structures, since then area current sampling
can be replaced bty linear sampling instead. This has the effect of re-
ducing the order of the C/A terms in Eq. (28) to something similar to
those in the wire structure eguation (27). Advantage can be taken of
symmetry, even when the entire structure is not symmetric, by augmented
matrix or partitioning methods similar to those found useful in such
cases in the frequency-domain. A disadvantage of techniques like this is
that their computer programming can become quite complex.

Another method by which calculation efficiency might be increase is
the use of adaptive time steppiﬁg in obtaining a time-domain solution,
or analogously, adaptive frequency stepping for frequency-domain solutions.
The early time response of a structure will generally have more influence
on its high frequency behavior than will the latter part of the time wave-
form. Consequently, it may be possible to use shorter time steps initally,
and then to increase their size as the high frequency response decays,
leaving the lower frequenciles to dominate the time behavior. The actual
time step used and the criteria for determining when it should be changed
could be based on a polynomial extrapolation of past time results to the
present time step for comparison with the actual calculated values.

Similar methods have been used in predictorfcorrector differential equation
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solver routines. Time-step size changes have been utilized by Bennett
and Week88 in the solution of two-dimensional time-domain problems.

Adaptive frequency stepping for frequency-somain solutions should
allow the response of a resonant structure such as the crown band (Fig. 65)
to be more efficiently obtained. Rather than calculate the scattered field
at an evenly spaced sequence of points, the calculations would instead De,
performed where the response is most rapidly changing, in this case the
resonance peak. In some cases, a similar principle applied to numerical
guadrature has been found to reduce the integration time of peaked functions

by orders of magnitude.38
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Selection of more sultable time interpolation functions may also
help reduce the computation time in the time-domain. If instead of
using a polynomial basis function for the induced current's time variation,
onz' . re to use & sinusoidal function having a frequency equal to the lowest
resonance frequency of the structure, the current could be more accurately
matched and thus require fewer samples per unit time. Balanced against
this potential advantage would be the possible increase in computational
complexity due to the new basis function. Terms harmonic to the lowest
resonance might also be used in the current expansion. Richmond6 has
investigated similar questions in the frequency-domain.

Truncation of the time-domain calculation might be made possible
earlier in the calculation by computing the freqguency response of the
structure on the basis of the information obtained to the present time
step‘together with its extrapolation to future time. If this operation
were repeated at suitable time intervals, the convergence of the frequency
variation could be readily determined. When two successive frequency
responses are found to agree within some convergence criterion, the time-
domain calculation could be stopped with a reasonable degree of confidence
in the computed data. Coupled with this might also be the utilization of
& more sophisticated time extrapolation function, i:e., one which allows

for a multi-harmonic waveform.

Applications

There are various reasons vhy electromagnetic problems may be advanta-
geously viewed on a transient basis. Object identification is one area for
which knowledge of the shoit pulse or transient response of a target is
desirable. The resulting increase in bandwidth improves the possibility
for discriminating between targets. Must of the motivation for the early
work by Bennett and his colleagues originated from this application.

Another area of interest, which stems from object identification, is.
the need for antenna designs which radiate short pulse waveforms of
specified shapes. This requirement leads to the concept of antenna
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"fidelity" as discussed by Susman and Lamensdorf. The antenna in this
case becomes one part of a pulse shaping and'processing network, the

overall response of which is needed to determine the input pulse shape
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which will produce a desired radiated pulse, or to derive the incident
pulse shape from the antenna cirecuit response.

The nuclear electromagnetic pulse (BMP), which is produced when a

nuclear device is detonated under the appropriate conditions, requires an
uuuerstanding of the short pulse response of systems such as rockets,
communications networks missile installations, etc. if they are to be
adequately protected against possible EMP damage. The short rise time

(~ 10 nanoseconds) and large peak field strengths (; 50,000 V/m) which
characterize the EMP can cause extremely complicated responses from
systems it illuninates. The intractability to analysis or computer
modeling of this problém has led to the development of EMP simulators
which provide an experimental avenue for determining system response and
consequent possible hardening requirements.. Simulator design also leads
to the necessity for finding the short pulse response of candidate designs,
which, while typically simpler to analyze than the systems to be tested,
still pose a challenging problem in transient electromagnetics to the
analyst. Furthermore, while the system problems are indeed difficult,
some progress towards their understanding can be realized by performing
transient studies of simpler related problems.

