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: 1. PROBLEM FORMULATION

waveguide flanged by a perfectly conducting plane. The surface of the
flange is the 0,¢ plane at z = 0 and the axis of the cylindrical wave-
guide extends along the z-axis from z = 0 to z = + «; its radius is
"a" (fig. 1).

‘ (\ Consider the geometry consisting of a semi-infinite, cylindrical

For convenience of discussion, we define two regions; region I is
the half-space with z < 0 bounded by a conducting plane at z = 0, and
region II is the interior of the cylindrical waveguide bounded by the
conducting walls at p = a. A plane wave propagates from z = - « and
is normally incident on the aperture of the waveguide. It is desired
to obtain an expression for the diffracted field in region II.

The incident fields can be expressed as,

-E—:an (R)

e exp{-ikz} exp{-iwt}
(1)

ﬁinc(R) = h exp{~ikz} exp{-iwt}

which is assumed to be normally incident on the aperture.

The scattered field at any point is then governed by the free-
space Maxwell's equations

= _ = _ _QE . -
.( VD =. 0 VXE = 5T = 1quH

(2)

and subject to the boundary condition
i xE®R = 0 R on a surface (3)
where fi is a unit vector normal to any of the conducting surfaces.

In the formulation of the problem let the electric field in region
I be expressed as

D) = 20 () + B(r) (4)
where
E(O) (R) = +the field due to an incident field, plus a field
reflected from the conducting half-space,
and
EA(R) = the remaining part of the scattered field due to the

P

. - presence of the aperture.
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Figure 1. Semi-infinite waveguide flanged by a perfectly
conducting plane.
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In region II the diffracted electric field is expressed as E( )(R).
In addition, the scattered field at any location must satisfy the
homogeneous vector wave equations.

Vv x ¥ x E(R}) -~ kK?E(R)

it
o

and (5)

]
(=

¥ x ¥ x H(R) - kK*H(R)

The approach employed consists of deriving appropriate dyadic
Green's functions for regions I and II and then obtaining integral
expressions for the electric field in the regions by applying the
vector form of Green's theorem. Then, by applying Maxwell's equations,
expressions for the magnetic field in both regions can be obtained.
Observing that the tangential components of the magnetic field are




P

continuous through the aperture results in an integral equation for
the aperture electric .field. The substitution of the solution to the
1ntegral equation into the integral expression for the electric field
in region II and solution of the integral results in an expression for
the electric field inside the cylinder. The corresponding magnetic
field can then be found by application of Maxwell's equations.

2. DERIVATION OF INTEGRAL EQUATIONS

The integral equations are formulated using the general approach
described by Tai.! Essentially, this approach involves integrating the
vector wave equations by employing Green's theorem.

Prior to the solution of the eqguations, the properties of the
Green functions that are employed must be discussed. Two types of
dvadic Green's functions are used in the solution of electromagnetlc
boundary value problems; G_ is an electric-type function and G_is a
magnetic type. These func®ions satisfy the following eguations.

VxG = G (6)
e m
and
=-= - - 2-
vV x G = IS(R=-R") + kG, (7)
where I = a unit dyad (Idemfactor)
and k¢ = wzu € .

o O

Also, by vector manipulation
vxvxG -kE = Ts®-FR) (8)
and

VxVXam-kE = v x [T (R-E&)] (9)

It can also be shown that

and

lpai, c-7., Dyadic Green's Functions in Electromagnetic Theory, Intext Educational
Publishers, Scranton, Pa., 1971, Section 17.




e, = -1 vIs®-F) . (11)
K

Dyadic Green's function can be classified further as to the boundary
conditions that they satisfy. Functions satisfying Dirichlet boundary
conditions denoted with the subscript 1, satisfy

Qlf
i
o

A
n X
el

(12)

=13
x
]

[}

mi

evaluated on the boundary. Functions satisfying Neumann boundary
conditions, denoted by the subscript 2, satisfy

A x VvV x Ge2 = 0 1

o

From the above equations, the following relationships can be generated:

\

(13)

=34
X
<]
X
il

i
il

vV x Ge1 = a2
= _ =_ ,=— _ 5 2=
V X sz = Ié(R~-R") + k §é1
’ (a)
vox Gez = Gm1
= _ = —_— _ T~ 2=
V x Gml = IS§(R R™) + k Ge2 /

In formulating the integral expressions, we start with the state~
ment of Green's theorem as given by Stratton?

