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ABSTRACT

In this paper we introduce a new approach for combining the
integral equation and high frequency asymptotic techniques, e.g.,
the geometrical theory of diffraction. The method takes advan-
tage of the fact that the Fourier transform of the unknown surface
current distribution is proportional to the scattered far field.

A number of asymptotic methods are currently available that pro-
vide good approximation to this far field in a convenient analytic
form which is useful for deriving an initial estimate of the
Fourier transform of the current distribution. An iterative scheme
is developed for systematically improving the initial form of the
high frequency asymptotic solution by manipulating the integral
equation in the Fourier transform domain. A salient feature of
the method is that it provides a convenient validity check of the
solution for the surface current distribution by verifying that
the surface of the scatterer. Another important feature of the
method is that it yields both the induced surface current density
and the far field. Diffraction by a strip (two-dimensional prob-
lem) and diffraction by a thin plate (three-dimensional problem)
are presented as illustrative examples that demonstrate the use-
fulness of the approach for handling a variety of electromagnetic
scattering problems in the resonance region and above. Some
concluding remarks and comparison with other methods are also
included.
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I. INTRODUCTION

It 1is well-known that the integral equation methods are limited in
application to scatterers whose characteristic dimensions are of the order
of one wavelength or less. On the other hand, the high-frequency asymptotic
techniques can be reliably used only when the scatterer 1s large compared
to the wavelength, and neither of the above two methods is suitable in the
resonance region. This paper introduces a new hybrid technique*, based on
a combination of the integral equation and asymptotic methods, that is use-
ful in the entire frequency range encompassing the resonance region and
above. Another important feature of the method is that it can be used to
check and improve the accuracy of high-frequency asymptotic solutioms.

Such an accuracy test and systematic improvement of the asymptotic solution
are often needed, but no reliable methods for performing these are availlable
at the present time.

In contrast to the ray optics methods, which are based on the diffrac-
tion of ray fields as determined by the local properties of the surface of
the scatterer, the present method starts with the integral equation formu-
lation incorporating the boundary conditions on the entire surface of the
scatterer. Conventionally, the solution of the integral equation for the
induced surface current is carried out by matrix methods [9], [10]. The
size of the matrix becomes prohibitively large and its solution extremely
time-~consuming when the characteristic dimension of the scatterer approaches
the wavelength of the illuminating field. The approach developed in this
paper circumvents this difficulty while still preserving the self-consistent
nature of the integral equation fcrmulation by constructing the solution in

the Fourier transform or spectral domain rather than in the space domain.

We take advantage of the facts that the Fourier transform of the surface

*
The original concepts on which this paper is based were described at the 1975
URSI Symposium in a paper entitled "A New Method for Improving the GID Solution

Via the Integral Equation Formulation,'" by R. Mittra and W. L. Ko.
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current distribution s directly proportional to the far scattered field
and that the asymptotic methods often provide a very good initial estimate
of the latter quantity. We next construct an iterative* solution of the
integral equation in the transform domain witﬁ the GID or other high-
frequency solution as the zero-order approximation. As shown in the paper,
this procedure not only allows us to improve on the GTD or similar solu-
tions but also provides a convenient means for testing the satisfaction

of the boundary conditions on the surface of the scatterer. Furthermore,
the method yields not only the far-field but also the induced surface-
current distribution, a feature not readily available in some other high
frequency techniques.

The application of the general procedure outlined above is illustrated
by two examples: the two-dimensional problem of a plane wave diffraction
by a strip and a three-dimensional problem of a plane wave diffraction by
a thin plate. These problems were chosen for the following reasons. It
is shown that when the angle of incidence is normal or near normal, the
GTID solution accurately satisfies the boundary condition Etan = 0 on the
strip even when the multiple interaction between the two edges of the strip
is neglected. However, it is found that when the angle of incidence is
near grazing, the GTD solution is quite unsatisfactory, while the iterated
solution generated by the hybrid technique does display the correct be-
havior. 1In the plate problem, the difficulty in applying GTD to this
geometry stems from the fact that the diffraction coefficient for the
corners of the plate is not known and neglecting the corner effects can

cause substantial errors in the resonance frequency region where the plate

*
A moment method solution in the spectral domain has also been developed.
See Ref. [3].



size is of the order of one wavelength squared. The case of the solid
surface scatterer is not included in this paper but will be the subject
of a forthcoming publication.

Before closing this section, we mention two other innovative hybrid
techniques [1], [2] that have recently been reported in the literature.
We will briefly compare these methods with the one described in this

paper in Section VI, and point out the similarities and the differences.