An are a particularly suited to a time-domain treatment is non-linear

analysis. There has developed in recent years an interest in the active
loading of both antennas and scatterers. The former is of concern since
active impedance loads evidently have some potential for achieving
significant size reduction of antennas. The use of active impedance loads
for scatterers has been studied from the viewpoint of radar cross-section
reduction and masking. In both applications, a capability forrealistically
evaluating the effects of active, and thus generally non-linear, loads
would facilitate their exploitation in antenna and scatter design. While
it may be feasible to perform some non-linear analysis in the frequency-
domain, the time-domain can be expected to provide a more tractable medium

for such studies.

VI. TIME-DOMAIN TECENIQUES IN PERSPECTIVE

We have attempfed in this presentation to place the time-domain approach

in perspective relative to the more commonly used frequency-domain formulation
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of electromegnetic analysis for obtaining either transient or monochromatic
information. Our main concern has been to document the state-of-the-art

in time-domain computations, and to examine whether it is more than
simply a novel, but not otherwise unique, method for solving Maxwell's
Equations. While there is no doubt that the transient representation

has a valuable role to play in electromagnetic theory, it is not so

obvious that a time-domain approach is necessary for its derivation.
Conventional frequency-domain analysis may suffice as well for obtaining
transient solutions.

Except for the natural advantage provided by the time-domain for
non-linear analysis, the time- and freguency-domains way be viewed as
offering alternative and complimentary routes for obtaining and represent-
ing electromagnetic phenomena. Each domain has its own areas and appli-
cations where it may offer advantages over the other as to computer time
and storage requirements and interpretation of physical behavior. This is
true whether the information sought is for time- or frequency-domain
application. Thus in some cases, transient analysis may be more economically
realized using a frequency-domain formulation followed by a.Fourier transform
to the time-domain. This may be the case for example, when the single-source
transient backscatter response of a surface structure is desired, as demon-
strated in the above discussion. On the other hand, the wide-band frequency
response of a wire structure to single source excitation may be more
efficiently determined via a Fourier transform of the time-domain derived
response,

The relative computational advantages of analysis in either of the
two domains may change as improvements in numerical techniques and formu-
lations are made. Thus, thé comparisons made in this presentation are
subject to revision as advances occur in electromagnetic computer modeling.
It seems obvious, however, that transient electromagnetics will continue
to draw upon both time- and frequency-domain analytic methods.

Extensions to handle larger structures, drawing upon the special
features of both the time- and frequency-domain deserve further study.
Imprdvements in computational efficiency such as the use of more

sophisticated time waveform extrapolation, adaptive time stepping, and
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symmetry exploitation would perhaps enhance the value of time-domain
analysis. Also indicated is the need to develop analysis methods for

modeling more complex structures. A particular reguirement, which is

assoclated with developing the latter capability, is the need for simpli-
fying both the body geometry description for compuler input as well as
presentation in capact form of the computed electromagnetic character-
istics. It is the large amount of information inherently possessed by
the time-domain waveforms which makes the transient presentation so
useful, and which mekes time-domain analysis a truly valuable addition to

electromagnetic theory.
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Fig. 2. Approximate transverse magnetic (TM) response of a circular 8
cylinder in the backscatter direction (after Bennett and Weeks®).

77



6—\/ @ Incident o

pulse
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Fig. 4. Approximate TM imgu1se response of a circular cylinder (after
Bennett and Weeks®)
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Fig.6. Transverse magnetic frequency response in the backscatter dirgg

of a circular cylinder of 1-m radius (after Bennett and Weeks
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Fig. 7. Approximate TE impulse rgsponse of a strip with broadside incidence
(after Bennett and Weeks®)
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Fig. 8. Approximate TE impules rgsponse of a strip with end-on incidence
(after Bennett and Weeks®)
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Fig. 9. Approximate TM impulse response of a strip with broadside incidence
(after Bennett and Weekss).
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Fig. 10. Approximate TM impulse response of a strip with end-on incidence
(after Bennett and Weeks8). ‘
2'0 ¥ I I l i | { I 1
1 " ——— TE Case i
) p— TM Case
— s 'j
_ — l.2f _
w T [}
T o H -
o ] Q \
s Z 0.8 R
—— TE Case ] |
0.4 —
! === TM Case —
N S N R R )
0 | | | | 0 2 4 6 8 10
0 2 4 6 8 10 ka .
ka
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Bennett and Weeks®). Bennett and Weeks$8).
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Fig. 13. Geometry of the cgrner reflector (after
Bennett and Weeks®)
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Fig. 14. Approximate TE impulse response of a corner reflector with frontside
incidence (after Bennett and Weeks®).
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Fig. 15. Approximate TE impulse response of a corner reflector with backside
incidence (after Bennett and Weeks8).
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Fig. 16. Approximate TM impulse response of a corner reflector with frontside
incidence (after Bennett and Weeks8).
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Fig. 17. Approximate TM impulse response of a corner reflector with backside

incidence (after Bennett and Weeks8).
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Fig. 21. Approximate impulse response of a sphere in E-plane (after Bennett
and Weeks3).
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Fig. 22. Approximate impulse response of a sphere in the H-plane (after
Bennett and WeeksS).
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Fig. 25. Bistatic RCS of a sphere with ka = 2.9 (after Poggio and Miller’).
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Fig. 29. Comparison of the numerical vs experimental backscatter RCS freqguency
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Fig.