[ By xVxQ- (VxVxP)Qlav = -gPa-[PxV=xq
v S

+ (Vv x B) x 9@} as. (15)

2Stratton, J. A., Electromagnetic Theory, McGraw Hill, New York, 1941, p. 250,




. ( and by defining the dyadic function

= Qxﬁ + Qy? + sz

©ll

By letting Q be equal to any of the three vector functions, Q., Q. ., Q.

X v z

an appg??§iate dvadic_Green's theorem can be obtained. Then by letting
E

P = and 0 = Ge: » we have ’

(1), T - 5(1)y.50 - 4
fé{[E Vx ¥ x Gl - v x v x EC)) Gel)] av = §j>n

=(1) =(1)]
+ (V x E )><Gel das
From equations (5) and (8) we have

V x V x E(R)

k*E(R)

and

L}

vV x V x G(R) k%G(R) + IS(R - R)

obtain

-~
TS
!

E(R) = gsqs A x E(R').[v x Eel(R’IR)] as” .

[FGx 7« 510
el

(16)

So, by employing these relationships and integrating over the volume, we

(17)

Further vector manipulation and application of the transposition

property of dyadic Green's functions,

e _
G, R7[R) = G, (R[R)
and
o
Ve ox Eel(R'IR) = ¥ x G, (R|R)
yields
E(R) = ~-¢Pp [v % Eez(R}R')]-[ﬁ x E(R")] 4s”

w

(18)




as a general expression for the field in a source-free region. However,
for region I, the assumed incident and reflected plane waves must be
added to the right-hand side of equation (15). This procedure is
consistent with the method employed by Levine and Schwinger® in solving
a similar problem. So, for the field in region I, we have

w
o

W@ = 2@ @ -¢p[vxF,mr0] a7 x BRI as
sr’

Note that the surface over which the integration is to be carried out
consists of the p, ¢ plane at z = 0 where n x E{(R) = 0 everywhere except
in the aperture and over the hemisphere at R = », where there is no
contribution because of the asymptotic properties of the Green function
and the radiation condition. Consequently, the only contribution to

the surface integral is over the aperture. Therefore, for region I,

eV @w = @R -qgp [v x Eeé(RIR’)]'[ﬁ’ x B(R")] dA” (19)
A)

where A” is the aperture in the conducting plane.

By taking the curl of equation (19) and applying Maxwell's equations,
we obtain the corresponding expression for the magnetic field in
region I,

80 @Ry =2y x5O (r) ~¢PTs(R - R")+A” x B(R")dA"

ERTITIN A°
@
- [f ¥ ®|R") A" x E(R)AA" . (20)
A’

Observing that there is no current source in region II and applyving the
boundary condition and radiation condition to equation (18}, we obtain

B @® = -gp (7x8))ax B an’ (21)
A’
with
a2l m) = - imio [/ T6(R - R)A” x E(R")dA"
A’
+ k2 4P cl2) (R|R") A" x B(R7)AA" . (22)
AJ er

Since the tangential components of the magnetic field are continuous
through the aperture, we have

3Levine, H. and J. Schwinger, On the Theory of Electromagnetic Wave Diffraction
by an Aperture in an Infinite Plane Conducting Screen, Comm. Pure and Applied
Mathematics III, 1950.
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‘ (\_ ﬁxﬁ(l)(R)!z = 0 = ﬁxT-I_(Z)(R)lz=o . (23)

By taking the cross product of the normal with equations (20) and (22)
and equating the expressions we obtain

=0 _ = .
fix (v xE (R))]Z___O = gtiﬁ x [Ge(:)(R[R)

- Eéi) (RIR')}'ﬁ’ x E(R") dA~° (24)

defined within the aperture.