ITI. FORMULATION

We begin our analysis with the electric-field integral equation [11]
for a perfectly conducting scatterer. The equation may be symbolically

written as

(G * J) = -Ei , reS (1)

where J(r') is the induced surface current density we are attempting to
determine, and the subscript t signifies tangential to the surface S;
E: 1s the tangential component of the incident electric field Ei on the
surface S of the scatterer; and G is the Green's Dyadic, which yields
the scattered electric field when operating on J. In anticipation of
Fourier transforming (1), we extend it over all space by first defining
a truncation operator 8 as follows:

For any vector A(r), which is a vector function of position T

8(a) = Kt 8(r - ES) , T_ES
where §(r - ;s) is the Dirac delta function and the subscript t
signifies tangential to the surface S. Also its complementary

operator 6 is defined as

@A) =4 - 8(d)

D>

We can then rewrite (1) as




G *J=0(E") +0( * (8])) , for all space. (2)

As indicated above, (2) is valid at all observation points whether on or
off the surface S. Note that the integral equation (1) is embedded in (2)
and that we have made use of the obvious identity 6J = J.

Next we Fourier transform (2) by introducing the transform relation-
ships

[F@ KT 47 = rir(d ) (3a)

e}

~

=1

~
1]

and

ik-r

F(E) dk = FIF@E)] (3b)

1.3/ =,-
G~ ] F) e
with . on top denoting the transformed quantities.

The transformed version of (2) reads

GJ = —ET + T (4)

where F = F[é(E * (0.J))]. and E. 1is the transform of the tangential component

I

of the incident field truncated on S. Note that the convolution operation
in (2) 1is transformed into an algebraic product upon Fourier Transformation.

A formal solution to (4) can now be written

- 5'1(-EI + F) ) (5)

(S|

Equation (5) says that if we had available the Fourier transform of the

scattered electric field, we could construct the solution for the induced

surface current density in the transform domain by adding it to —EI,

which is known, and by performing an algebraic division represented by
-1

Qe

In practice, of course, F is not known and must be solved for along
with J if (5) is to be used in the form as shown. However, instead

of using this form, we proceed to derive an iterated form of the equation

as shown below:



—(n*l) -1, = + ?(n))

=G (- EI (6)
which indicates the (n + 1)th approximation of J from the nth approxi-
mation for F. We next show how F( n) itself can be derived from J( )

To this end, we use the identity

= -1 == -1 ==

F=F[F "[GI] - 8(F "[GI]] (7)
which may be verified by writing (7) as

- = - -1

F=F[G * J - 6(-E™)] (8)
and using (2) to get

F = F[8(C * (87))] (9
which, of course, is the definition of 7. We can now use (7) to derive
the nth approximation F( n) of ¥ from the nth approximation of J, i.e.,
j(n). The relationship 1s written as

FO _opr L E® e mE ™y (10)
The desired 1teration relating 5(n+1) and j(n) may now be written.
Using (6) and (10)

= N = — == A

3D L EE + e @™ - e @I ™D (11)

The step-by-step procedure ¢+ constructing the solution of the

transformed surface current J will now be given:

1. Begin with an estimate of 3(0), which is the Fourier transform of

- the induced surface current, or equivalently, the scattered

far field within a know~ muitiplicative constant. Typically,
3(0)

1s available from GT or other asymptotic solutions for

the diffracted field in an anal -tic form and hence the transform

2(0)

is known over bo:n the visibie and the invisible ranges.



Multiply 3(0) by E, the known transform of the Green's Dyadic.
Note this involves algebraic multiplication and not the usual

time-consuming convolution operation.

E:(O)

Take the inverse Fourier transform of the product GJ using

both vistible and invisible ranges.

=(0)

Apply the truncation operator 8 to F-l[EJ ], which gives the

approximation to the tangential component of the scattered
electric field E: on the surface S. The accuracy of the solution
can be conveniently checked at this point by verifying the satis-
faction of the boundary condition by the tangential component

of ES, viz., {E° = —Ei} on S. As mentioned in Section I, this

is an important feature of the method.

=(0) -1,2x(0)

Subtract G(F—l[EJ 1) from the total # ~[GJ ] already evaluated.

Take the Fourier transform of the difference obtained in Step 5.
Subtract E_, the Fourier transform of the tangential component

I

of the incident electric field truncated on the surface, from

the result in Step 6.

-1 -1

Multiply the result obtained in Step 7 by G Note that G

is also known and the operation Is again algebraic as in Step 2.