Relative field strength

Fig.

30. Bistatic time response of a sphere
capped cylinder antenna (after Poggio
and Miller/).
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Fig. 39. Smoothed impu1se response of ADC satellite model (after Bennett,
DeLorenzo, and Auckenthaler!0).
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(a) Measured ADC response ‘
{horizontal scale = 0.5 nsec /div)

(b) Calculated ADC response

Fig. 40. Comparison of calculated and measured
ADC response in backscatter direction

(after Benne¥5, Delorenzo, and
Auckenthaler!V),
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Fig. 41. Smoothed impulse response of UES satellite model (after Bennett,
DeLorenzo, and Auckenthaleri0).
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(a) Measured UES response
(horizontal scale = 0.5 nsec/div)

L
(b) Calculated UES response

Fig. 42. Comparison of calculated and measured
UES response in backscatter direction 10
(after Bennett, Delorenzo, and Auckenthaler )
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Fig. 43. Smoothed impulse response o{ GGTS-2 satellite model (after Bennett,
Delorenzo, and Auckenthaler 0)
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(a) Measured GGTS-2 response
(horizontal scale = 0.5 nsec/div)

(b) Calculated GGTS-2 response

Fig. 44. Comparison of calculated and measured
GGTS-2 response in backscatter direction
(after Bennett, Delorenzo, and Auckentha]er]o).
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Fig. 55. Loop antenna with time derivative of Gaussian source where the circumference
of the loop 1s 1 m, the source width 1s P/11, and the number of spatial seg-
ments 22. Vg = 2A2(t - tmax)exp[-A2(t - tax)?] with A = 1,5 X 109 and "
tmay = 1.43 X 10~ 9 sec. Frequency-domain calculations are plotted for
comparlson (after Poggio, Miller, and Burke!<),
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Vg = exp[-A2(t - tpax)2] with A = 1.5 x 10” sec. Frequency-domain
calculations are pTotted for comparison (after Poggio, Miller, and
Burkel2},
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= 1,43 X 10-9 gec. Frequency-domain calculations are plotted for comparison
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Fig. 58. Time-dependent backscattered field
computed from a time-domain solution
for a straight wire scatterer for broad-
side i1lumination using the wire model
and the parameters of Fig. 50.
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is 2 m. The ratio of wire radius to ring radius is 1079 and the number Xf
spatial segments 12, In thlS case, At = 3.03 X 10°10 sec = AP/c, and E
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o/Ar¢, obtained from the Fourier transform
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Fig. 63. Scattering of a Gaussian pulse by two concentric rings where the circum-
ference of the large ring (P) is 1 m, the ratio of ring radii is 1.25,
the ratio of wire radius to ring radius is 0.03, and the n¥6ber of spatial
segments (each ring) is 12. In this case At = 2.777 x 107" sec, ang FA =
exp{-A¢[z/c - (t - tp,,)]2} with A = 1.5 x 109 and tpax = 1.43 x 1077 sec.
Frequency-domain ?g1cu ations are plotted for comparison (after Poggio,
Miller, and Burke'<).
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Poggio, Miller, and Burkel2).

121




0.10

l 1

my

4 6

Time — P/c
(a) Time response

X

Frequency~domain calculation

Fourier transform of time

response

0.05
>
2
-
]
s
3
i 0
0,05 [~
0
0
~10}—
[=a]
©
I
™N
~<
~
b
20—
-30
0
Fig. 65,

1.0 1
P/X

l5

(b) Frequency response

122

Scattering of a Gaussian pulse by a six-point crown band 25.13 in. (P)
n circumference; 24 spatial segments.
and wire radius 0.0625 in. Seggent length Az
(t - tmax)12} with A = 2.0 % 10

domain calculations are plotted for comparfson (after Poggio, Miller,
and Burke!2

