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ABSTRACT

EMP internal interaction analysis is complicated by
the presence of many scemingly random paramctcrs which
prcclude the strictly deterministic solution for induced
cxaitotiors at parviticular Loed points.  he objoective of
this note is to briefly discuss a possible technique for
the statistical analysis of load excitations on an unshielded
N-wirc random cable illuminated by an incident time-harmonic
field using the reciproclity thecorem in conjunction with

subsct represcentation of a statistical censemble.



I. Introduction

The analysis of EMP internal coupling to critical
electronic components and subsystems is complicated by the
presence of many seemingly random paiameters, éuch as the
relative positions of bunched cables near POEs and the
random positions of conductors in N-wire lines. These
fandom parameters preclude the strictly deterministic solu-
tion for EMP induced excitations at particular load points.
One can, of course, choose to analyze a single deterministic
"average model" of the system in the hope that the excita—
tions obtained will indicate expected excitations on any
of several randomly different actual systems. 1If the random
__parameters strongly affect the coupling to certain critical
system points the actual excitations may differ vastly from
. the deterministic predictions.

For the case of strong random effects in the system
a statistical Qnaiysis should bé performed in order to obtain -

a valid range of expected excitations.
The purpose of this paper is to give a brief dis-
cussion conéerhing a possible method for the statisﬁical
analysis of the load excitations on an unshielded N-wire
random cable illuminated by an incident monochromatic field.
v
The technique utilizes the concepts of time-harmonic EM

field reciprocity and statistical representation of an

ensemble by a subset. Although the discussion here is



restricted to a limited class of structures (e.g. unshielded,
unbranched N-wire cables), the method should be extendable
to shielded and branched cables as well. In addition, it
may be possible to conduct the analysis directly in the time-
domain using Prof.Welch's time-domain reciprocity theorem,

[11.

II. Probabilistic System Description

Consider an ensemble of possible N-wire cable config-
urations, where one such typical structure is shown in Fig. 1,
for the case of N=3. The wires are assumed to run in the
general direction of the z-axis. The random relative posi-
tion of the K—-th wire in a constant—-z cross section is given
by the vector ﬁk(z), aé'shown in Fig. 1.

The probabilistic system description can be formally
represented as a stochastic random process where the random
vector ﬁk is actually a function of two parameters, s and z,
where s represents points in an abstract sample space, S,
having a 1-1 relationship'to the ensemble of possible cable
configurations. To each subset of sample points (e.g. each
subset of possible cable configurations), there is assigned
a positive probability wvia the mapping into the real line
segment (0,1)] as illustrated in Fig. 2.

The joint probability distribution function of the

positions of the wires is, in general, quite complicated.
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It depends upén all values of z since the position of each
wire is affected by the positions of all wires everywhere

on the line. The usual approximation that is made to sim-
plify the statistical aescription of such a system is to
.aSSume that the random vectors (in this case the wire
positions) are independently distributed. This allows one
to define the joint probability distribution function | '
(p.d.£f) as the produdt of the p.d.f.s..of each wire. |

The assumption of independence may ge quite erroneous for
the case of a tightly bunched cablé system and will not

be employed in the statistical models to be presented.

A common method forx describing'an enseﬁble of param: ’
eter depeﬁdent random vectors (e.g. a stochastic process)

is through a random coefficient basis function expansion,

[2] I

Rk(zls) = Z:; ¢j(2)[ajk(8)x + bjk(S)Y] (1)
J:

wherel{¢j(z)} : is a complete basis function set, x and
=1

el

y are the usual unit vectors, and {ajk(s), bjk(s{} are
coefficient functions of the sample point, s, in the param-

eter space related to the ensemble of possible cables.
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The pfobability distribution functions of the random

~

- -

coefficients will depend upon the basis set used and the
type of cable. configuration, such_as straight wire parallel
. R ] ‘T

cable, helical twisted wire cable, or twisted pair cable,



etc. Given the type of cable, it should be possible to

deduce the form of the p.d.f. for the coefficients.

A.secohd mefhod for describing the random variation
of the cable configuration .is via a random walk process,
[4]. In this type of description we approximate the con-
tinuous possible wire locations by a discretized model aé
shown in Figs. 3 and 4 having Q possible cable positiéns
for the Q cables to occupy on a mutually exclusive basis.

At each beriodic cross section, where jumps are
allowed there are Q! possible cable arrangements. At

the 2., cross section the probability of each cable arrange-

2
ment is given in terms of the Q!xQ! transition matrix, P(2Z),

where Pi. = Prob {the ith configuration being realized at

Z] given the jth configuration at Z—AZ}.

III. Use of the Reciprocity Theorem

To obtain the induced currents in the loads of a
transmission-line that is illuminated by séme specified
spatially distributed and oriented driving field one can
solve either the original boundary value problem or the

reciprocal problem, [3].

As an example of the use of the reciprocity
‘theorem, consider an arbitrary N-wire line’ shown in Fig.