The result thus obtained is 3(1), which is the first iteration of

the scattered far field.
=(1)

Take the inverse Fourier transform of J obtained in Step 8

and evaluate it on S to get the desired induced surface current

on the scatterer. In other words, perform the operation

e(F—l[j<l)]). For an exact solution, this operation is redundant,

since J = 8J, and hence, S(F_l[F[Gj]]) = 083 = J. However, the
Z(n)

Fourier inversion of an nth approximate solution J will not give

rise to a current distribution that is nonzero except on S.



This step provides a test for the accuracy and for the convergence

of the approximate solution by comparing the approximate 3(0)
with zv'[o(ﬁ’"l[i(l) DI.

10. Take F[O(F_l[j(l)])] to derive an improved approximation for 3(1).

(1)

11. Repeat as necessary using, for instance, the Zmproved J from

Step 10 in the iteration Equation (11) to generate the next higher-
order approximation 3(2).
In the following two sections, we show, in some detail, the application

of the procedure just described to a two~dimensional and a three-dimensional

scattering problem.

ITI. DIFFRACTION BY AN INFINITE STRIP

The geometry of the electromagnetic scattering problem involving a
perfectly conducting infinite strip of zero thickness illuminated by a
uniform plane wave, whose electric intensity vector is oriented parallel
to the edges of the strip, is depicted in Figure 1. For convenience of
analysis, an arbitrary incident wave can always be decomposed into two
components with respect to the z-axis, namely, TMZ (E-wave) and TEz
(H-wave). 1In the following discussion we consider the E-wave case only;
the H-wave case can be solved in a similar manner by considering
§i=;.Hi.

The incident field is given by

-ik(xcos¢ +ysing )
EL(0,8) = e ° ., (12)

jwt

where the e~ time dependence is understood. The integral equation for-

mulation [5] for the problem at hand takes the form
a

E 0 = [ 1 (x") 6(x - x") dx', xe[-a,a] (13)
-=a
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Figure 1. Diffraction by a strip 1lluminated by an E-wave.
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Figure 2. F_(x) can be approximated by the GTD solution to the half-
piane problem (a) shown on the left-hand side; F,(x) can
be approximated by the GID solution to the half-plane
problem (b) shown on the right-hand side.



where Jz(x') Is the algebraic sum of the induced surface current densities
on the top and the bottom surfaces of the thin strip. The kernel G is the

two-dimensional free-space Green's function given by

6 - x) =2n Pacfx- D, (14)

(1)

where Ho is the Hankel's function of the first kind of order zero.
ko = 2n/) is the free-space propagation constant. Note that (13) is the
conventional integral equation which equates the integral representation
of the tangential component of the scattered E-field radiated by the in-
duced surface current density to the negative of the tangential component
of the incident E-field on the surface of the perfectly conducting scatterer
as required by the satisfaction of the boundary condition. Henéé (13) is
valid on the strip only. An extended integral equation that is valid for
all x can be obtained by including the scattered fields outside the strip
as well. If the scattered field on the interval (-«,-a) is designated
by Fl(x) and the scattered field on the interval (a,») is designated by
FZ(XS, then the extended form of (13) becomes
a

[ 3, 60 = x') dx' = 0(-E_(x) + F (x) + Fy(x) (15)

—-a
where 6 is defined in Section II. Since the Fourier transform of the induced

surface current density can be related to the far field, (15) is Fourier-

transformed to give

. . —— . .
J_(e) G(a) = 6(—E:) (0) + Fy(a) + Fy(a) , (16)

where ~ on top indicates the Fourier transform pair defined in (3) which sim-
plifies in the present one-dimensional problem to

f F(x) e_i

-0

ax

F(a) dx (172)
and

F&x) = —— [ F(@) e Fda . (17b)
27 -

10



The Fourier transform of the two-dimensional Green's function in (16) takes
the form

~ i
Ca) = —=—== - (18)
2¢k§ - az
Note that (16) is an algebraic equation in the spectral domain in contrast to
the convolution form of the integral equation (15) in the spatial domain. The
reason for working in the spectral domain will become clear when the method of

solution for (16) is developed. Following the procedure discussed in

Section 1II and in terms of the notations introduced in the present prob-

lem, we proceed as follows:
1. Obtain 32(0) (o), the zero-order approximation of the Fourier
transform of the induced surface current density from GID or any other

asymptotic expression for the far-~field, including both the visible and

invisible ranges.

2. Derive O(jio) (a) &(u)i to approximate fl(o) (o) + FZ(O) (a).
Note that GTD may be used to get closed-form expressions for fl(o) (o)
and ﬁz(o) (o) since Fl(x) and FZ(X) can be approximated by the GTD

solutions to the two half-plane problems as shown in Figure 2.