The total wire_length is 84 in.
EA = exp{-A¢[z/c -

and tpay = 1.06 x 1079 sec.  Frequency-




Fig. 66. Small scientific satellite model (length-
to diameter ratio of each antenna is 50)
(after Bennett, Delorenzo, and Auckentha]er70).
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Fig. 67. Smoothed impulse response of SSS satellite model (after Bennett,
DeLorenzo, and Auckenthaler!0), -
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(a) Measured SSS response
(horizontal scale = 0.5 nsec/div)

(b) Calculated SSS response

Fig. 68. Comparison of calculated and measured SSS
response in backscatter direction (after
Bennett, Delorenzo, and Auckenthaler!O},
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Fig. 69. Early warning reconnaissance satellite
model (Tength-to-diameter ratio of each
antenna is 50) (after Bennett, Delorenzo,

and Auckenthalerl0).
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(a) Measured EWRS response
(horizontal scale = 0.5 nsec/div)

I 1111/-[\11_1
ﬁrlv T IVVIIVII

(b} Calculated EWRS response

Fig. 71. Comparison of calculated and measured EWRS
response in backscatter direction (after
Bennett, DelLorenzo, and Auckenthaler!0).
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128




el e N

- Frequency domain ]
o 10°k =
8 = 3
! - ]
=) L _
oS
3 1
T 10 = =
O E 3
A - .
o - ]
g ~ Time domain
— 100E— E

= 3

oW
1 2 3 4 5 6 7 8
L/x

Fitg. 73. Computer time requirements for the
bistatic (single source) transient
analysis of wire structures.

4

R e e 2

E Time domain ]

1031 _

o E 3
9 - _
| 1l |
—~ 10°E -
o = =
S - =
O - -
*? = -
O - _
5 oL .
g - Frequency domain 3
= J i
100 =

- .

107! [ Y N R B

N
w
-
(6]
(e}
~N
@

Fig. 74. Computer time requirements for the bistatic
(single source) transient analysis of surface
structures.

129



102 10°
E N 1 i 3 E ol P T ] 3
- . - N .
[ ] B i
- ] . )
T IR Zan s _
a 10 - - a 10 = Monostatic 3
~ Monostatic = & - Z
o - 7 a - ]
~ R ] — | -
el L - 5 B A
s 0 1 £ 0 ]
E . QE.) Bistatic
= 100 = =
- /Bisfcﬁc ]
-1 \ |
10 S S — oL 11
bz o3 4 5 6 7 8 TTTs 4 s s 7 e

Fig. 75. Ratios of time- to frequency- Fig. 76. Ratios of time~ to frequency-

domain calculation times for domain calculation times for
the transient response of wires. the transient response of
surfaces.
N
130



10.

11.

12.

13.

14,

15.

REFERENCES

E. M. Kennaugh and R. L. Cosgriff, "The Use of Impulse Response
in Electromagnetic Scattering Problems,' in IRE Natl. Conv. Rec.
1958, pt. 1, p. 72.

E. M. Kennaugh and D, L. Moffatt, Proc. IEEE 53, 893 (1963).

J. Rheinstein, IEEE Trans. Ant. and Prop. AP-16, 89 (1968).

M. G. Andreason, IEEE Trans. Ant. and Prop. AP-13, 303 (1965).

F. K. Oshiro, "Source Distribution Techniques for the Solution of
General Electromagnetic Scattering Problems,'" in Proc. First
GISAT Symposium, Mitre Corp., 1965, vol. I, pt. I.

J. H. Richmond, Proc. IEEE 53, 796 (1965).

A. J. Poggio and E. K. Miller, "integral Equation Solutions of
Three-Dimensional Scattering Problems," in course notes for
Numerical Methods in Electromagnetics and Antennas, U. of Illinois,
Sept. 1970, R. Mittra, Ed.; to be published by Pergamon Press.

C. L. Bennett and W. L. Weeks, "Electromagnetic Pulse Response of
Cylindrical Scatterers,'" G-AP Symposium, Boston, Mass., 1968;

also A Technique for Computing Approximate Electromagnetic Impulse
Response of Conducting Bodies, Purdue University, W. Lafayette,
Indiana, Rept. TR-EE68-11 (1968).

E. P. Sayre and R. F. Harrington, "Transient Response of Straight
Wire Scatterers and Antennas,'" in Proc. 1968 Intl. Ant. Prop.
Symposium, Boston, Mass., 1968, p. 160.

C. L. Bennett, J. D. De Lorenzo, and A. M. Auchenthaler, Integral
Equation Approach to Wideband Inverse Sacttering, Rome Air Develop-
ment Center, Rome, N. Y. Rept. RADC-TR-70-177, vol. I (1970).