However, if

[H]
o 4
X
<
X
2]
k

R (R)

is defined to be the apparent surface current on the aperture, there is

K(R) = k2 dPh x EE(I)(R]R‘) - 8(2)(R]R’)]-ﬁ’ x E(R") dA”.  (25)
n” ez ez
{‘ By solving equation (25) for the aperture electric field E(R”) and
. substituting the result into equation (21), an expression for the

electric field in the cylindrical waveguide is obtained. Then by
applying Maxwell's equation (22), the accompanying magnetic field
can be found.

3. CONSTRUCTION OF DYADIC GREEN'S FUNCTIONS

In the formulation of the integral eguation, several dyadic Green's
functions were employed without being expressed explicitly. Since
only two of the functions actually appear in the final integral
equation, only those_need be_derived explicitly. Those to be derived
are Gé;) (RIR®) and G{2) (RIR").

An approach that may be used is an eigenfunction expansion
technique involving vector functions for the solution of the eguation

VxVxG-%k*G = I8(R~-R") . (26)

This method, known as the Ohm-Rayleigh technique is explained by Tai,
and is used extensively by him in deriving dyadic Green's function for
many idealized geometries.i’%’5

lrai, c-7., Dyadic Green's Functions in Electromagnetic Theory, Intext Educational
Publishers, Scranton, Pa., 1971.
“Pai, C-T., On the Eigenfunction Expansion of Dyadic Green's Functions, Proc. of
IEEE, Volumn 61, No. 4, april 1873, pg. 480-481.
. STai, C-T., On the Eigenfunction Expansion of Dyadic Green's Functions, Report

011136~-1-T, Radiation Laboratory, University of Michigan, April 1973.
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dyadic Green's functions of interest can be constructed by applying the
principle of superposition, employing those functions already derived by
Tai.

Instead of rigorously applying the Ohm-~-Rayleigh technigque, the ) .
i

In the case of region I, the free space dyadic Green's function can
be used.?®

= - _ i )% (2 - 6o) 7 PR o
G (RIR) = 2= gd)\ g R Men)\(_kk)menk (+kk)
- — _ 228(R - R7) |
¥ Nink(tkA)NinA (+kA» k? =

The upper sign corresponds to the situation when z<z” and the lower
sign when z>z”.

Where
k - (k2 - }LZ) 1/2
A
— - an(AD) 3 " lkAZ
Me (kl) = + — sin nép - Y Jn(kp) cosoén ¢} e
! cos e sin
and
_ ( ) 1 5 _ ikyn .
N k = = |ik, =— J_(Ap) cos né¢p + J_(Ap) sin n¢ ¢
gnk A k% A3 "n sin n cos
1kxz
+ A2 J (Ap) cos ng 2|e (28)
sin
with A = YU /a and Jn(qmn) = 0
and
_ 2 2y 1/2
K, = (A ex})re.
Srai, C-T., On the Eigenfunction Expansion of Dyadic Green's Functicns, Report
011136~1-T, Radiation Laboratory, University of Michigan, April 1973, pg 15. } .

12 .




Q_ structed by assuming that it is composed of two components, a free-space

The Green function for the half-space of region I can be con-
. Green function and a scattered Green function

e = G _+ G . (29)

By applying the boundary cgndition that at z = 0, 2 X G = 0, the
scattered Green function, Ges’ is found to be

= 1 2 (2 -3 ) - =
Gé;) = %F é da g __TE;_Q_ {_ Menx(kk) Menx(kx)
(o] (o]
| + ﬁenx (kA) ﬁenx (kx)} . (30)
So
)RRy = L 7 ar ¥ 2 - 60) H, (k) H (¥x,)
€1 am 5 n Akk ink A ShaA A
{ = ' = _ s o
C I PR ) T () <R () B ()
* ﬁﬁnx<kk) ﬁén (k) g - =5 aéf =L, (31)

with the upper sign corresponding to the situation with z<z” and the
lower sign with 2z>z~.