_]_r

1

()(—Ei)(a) + 7, O (a) + 1?‘2(0) (a)—)}

~(l) ;
3. Sol for J (a) = F 9,F ‘
olve or z o \ (u) 5 J

G

4. Repeat as necessary.
The check for satisfaction of the integral equation can be applied very
simply by computing j(a) G(a), taking its inverse Fourier transform, and
verifying how well it approaches —Ei on the surface of the scatterer.
Galerkin's method applied in the spectral domain can also be employed to
systematically improve the solution by using, for instance,

j(o)(a), j(l)(a), etc., as the basis.

11



Figure 3 shows the calculated induced surface current density distri-
bution on the strip with ka = 4 (1.3X wide) for normal incidence. Note
that the current density becomes large at the edges, as it should for
E-wave incidence, although no specific condition was enforced at the edges,
nor any special care exercised. Note also that the approximate current

is confined esseﬁtially on the surface of the strip and extends very
little outside of this surface. Thus, the solution in this case is very
close to the true solution and this is easily verified by truncating the

current density, computing the scattered field it radiates on the strip,

and verifying that the scattered field is indeed very nearly equal to —Ei.
Figure 4 shows the result for ka = 40 i.e., a 13} strip. Note that the
peak in the center is no longer present and the current there approaches
that given by the physical optics approximation. There are now more
oscillations, however, and the current density has a sharp dip before
rising to infinity at the edges. Figure 5 shows the moment method applied
in the spectral domain solution [6] and the comparison with the one ob-
tained here is quite favorable. Figure 6 shows the satisfaction of the
boundary condition after one iteration. As mentioned before, such a test
is not available in the conventional GTD approach.

Let us next turn to the interesting case of a near grazing incidence
where the zero-order current density has a long tail extending beyond the
edge of the strip (see Figure 7). This result is to be expected since
the two half-plane GTID solutions used in the zero-order approximation
represent a poor approximation for the induced current for shallow incidence
angles. 1If this tail is truncated, the remaining portion of the current
density on the strip produces a scattered field on the surface of the strip
which is significantly different from —Ei, as may be seen from Figure 8.

Figure 9 shows the effect of one iteration on the zero-order GTD solution

12



o =3
< -
0 | >
0 ' Ol
-
o @
. I{\.\.\»‘.Of - \\f\
)
]
© ! o J
Y | o
YN
— ! O
=
i34 x &
x (o]
0 <
- (@]
o ~
\ = S
| 0 hA
o ; ol
& |
— 1 ._J L N i i i L " n 1 FO il 1 Y
-255 -1B2 -109 -036 0.36_' 1.09 182 255 -255 -182 -109 -0.36 036 109 1.82 255
x(xX10") X
Figure 3. Magnitude of the induced Figure 4. Magnitude of the induced

surface current density
distribution normalized

to (1k 2 )‘1 on the strip
of ka 2 8. (1.273 A wide),
b, = 90°.

NX =50
KA =50

[ CURRENT ON LARGE STRIP
[ INCIDENT ANGLE =90.0°

y///,E;

4

£q0)

| ano)x

surface current density
distributigi normalized

to (ikoz ) on the strip
of ka 2 80. (12.73 A wide),
b, = 90°.

fa\

/Av

|

a

INDUCED CURRENT (AMP/M)
162 189 2.6 243 270 297 3.28 35| 378

-0.84 -0.42
-0.21

05 -0.63

0.00

0.21

042

08

4
063 X0}

NORMALIZED DISTANCE D/A

Figure 5.

(15.92 A wide), ¢, = 90°.

13

Moment method (applied in the spectral domain) solution
of the magnitude of the induced surface current density

distribution normalized to 1/Z0 on the strip of ka = 50.



140

2] i
L\’\’-\’\/\,\ ,\/\/‘/\/J
-4 o
OJ ﬁl
o 0
© | ]
o Q
o0 ~
O o
[o] (o]
i k=¥
o X o
I S
(o] ol
N 9]
© le]
< | =
o S
B
I
[ 2 Iy Y B _ 1 i 1 i PR Iy [ A - 1 i —]
-255 -182 -109 -036 036 109 182 255 -255 -~-182 -109 -036 036 09 1.82 255
X X
Figure 6. Magnitude of the scattered Figure 7. Magnitude of the induced
E-field vvaluated on the o surface current density
strip of ka = 40., o, = 90 distribution normalized
(one iteration). to (ikoz )'l on the gtrip
of ka £ 80., ¢ =10
(no iteration).
g, 8.
- m
|
A
I"\‘\ o~ 2]
N, | © |
My g
Al g
= M“& o ]
I
o | )
o %“& —_ §
I\ ~
2 2,
o] X a4
_ o | "
i o =
0
" ['2]
X . [
: o o ’l
i
. £ -
: c o
§ i | ST
[ _+ P ¥ I;J - i A4 i & . L—J_, l_:ir 1 1 i J
-255 -182 -109 -036 036 109 182 255 -255 -182 -109 -036 036 (09 182 255
X X
Figure 8. Magnitude of the scattered Figure 9. Magnitude of the induced
E~field evaluated on the o surface current density
strip of ka = 40., ¢, = 10 distribuiion normalized to
(no iteration). (ikoz )™ on the gtrip of
14 ka = 40., ¢ = 10