E. K. Miller, A. J. Poggio, and G. J. Burke, An Integro-Differential

Equation Technique for the Time-Domain Analysis of Thin Wire
Structures; Part I, The Numerical Method, Lawrence Livermore
Laboratory, Rept. UCRL-73346 (1971); to appear in J. Computat. Phys.

A, J. Poggio, E. K. Miller, and G. J. Burke, An Integro-Differential
Equation Technique for the Time-Domain Analysis of Thin Wire Struc-
tures; Part II, The Numerical Results, Lawrence Livermore Laboratory,
Rept. UCRL-73346 (1972); to appear in J. Computat. Phys.

D. E. Merewether, IEEE-Trans. Electromagnetic Compatibility EMC-13,
No. 2, 41 (1971).

G. W. Bechtold and D. J. Kozakoff, IEEE-Trans. Electromagnetic
Compatibility EMC-12, No. 1, 5 (1970).

G. W. Bechtold and D. J. Kozakoff, IEEE-Trans. Electromagnetic
Compatibility EMC-12, No. 1, 9 (1970).

131



16.

17,

18.

19.

20.

21.

22.
23.

240

25.

26‘

27.

28'

29.

30.

31.

32.

33.

34.

35.

C. W. Harrison and R. W. P. King, IEEE-Trans. Ant. and Prop. AP-15,
No. 2, 301 (1967). :

J. F. A, Ormsby and M. R. Weiss, Canad. J. Physics 49, 1929 (1971).

W. H. Haynes and C. L. Wilkerson, IEEE-Trans. Electromagnetic
Compatibility EMC-12, No. 3, 112 (1970).

D. C. Chang and C. W. Harrison, IEEE-Trans. Electromagnetic Compa-
tibility EMC-13, No. 1, 14 (1971).

D. B. Hodge, IEEE-Trans. Ant. and Prop. AP-19, No. 4, 558 (1971).

C. P. Bates and G. T. Hawley, ILEEE-Trans. Electromagnetic Compati-
bility EMC-13, No. 4, 18 (1971).

A. J. Poggio, IEEE-Trans. Ant. and Prop. AP-19, No. 5, 702 (1971).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

W. K. H. Panofsky and M. Phillips, Classical Electricity and Magne-—
tism (Addison-Wesley Inc., Reading, Mass., 1956).

0. D. Kellog, Foundations of Potemtial Theory (Dover Publicationms,
New York, 1953).

S. H. Lin and K. K. Mei, IEEE-Trans. Ant. and Prop. AP-16, No. 2,
235 (1968).

R. F. Harrington and J. R. Mautz, Radiation and Scattering from
Bodies of Revolution, Syracuse University, Contract No. F-19628~
67-C-0233 (1969).

C. L. Bennett and W. L. Weeks, IEEE-Trans. Antenna Propagation AP-18,
No. 5, 627 (1970).

M. J. Gans, Proc. ILEEE 53, 1081 (1965).

A. R. Neureuther, G. J. Burke, E. K. Miller, and G. M, Pjerrou,
IEEE-Trans. Ant. and Prop. AP-19, No. 6, 789 (1971).

A. M. Nicolson, C. L. Bennett, D. Lamensdorf, and L. Susman,
IEEE-Trans. Micro. Theory and Techniques MTIT-20, No. 1, 3 (1972).

R. W. P. King, The Theory of Linear Antennas (Harvard University
Press, Cambridge, Mass., 1956).

E. K. Miller, G. J. Burke, and E. S, Seldon, IEEE-Trans. Ant. and
Prop. AP-19, No. &4, 534 (1971).

R. F. Harrington, Field Computations by Moment Methods (MacMillan,
New York, 1968).

S. Gee, E. K, Miller, A, J. Poggio, E. S, Seldon, and G. J. Burke,
"Computer Techniques for Electromagnetic Scattering and Radiation
Analysis," presented at the Electromagnetic Compatibility Meeting,
Philadelphia, 1971.

132




36.

37l

38.

39.

40,

41.

H. H. Chao and B. J. Strait, IEEE-Trans. Ant. and Prop. AP-19,
No. 5, 701 (1971).

E. K. Miller and A. Olte, Radio Science 1, 1425 (1966).

E. K. Miller, J. Computational Phys. 5, 265 (1970).

L. Susman and D. Lamensdorf, Picosecond Pulse Antenna Techniques,

Rome Air Development Center, Rome, N. Y,, Rept., RADC-TR-71-64 (1971).

W. E. Blore, IEEE-Trans. Ant. and Prop. AP-12, 582 (1964).

D. L. Moffatt, Low Radar Cross Sections--The Cone Sphere, Ohioc State
University, Columbus, Ohio, Rept. 1223 (1962).

133