Now, to determine Eeél) (R|R”) we apply the transposition property
N
vV x Gy (RIR") = V° x G, (R [R) . (32)

By noting that the vector functions are related by

Menx (kA) (33)
(o]

13




and

VxE, (k) = o T (k)
ni
e}
and performing the appropriate vector manipulation we have

(2 - Son)

A

=(,) . i * — — —_
S Tt RONE NS

o

* Hgnx (%,) M'n}\(’hkx) - N n}\(kx) ﬁénx (x,)
+ ﬁenx(kl) ﬁénx(k*) - 22 6(§2- R, (35)
Q

but with the upper sign corresponding to the situation with z>z” and
the lower sign with z<z’.

In region II, the semi-infinite, cylindrical waveguide, a similar
superposition scheme can be employed, this time using the interior
dyvadic Green's function for an infinite cylinder.

<« <

T . @®RIRY =L 7 7 (2-3 —t W +k
el aT m=1 n=o ( on) AzkAIX gnk < A)
1 = = _ 22 §(R -~ R") (36)
+ M, (k) H (7 - ,
2 Z
u kqu e u) in“ n) k
. uppery . . ; . . z>z”
with the(lower)SIgn corresponding to the situation w1th<z<z,),
where kk = (k? - AZ)I/Z
= 2 _ ,2y1/2 = &
k, (k u®) k p
2
- a° y-
I = 7 Y (Aa)
2 2
I, o= 2— (u"‘ - u—)Jg(xia)
H 2U2 a?

STaj, C=T., On the Eigenfunction Expansion of Dyadic Green's Functions, Report
0111l36-1-7, Radiation Laboratory, University of Michigan, April 1973, pg 13.
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P | with Jn(q

mn/a mn)

pmn/a with Jx;(pmn)

As before, we can assume that the dyadic Green's function can be written
in terms of a known dyadic function and a scattered term. So, in
region II, the dyadic Green function can be written as

=(2) _ = =
Ge1 - Ge1i + Gexs (37)
By applying the boundary conditions that
2 x 6(2) = o .
el {, _
it is found that
¢ =7 Vo, & (k) F (x
e1s mnon A n}\( }\) n)\( A)
-C M -k | M -k (38)
H enu( U) gnu( U)
where
i -y
Cx
4ﬂu2kx1A
and

- i (2 B 6on)
H 4nu2kqu

So the dyadic Green's function for region II can be written

15



=(2)
Cer

|
=~
fou Ju |
S " eppp—
Q
>4
[
Z|
®
I
~
o
e
2
[( BN
+
A
>

+

2

]

o

D
|

(o JROJY

oM oM
- M nu('ku) Menu('ku)
(e}
_ 22 (R - R’) (39)
k2

D)

. upper . c s z>z"
where again <1ower) sign corresponds to the condition <z<z’)'

Now recall from before that dyadic Green's function have the
property

o

VS ox Eel(R’[R) = v xG_ (RIR) . (40)

By using this property and the vector relations between the vector
functions Me (h) and Ne (h), we obtain

oltH olH

=(2)
Ce

i
g~
= g

)
P
9]
0
——
I+
o
>
——
=1
\
p—,

+

~

~a

Ml ocne inu
) Nenu(—k ) f\iénu(-k“)
28 (R - R") ()
k2
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. . >z "
where the (upper sign correspond to the situation where ;<Z,

lower

Equations (39) and (41) express the two dyadic Green's function
required for the integrand of equation (25).

(1)

(5)
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