(one iteratgon).



shown in Figure 7. ©Note that the current density is significantly altered
in the neighborhood of the shadowed cdgc.l To see that this is indeed an
improved solution, the truncated portion of it is used to calculate the
scgttered field. It is observed that the satisfaction of the boundary
condition has been improved as shown in Figure 10. To verify the convergence
of the solution numerically, one more iteration is performed and the result
is depicted in Figure 1ll1l. Note that the shape of the surface current

density does not change much which indicates a settling down of the solution
has occurred. Also, note that the tail extending outside of the strip has
been reduced to an insignificant quantity, which, when truncated, will pro-
duce little effect on the scattered field on the surface of the strip. To
further validate the solution, the moment method solution [6] of the same
problem with slightly diffcrent parameters is shown in Figure 12 for a

comparison., Again, thc agreement is good.

Before closing Lhis section, it is worthwhile to recapitulate the main
points of the approach discussed. The strip problem has been solved by a
combination of the integral cquation and asymptotic high frequency tech-

niques. Formulation of the integral equation in the Fourier transform
domain allows one to conveniently obtain the zero-order approximation to

the transformed unknown surface current density from the solution of two
half-plane problems. Higher-order solutions have been obtained via the
iteration steps outlined above and the numerical convergence has been
Validity of the solution has been substantiated by numerically

demonstrated.

verifying the satisfaction of the boundary condition.

15



o
[
. =3
L i
; : [
| s 0
T [ = [yY]
Ihfm’n e
”‘[\[‘Mf’.‘f'-'v‘N\ W, o
N o
o o
] 3.
(o] —
0 o~
& 2
X
o
3| 5
N ° |
o o !
o | 3
o] I (o]
1 "M\'\-\h-—.—-d
1 i Al o a 1 ] 2 2 P . o { : N s )
-255 -182 -109 -036 036 109 1.82 255 -2E55 -182 ~-109 -036 036 109 182 255
X X
Figure 10. Magnitude of the scattered Figure il. Magnitude of the induced
E-field evaluated on the o surface current density
strip of ka = 40., ¢° = 10 distributioT normalized
(one iteration). to (ik Z )7 on the strip

of ka £ §0., ¢ = 10°
(two iterations).

CURRENT ON LARGE STRIP
INCIDENT ANGLE=50°

NX =50°

KA=50

-

~084 -042 000 0.42 0.84
05  -063 -0zl 0.21 063

NORMALIZED DISTANCE D/A

Figure 12. Moment method (applied in the spectral domain) solution
of the magnitude of the induced surface current demsity
distribution normalized to 1/Z on the strip of

o o
ka = 50., ¢, = 5.

000 062 1.24 186 2.48 310 3.72 434 4.96

16



IV. DIFFRACTION BY A FINITE THIN PLATE

Having illustrated the usefulness of the hybrid technique for com-
bining the integral cquation and GID techniques relevant to a two-dimensional
scatterer, viz., the strip, we now turn to the more general three-dimensional
problem, a thin rectangular plate illuminated by a plane wave. For the sake
of simplicity we consider only the case of an X-polarized uniform plane wave
which is normally incident on a square thin plate. The geometry of the
problem is depicted in Figure 13, where the plate is located in the z = 0

plane. Using classical electromagnetic theory, the following coupled

integro-differential equations are readily obtained:

2 2 .

) 2 " . -1
(—5 + k) A Ouy) + X iy Ay(X,Y) = o Lx(X,Y) (19a)
X

and
32 o 52
.__-( . — = l b

(——ayz + k) Ay(x’}’) + Nx ay AX(X’Y) 0 ( 9 )

where xe(-a,a), ye(-b,b), and z = 0. /\X and Ay in (19a) and (19b) are the

x- and the y—-components of the magnetic vector potential, respectively. Since
the convolution of the induced surface current density with the free-space
Green's function gives the magnetic vector potential, we have the expres-
sions which are valid in the z = 0 plane

(20a)

A (x,y) = J _(xy) * G(x - x',y = y") ,

and

Ay(x,y) = Jy(x,y) * C(x - x',y —y") , (20b)

. . v ]
where * denotes the convolution operation and the free-space Green's func-

tion is given by



X

Figure 13, Diffraction by a finite rectangular thin plate illuminated
by a normally incident plane wave with polarization as shown.