5 being illuminated by the discrete elec%ric_aipole
sowrces ¥y T 7s SR

where ]35] =1.
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To obtain the induced voltage across a load impe-

dance, say for example 2_, we place a reciprocal unit

L

current source, J2, across ZL and compute the reciprocal

source generated electric field at the original source

point, X, . Then, using the Lorentz reciprocity theorem

"for a region containing all source distributions,

v B -F.4H. -0 dv = | B.-F 40 -F |
_];El J2+H2 Ml av j: E2 Jl+Hl :2 dv (2)

: : v . - v

where M.,=H_=0, we obtain the induced load voltage via

1l 2

) V. = E..5 _— . (3)

For the case of a unit magnitude discrete magnetic

——

. dipole illuminating source, My, we can determine the
induced current in ZL by placing a reciprocal discrete

voltage source, as shown in Fig. 6, in series with ZL . -

and determining the ﬁ; generated at Y;. The load current

by EI is given by

induced in ZL

T &,

I, = ¥, -H L NS
The use of the reciprocity. theorem to obtain induced
load impedance currents and voltages requires the ability

" to compute the fields radiated by the arbitrary N-wire line

when the line is excited at the load position by a discrete
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current or voltage source. This may be quite a formidable

task, expecially if the N~wire is located close to other
obstacles such as arbitrarily oriented cables, bulkheads,

etc., whose scattering properties must be considered.

IV. Minimum Subset Representation

To obtain useful knowledge about the expected induced.
load currents and their variances we must consider in detail
the induced load currents in a finite subset of the continuous
parameter ensemble sample spacé {%a%}. That is, using the
reciprocity theorem, we TuSt compute the radiated fields
generated by localized sources at the load positions. This
can usually be done in two steps by assuming weak coupling
to nearby scattexers (except massive ground plane structures).
For the weak coupling case we can first compute the currents
induced in the N~wire line by the localized sources, neglect-
ing the effects of the scatterers. We then consider the
field source to be the 'N-wirc structure radiating in.the
presence of the scatterers and hopefully, using approxima-
tions, we can obtain at least an upper bound on the radiated
field at the illuminating scurce .point. We will only con-
sider here.thé first step in this procédure.

In addition to considering the structures as being
random, the incident field ﬂay also ﬁave to be tfeated as

random. Some reasonable bounds on the maximum expected

EMP induced excitations are the desired quantities of any

internal interaction analysis. If the maximum drive incident



EMP field, (i.e. spatial distribution and field orienta-

tion), is not known a priori for a particular load point

under consideration then the statistical expectations and
Variancés of load responses will have'td be averaged over
all possible incident fields as well as posSible'strUcture
variations. |
" We must compute thé induced currents on a represen-
tative set of the ensemble of N-wire lines (possibly over
a ground plane) generated by theé localized reciprocal sources.
A major question of'great fmportance is: "what constitutes
fé representative subset of the given ensemble of N-wire
‘iines'being considered?” The detailed answer to that ques-
‘tion will have to be found at a later date but will, of
S -coursg, depend upon the type of cable configuration. At
this éime we will only consider some simplifications
incurred by assuming cértain subsets to be valid representatives
éf the total ensemble for statistical avéraging purposes.
The simflest-possible subset of random N-wire cables,
-as shown in Fig. 1, is the set of uniform straight parallel
wires wipﬁ random distances between wires. The transmission

" line currents on the cable can easily be computed in terms

of the random vector distances between cable wires. These
random variable currents will then set up random variable
~ fields which can be obtained from a straightforward com-

putation, [5]. Using multiple transformations of the known

11



probability densitieé of the wire locations a density on
.the radiated fields can be obtained and tﬁe average and
standard deviations of the fields can be obtained, at least
in principle. The density of the physical locations of
the wires in this simple model will usually be uniform for
.all positions within a given cylindrical boundary. The
advantage of using this subset of random N-wire cables is
that in most cases simple uniform transmission line theory
can be used to obtain the reéiprocal source induced line
currents. However, the expectation and variance of the
load excitations obtained using this simple model may not
correctly represent the correépondiné statistics for the
entire random cable ensemble.

Another possible ensemble subset is the random
coefficient expansion given in {(1). The series will have
to be trucatgd.and the random' coefficient density functions
will need to be deduced. If the maximum longitudinal
oscillation of the random line is slow enough the non-
uniform transmission line theory can be applied to obtain
the line currents in terms of the random coefficients. A
direct solution for line currents can also be obtained:
using a coupled integral equation approach where the random
wire positions appear in the kernels.

The random walk description of the cable wire posi-

tions can also be used to generate another ensemble subset.

12




In this case a series of piecewise uniform cables can be

generated using a step by step numerical Monte Carlo random

walk procedure. Each of the realized cables is then analyzed
using multiple section transmission line theory.

In using the reciprocity theorem the'random wire
positions on the cable will not only play a part iq'deter—
mining the reciprocal source generated line currents but
will also appear as independent parameters in the solution

for the random radiated field.

13



V. summnary

A brief and somewhat informal discussion has been
presented concerning the statistical analysis éf load
impedance excitations iﬁduced on a random N-wire cable
by an incident time-harmonic field. The N-wire unshielded
and unbranched random cable is modeled by é stochaséic
random process which can be approximately described using
a variety of common technigues. The use of the reciprocity
theorem is described for incident fields generated by
discrete electric or magnetic dipole sources.and its
applicability is directly extendable to distributed sources.
A gualitative discussion is given with regards to the
subset representation of a statistical ensemble sample
space. The motivation for this. concerns the possible
reduction‘in statistical modeling complexity by considering
only certain.geometrically simple subsets of a complex
random system. |

The statistical modeling approéch applied to large
and complex random cable structures is an extremely impﬁr-
tant topic witﬁ respect to EMP internal interaction analysis.
Considerable work needs to be aoﬁe to develop practically
applicable methods for use on real cable systems. The
emphasis here has been on a nonrigorous presentation of
ideas which it is hoped will serve és a precursor for a

more detailed study to be initiated .in the near future.
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