Figure l4. Regions in the z = 0 plane in each of which the zero-order
approximation of the scattered field is obtained according
to Table 1.




G(x - x',y - y") = %; Siﬂﬁiﬁil (21)

where

r= -(x-;82-+(yl-y32, z,z' =0
Note that (19a) (19b) arce conventional integro-differential equations which
are valld on the plate only. To obtain an extended form of these equatfons,
additional unknown functions Fx(x,y) and Fy(x,y) will be introduced. The
domain of these functions is the region complementary to the plate in the

z = 0 plane. Hence, the extended form of (19a) (19b) can be written as

32 2 | 32 , i ‘ + 6(1«“ ( )J \' (22a)
(3x2 k5 AY(X’Y) 3% ay Ay(x,y) - -1w€0 —G(Ex(x’y)l X *oY P’ 2
and

a2 2 a2 .
~ . Y ___ = —iwe . s 22b
(jyz + k%) Ay(x,y) + 0% 3y Ax(x,y) lwe O Fy(X y) (22b)

where 0 and 6 are operators defined in Section II. Note that (22a) (22b)
are valid for the entire z = 0 plane. These equations are now Fourier

transformed to obtain

2 2. = ~ ~ ~ iko /Q\’;‘ o
(a” - k) J (0,8) G(a,8) + aBJ (0,8) G(a,8) = 7—(~0(E) (a,8) + 8(F ) (a,8))
o (23a)
and
2 2 - - - - lko ’A\/
(B -k ) Jy(a,B) G(GSB) + (Y-BJX(O-QB) G(G.,B) = —Z—_ G(Fy) (G,B) Y (23b)
o

where ~ on top indicates the Fourier transform as defined in (17a) with
transform variables (a,f8) corresponding to (x,y), respectively, and
Z0 = Vuo/eo is the free-space impedance. In writing (23a) and (23b),

(20a) and (20b) have been utilized. The Fourier transform of the free-

space Green's function, specialized to the z = 0 plane as given in (21), is

19



(24)

~ i 1
G(a,B) = 5
2 2 2 2
/ﬁo - a -8

Observe that (23a), (23b) are two algebraic equations in the transform
domain as opposed to the two integro-differential equations in (22a) and
(22b). It is a simple step to derive the zero-order solutions of jx(a,s)

. = —~
and Jy(a,B) once the estimates of e(Fx)(a,B) and e(Fy)(a,B) are available.
One merely solves the two coupled algebraic equations for these two unknowns
jx(a,B) and 3y(a,B). For the present case, 5(Fy)(x,y) is zero due to the
particular choice of ﬁ—polarized normal incident plane-wave illumination.
With this in mind, the first-order solutions of the transformed surface
current density can be expressed as

2 2
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3x(a,s) and 3y(a,8) are then inverse Fourier-transformed and truncated to
obtain the induced surface current densities on the plate.

Next, we estimate the zero-order approximation to 5(Fx)(x,y) using the
GTD solutions to four pertinent half-plane problems. The z = 0 plane con-
taining the plate has been divided into regions as shown in Figure 14, where
the hatched region is occupied by the plate and the scattered field in this
region must be equal to the -G(Ei(x,y)D to satisfy the boundary condition.
The rest of the z = 0 plane has been designated by digital numbers and Roman
numerals, and the manner in which the scattered fields in these various

regions are obtained is concisely tabulated in Table 1.

g{'{-w.‘é&.\
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TABLE 1

THE ZERO-ORDER APPROXIMATION OF 6(F (x,y)) IN VARIOUS REGIONS
EXTERNAL TO THE PLATE OBTAINED VIX THE USE OF GTD METHOD

REGION SCATTERED FIELD REMARKS
I, 1I Ex(x,z = 0) DERIVED FROM H-WAVE
STRIP GTD SOLUTION
III, IV E_(y,z = 0) DERIVED FROM E-WAVE
x STRIP GTD SOLUTION
1, 2, 0 FIRST ESTIMATE
3, 4

In deriving the zero-order approximation, the scattered fields in regions
1, 2, 3 and 4 are neglected although these fields are nonzéro in higher-order
approximations. The zero-order approximation to the scattered fields is com-
puted in regions III and IV, by starting with the E-wave GTID solution for
the strip, and truncating it so that it is nonzero only in these regions. 1In
regions I and II, the H-wave GTD solution for a strip is used to obtain
Hy(x,z = 0), and then Ex(x,z = 0) is constructed from Maxwell's equations.
The resulting solution is again truncated so that it is nonzero only in the

appropriate regions.

Havingréoméiéted the estimation of the zero-order approximation to the
scattered field é(Fx(x,y)) external to the plate, we now proceed to solve
for the induced surface current on the plate. To this end we return to (25a)
and (25b) and substitute the Fourier transform of é(Fx(x,Y)) and compute 3x
and jy; The desired induced surface current densities in the space domain
are then obtained by inverse Fourier transformation and truncation. If nec-

essary, the iteration scheme discussed in the previous sections can be

21



followed to obtain higher-order solutions. Convergence of the solution can
be checked by performing one more iteration and checking to see whether the
solution has 'settled down." Validity of the solution can be assured by
comput ing the scattered field on the plate using the solution of the surface
current just obtained to see how well the boundary condition is satisfied
on the surface of the plate. It should be clear now that all of these steps
follow exactly the same line as in the case of the strip problem discussed
in Section III.

The numerical result for the dominant x-component of the surface
current density for a one-wavelength squared plate is shown in Figure 1l5a.

Note that the surface current density, which goes to zero at the two edges

perpendicular to the incident electric intensity vector, tends to grow
without bound at the other two edges parallel to the incident electric
intensity vector, although no special edge condition has been enforced to
derive this behavior. To see that edge behavior better, a 90° rotation of
the gurface current in Flgure 15a is shown in Figure 15b. It is clearly
seen from Figure 15b that the cross section of the x-component of the
surface current density at x = 0 closely resembles the surface current on
the strip plotted in Figure 3. Figures 1l6a, 16b, and 16c exhibit the
change in the behavior of the current distribution both in the middle of
the plate and at the corners as the plate size is progressively increased.
Figures 17a and 17b show the cross-polarized component of the surface
current density on the plate. This current density goes to zero at the
line of symmetry in the middle of the plate and has a tendency to grow
without bound at the edges. The results for the one-wavelength squared
plate have been checked by moment method solutions and the agreement is

good. For such an electrically small plate, results are available for
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Figure 15a. Magnitude of the dominant x-component of the surface
current density on a 1\ x 1A plate (ka = 3.14) with
normal incidence; plate region: xe(-1,1), ye(~1,1).

Figure 15b. A 90° rotation of the surface current in Figure 15a.
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Figure 16.

-7 -13 0.0 1.3 27 -27 -3 0.0 1.3

Magnitudes of the dominant x-components of the surface current
density on: (a) a 2) x 2\ plate (ka = 6.28), (b) a 3\ x 3)

plate (ka = 9.43), and (c) a 4X x 4A plate (ka = 12.6); plate
region: xe(-1,1), ye(-1,1), normal incidence with x—-polarizatian.
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Figure 17. Magnitudes of the cross-polarized components
of the surface current density on: (a) a
1A x 1A plate (ka = 3.14), and (b) a 3x x 3
plate (ka = 9.43); plate region: xe(-1,1),
ye(~1,1), normal incidence with x-polarization.
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comparison in the literature [6], [7]. However, for electrically large
plates the matrix size becomes prohibitively large when the conventional
moment method type of approach is used. In contrast, the accuracy and the
convergence of the solution improve even further for a large scatterer. It
should also be mentioned that the number of grid points at which the current
density of the plate has been evaluated is 2048. Such fine details of the

current behavior would also be impractical to obtain using the moment method.

V. COMPUTATIONAL CONSIDERATIONS

An important step in the method of solution outlined in the previous
sections of the present approach is the computation of the Fourier and the
inverse Fourier transforms from the spatial to the spectral domains and
vice versa. To perform the Fourter transformation using the digital com-
puter, both the spatial and the spectral functions are discretized into sets
of samples, i.e., a Discrete Fourier Transform (DFT) is employed. The
well-known Cooley-Tukey Fast Fourier Transform (FFT) [8] allows one to
compute the DFT with only N log2 N operations for N data samples, thus,
reducing the computational timé to a few seconds even for a large N.

It must be realized, however, that the FFT algorithm generates a periodic
representation of the true Fourier transform. Care should be exercised
to assure that the aliasing error is small by sampling the function to be
transformed often enough to comply with the Nyquist sampling rate.
Furthermore, the Gibbs' phenomenon due to the finiteness of the sampling
window should be suppressed by using one of the window functions known

in the field of digital signal processing. To this end, a simple, but
highly effective Hamming window can be conveniently incorporated into

the computer program as a minimal requirement for a digital low-pass filter.
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It is worth mentioning that in the strip problem discussed in Section L1,
all of the numerical results including tue computer plots arce generated
within a few scconds on the IBM360/75 computer. Even for the plate problem
discussed in Section (L[, the computational time involved is only of the
order of one minute. This demonstrates the fact that the method of com-

putation is numerically very cefficient.

VI. CONCLUDING REMARKS

A new approach for combining the integral equation and high frequency

asymptot ic techniques has been demonstrated with two illustrative examples——
diffraction by a strip (two—dimensional problem) and a thin plate (three-
dimensional problem).  The basic idea i to start with the asymptotic high
frequency solution Teading to the zero-order approximation of Lhe scattered

{ar (ield, and to use the latter in the Fourlier—transformed version of the
extended form of the integral cquation to derive an improved result for

the induced surface current density. By formulating the problem in the
spectral domain, the spatial domain integral equation becomes an algebraic
cquat ion, which can be recast in an iteration scheme suitable for manipula-
tions ou the computer. A salient feature of the method is that the accuracy

of the solution for the surface current density can be conveniently checked

by verifying whether the scattered field, which is also computed in the

process of generating the solution, indeed satisfies the boundary condition

at the surface of the scatterer. Therefore, this approach not only provides

a way for systematically improving the GTD solution using the self-consistent,
integral equation formulation, but also provides a convenient validity check
of the ray optics solution. Furthermore, the method of solution yields both

the induced surface current density and the far field--an important feature

which is not present in conventional asymptotic high frequency methods.
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The convergence of the iterative scheme has not been proven rigorously
but has been demonstrated by numerical verification only. It should be
pointed out, however, that Galerkin's scheme in the spectral domain can
always be employed in place of the iteration procedure if a need for the

use of the Galerkin's method is clearly justified. Although only scattering

objects with infinitesimal thickness have been investigated in this paper,
the method 1tself is general enough to handle a much larger class of
geometries, including bodies with finite thickness. The investigation of
such structures is currently in progress and will be reported in a future
publication.

Finally, we would like to mention two other approaches [l], [2] that
are based on a combination of asymptotic and integral equation techniques.
The one developed by Thiele [l1] decomposes a given problem into two parts,
one of which is handled using the GTD method and the other using the moment
method. For the case of a wire antenna on a finite ground plane, the
effect of the edge diffraction from the ground plane is evaluated using
GTD and the result is subsequently used to augment the impedance matrix
of the monopole antenna over an infinite ground plane. Although the method
works rather well when GID results are accurately known for the ground
plane problem, e.g., a ground plane of circular shape, no convenient method
is available for improving the solution when there are corners in the plane
that contribute substantially to the scattered field. The latter situation
arises when the ground plane is of rectangular shape and is not large com-
pared to the wavelength, or when the antenna is mounted close to one or
more of the edges.

The second method developed by Burnside [2] tends to rectify the sit-

uation alluded to above by solving for surface currents via the moment
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method in the regions wherce the GTD solution is not accurate, and by using
asymptotic forms for the surface currents in regions where a good approximation
for these currents can be employed. However, this method cannot be con-
veniently applied to either the strip problem with grazing incidence, or to the
large plate problem discussed in this paper. For the strip problem, the

GID solution is quite inaccurate when the incident angle of the illuminating

wiave 1s near grazing. For the plate problem, the current does not settle

down to known asymptotic form in the center region of the plate until it is at least
three Lo tour wavelengths squanode The moment method is incapable of handling
the number of unknowns required Lo acearatetly solve tor the current dis-
Lribut ion on plate sizes that arve larger than 24 squared.
One other method developed by Bojarski [12)]  should be mentioned for

completeness since he also uses the transform technique to convert the in-
tegral equation into an algebraic form. However, he uses a three-dimensional
Fourier transform which again becomes unwieldly, both in terms of computer
storage and time. In contrast, the present method employs two-dimensional
transforms even for a three-dimensional structure, thus achieving a saving
in the storage requirement by approximately two orders of magnitude and a
corresponding saving in CPU and 1/0 times as well. Although, to date, we
have investigated only three-dimensional problems with geometries that have
planar faces or angular symmetries, the possibility of generalizing the
approach to more general shapes appears to be quite promising. One other
point with respect to Bojarski's work is that no advantageous use is made
of the available analytic form of the GID solution for the far field in the

visible and invisible ranges, which, in many cases, forms an excellent starting

point of the iteration procedure.
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